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Abstract

Blackbox adversarial attacks can be categorized into transfer- and query-based
attacks. Transfer methods do not require any feedback from the victim model,
but provide lower success rates compared to query-based methods. Query attacks
often require a large number of queries for success. To achieve the best of both
approaches, recent efforts have tried to combine them, but still require hundreds
of queries to achieve high success rates (especially for targeted attacks). In this
paper, we propose a novel method for blackbox attacks via surrogate ensemble
search (BASES) that can generate highly successful blackbox attacks using an
extremely small number of queries. We first define a perturbation machine that
generates a perturbed image by minimizing a weighted loss function over a fixed
set of surrogate models. To generate an attack for a given victim model, we search
over the weights in the loss function using queries generated by the perturbation
machine. Since the dimension of the search space is small (same as the number of
surrogate models), the search requires a small number of queries. We demonstrate
that our proposed method achieves better success rate with at least 30× fewer
queries compared to state-of-the-art methods on different image classifiers trained
with ImageNet (including VGG-19, DenseNet-121, and ResNext-50). In particular,
our method requires as few as 3 queries per image (on average) to achieve more
than a 90% success rate for targeted attacks and 1–2 queries per image for over a
99% success rate for untargeted attacks. Our method is also effective on Google
Cloud Vision API and achieved a 91% untargeted attack success rate with 2.9
queries per image. We also show that the perturbations generated by our proposed
method are highly transferable and can be adopted for hard-label blackbox attacks.

1 Introduction

Deep neural network (DNN) models are known to be vulnerable to adversarial attacks [1–4]. Many
methods have been proposed in recent years to generate adversarial attacks [2, 5–11] (or to defend
against such attacks [6, 12–20]). Attack methods for blackbox models can be divided into two broad
categories: transfer- and query-based methods. Transfer-based methods generate attacks for some
(whitebox) surrogate models via backpropagation and test if they fool the victim models [3, 4]. They
are usually agnostic to victim models as they do not require or readily use any feedback; and they
often provide lower success rates compared to query-based methods. On the other hand, query-based
attacks achieve high success rate but at the expense of querying the victim model several times to
find perturbation directions that reduce the victim model loss [21–25]. One possible way to achieve a
high success rate while keeping the number of queries small, is to combine the transfer and query
attacks. While there has been impressive recent work along this direction [26, 10, 27, 11], the
state-of-the-art methods [27, 11] still require hundreds of or more queries to be successful at targeted
attacks. Such attacks are infeasible for limited-access settings where a user cannot query a model that
many times[28].
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Figure 1: BASES for score-based attack. (Top-left) We define a perturbation machine (PM) using a fixed set
of N surrogate models, each of which is assigned a weight value as w = [w1, . . . , wN ]. The PM generates
a perturbed image x?(w) for a given input image x by minimizing the perturbation loss that is defined as a
function of w. To fool a victim model, we update one coordinate in w at a time while querying the victim model
using x?(w) generated by the PM. We can view this approach as a bi-level optimization or search procedure;
the PM generates a perturbed image with the given weights x?(w) in the inner level, while we update w in the
outer level. (Bottom-left) We visualize weights and perturbed images for a few iterations. We stop as soon as
the attack is successful (e.g. original label - ‘Butterfly’ is changed to target label - ‘Primate’ for targeted attack).
(Right) Victim loss values for different weights along the Barycentric coordinates on the triangle. We start with
equal weights (at the centroid) and traverse the space of w to reduce loss (concentrate on model f3). Red color
indicates large loss values (unsuccessful attack), and blue indicates low loss (successful attack).

Given this premise, we design a new method for blackbox attacks via surrogate ensemble search
(BASES), combining transfer and query ideas, to fool a given victim model with higher success
rates and fewer queries compared to state-of-the-art methods. For example, our evaluation shows
that BASES (on average) only requires 3 queries per image to achieve over a 90% success rate for
targeted attacks, which is at least 30× fewer queries compared to state-of-the-art methods [10, 11].
BASES consists of two key steps that can be viewed as bilevel optimization steps. 1) A perturbation
machine generates a query for the victim model based on weights assigned to the surrogate models.
2) The victim model’s feedback is used to change weights of the perturbation machine to refine the
query. Figure 1 depicts these steps.

We first define a perturbation machine (PM) that generates a single perturbation to fool all the
(whitebox) models in the surrogate ensemble. We use a surrogate ensemble for two reasons: 1) It is
known to provide better transfer attacks [29, 7]. The assumption is that if an adversarial image can
fool multiple surrogate models, then it is very likely to fool a victim model as well. For the same
reason, an ensemble with different and diverse surrogate models provides better attack transfer. 2) Our
main interest is in searching for perturbations that can fool the given victim model. A single surrogate
model provides a fixed perturbation; hence, it does not offer flexibility to search over perturbations.
To facilitate search over perturbations, we define the adversarial loss for the PM as a function of
weights assigned to each model in the ensemble. By changing the weights of the loss function, we
can generate different perturbations and steer in a direction that fools the victim model. It is worth
noting that perturbations generated by a surrogate ensemble with an arbitrary set of weights often
fools all the surrogate models, but they do not guarantee success on unseen victim models; therefore,
searching over the weights space for surrogate models is necessary.

Since the number of models in the surrogate ensemble is small, the search space is low dimensional
and requires extremely small number of queries compared to other query-based approaches. In our
method, we further simplify the search process by updating one weight element at a time, which
is equivalent to coordinate descent, which has been shown to be effective in query-based attacks
[21, 23]. Since it searches in orthogonal directions instead of estimating the full gradients, it is query
efficient. This strategy requires 2 queries per coordinate update but offers success rates as good as
that given by performing a full gradient update step (as shown in Section 4). Reducing the dimension
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of the search space while maintaining high success rate for query-based attacks is an active area of
research [23, 10, 27, 11], and our proposed method pushes the boundary in this area.

We perform extensive experiments for (score-based) blackbox attacks using a variety of surrogate
and blackbox victim models for both targeted and untargeted attacks. We select PyTorch Torchvision
[30] as our model zoo, which contains 56 image classification models trained on ImageNet [31] that
span a wide range of architectures. We demonstrate superior performance by a large margin over
state-of-the-art approaches, especially for targeted attacks. Furthermore, we tested the perturbations
generated by our method for attacks on hard-label classifiers. Our results show that the perturbations
generated by our method are highly transferable.

The main contributions of this paper are as follows.

• We propose a novel, yet simple method, BASES, for effective and query-efficient blackbox attacks.
The method adjusts weights of the surrogate ensemble by querying the victim model and achieves
high fooling rate targeted attack with a very small number of queries.

• We perform extensive experiments to demonstrate that BASES outperforms state-of-the-art methods
[26, 10, 27, 11] by a large margin; over 90% targeted success rate with less than 3 queries, which
is at least 30× fewer than other method.

• We also demonstrate the effectiveness under a real-world blackbox setting by attacking Google
Cloud Vision API and achieve 91% untargeted fooling rate with 2.9 queries (3× less than [10]).

• The perturbations from BASES are highly transferable and can also be used for hard-label attacks. In
this challenging setting, we can achieve over 90% fooling rate for targeted and almost perfect fooling
rate for untargeted attacks on a variety of models using less than 3 and 2 queries, respectively.

2 Related work

Ensemble-based transfer attacks. Transferable adversarial examples that can fool one model can
also fool a different model [3, 4, 29, 32] Transfer-based untargeted attacks are considered ‘easy’
since the adversarial examples can disrupt feature extractors into unrelated directions (e.g., in MIM
[7], the fooling rate for some models can be as high as 87.9%). In contrast, transfer-based targeted
attacks often suffer from low fooling rates (e.g., MIM shows a transfer rate of about 20% at best). To
improve the transfer rate, several methods use ensemble based approach. To combine the information
from different surrogate models, [29] fuses probability scores, and [7] proposes combining logits.
While these methods have been effective, the most natural and generic approach is to combine losses,
which can be used for tasks beyond classification [33, 34]. MGAA [35] iteratively selects a set of
surrogate models from an ensemble, to perform meta train and meta test steps to shrink the gap
between whitebox and blackbox gradient directions. Previous ensemble approaches typically assign
equal weights for each surrogate model. In contrast, we update weights for different surrogate models
based on the victim model feedback.

Query-based attacks. Unlike transfer-based attacks, query-based attacks do not make assumptions
that surrogate models share similarity with the victim model. They can usually achieve high fooling
rates even for targeted attacks (but at the expense of queries) [21, 25, 22]. The query complexity
is proportional to the dimension of the search space. Queries over the entire image space can be
extremely expensive [21], requiring millions of queries for targeted attack [22]. To reduce the query
complexity, a number of approaches have attempted to reduce the search space dimension or leverage
transferable priors or surrogate models to generate queries. SimBA-DCT [23] searches over the low
DCT frequencies. P-RGF [26] utilizes surrogate gradients as a transfer-based prior, and draws random
vectors from a low-dimensional subspace for gradient estimation. TREMBA [10] trains a perturbation
generator and traverses over the low-dimensional latent space. ODS [27] optimizes in the logit space
to diversify perturbations for the output space. GFCS [11] searches along the direction of surrogate
gradients, and falls back to ODS if surrogate gradients fail. We summarize the typical search space
and average number of queries for some state-of-the-art methods in Table 1. In our approach, we
further shrink the search dimension to as low as the number of models in the ensemble. Since our
search space is dense with adversarial perturbations, we show that a moderate-size ensemble with 20
models can generate successful targeted attacks for a variety of victim models while requiring only 3
queries (on average), which is at least 30 time fewer than that of existing methods.
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3 Method

3.1 Preliminaries

We use additive perturbation [1, 2, 6] to generate a perturbed image as x? = x+ δ, where δ denotes
the perturbation vector of same size as input image x. To ensure that the perturbation is imperceptible
to humans, we usually constrain its `p norm to be less than a threshold, i.e., ‖δ‖p ≤ ε, where p is
usually chosen from {2,∞}. Such adversarial attacks for a victim model f can be generated by
minimizing the so-called adversarial loss function L over δ such that the output f(x+ δ) is as close
to the desired (adversarial) output as possible. Specifically, the attack generator function maps the
input image x to an adversarial image x? such that the output f(x?) is either far/different from the
original output y for untargeted attacks, or close/identical to the desired output y? for targeted attacks.

Let us consider a multi-class classifier f(x) : x 7→ z, where z = [z1, . . . , zC ] represents a logit
vector at the last layer. The logit vector can be converted to a probability vector p = softmax(z).
We refer to such a classifier as a “score-based” or “soft-label” classifier. In contrast, a “hard-
label” classifier provides a single label index out of a total of C classes. We can derive the hard
label from the soft labels as y = argmaxc f(x)c. For untargeted attacks, the objective is to find
x? such that argmaxc f(x?)c 6= y. For targeted attacks, the objective is to find x? such that
argmaxc f(x?)c = y?, where y? is the target label.

Many efforts on adversarial attacks use iterative variants of the fast signed gradient method (FGSM)
[2] because of their simplicity and effectiveness. Notable examples include I-FGSM [5], PGD [6],
and MIM [7]. We use PGD attack in our PM, which iteratively optimizes perturbations as

δt+1 = Πε

(
δt − λ sign(∇δL(x+ δt, y?))

)
, (1)

where L is the loss function and Πε denotes a projection operator. There are many loss functions
suitable for crafting adversarial attacks. We mainly employ the following margin loss, which has
been shown to be effective in C&W attacks [36]:

L(f(x), y?) = max

(
max
j 6=y?

f(x)j − f(x)y? ,−κ
)
, (2)

where κ is the margin parameter that adjusts the extent to which the example is ‘adversarial.’ A
larger κ corresponds to a lower optimization loss. One advantage of C&W loss function is that its
sign directly indicates whether the attack is successful or not (+ve value indicates failure, −ve value
indicates success). Cross-entropy loss is also a popular loss function to consider, which has similar
performance as margin loss (comparison results provided in supplementary material).

3.2 Perturbation machine with surrogate ensemble

Controlled query generation with PM. We define a perturbation machine (PM) to generate queries
for the victim model as shown in Figure 1. The PM accepts an image and generates a perturbation to
fool all the surrogate models. Furthermore, we seek some control over the perturbations generated by
the PM to steer them in a direction that fools the victim model. To achieve these goals, we construct
the PM such that it minimizes a weighted adversarial loss function over the surrogate ensemble.

Adversarial loss functions for ensembles. Suppose our PM consists ofN surrogate models given as
F = {f1, . . . , fN}, each of which is assigned a weight in w = [w1, . . . , wN ] such that

∑N
i=1 wi = 1.

For any given image x and w, we seek to find a perturbed image x?(w) that fools the surrogate
ensemble. Below we discuss three possible weighted ensemble loss functions-based optimization
problems for targeted attack. Loss functions for untargeted attack can be derived similarly.

weighted probabilities x?(w) = argmin
x

− log (1y? ·
N∑
i=1

wi softmax(fi(x))), (3)

weighted logits x?(w) = argmin
x

L(

N∑
i=1

wifi(x), y?), (4)

weighted loss x?(w) = argmin
x

N∑
i=1

wiL(fi(x), y?). (5)

4



y? denotes the target label and 1y? denotes its one-hot encoding. L represents some adversarial loss
function (e.g., C&W loss). The first problem in (3) is the minimization of the softmax cross-entropy
loss defined on the weighted combination of probability vectors from all ensemble models [29].
The second problem in (4) uses adversarial loss on the weighted combination of logits from the
models [7], as the argument for the optimization. The third problem in (5) optimizes a weighted
combination of adversarial losses over all models. The weighted loss formulation is the simplest
and most generic ensemble approach that works not only for the classification task with logit or
probability vectors, but also other tasks (e.g., object detection, segmentation) as long as the model
losses can be aggregated [34]. Here, we focus on the weighted loss formulation, since it shows
superior performance compared to weighted probabilities and logits formulations in our experiments
(results in supplementary material).

Algorithm 1 presents a pseudocode for the PM module for a fixed set of weights. The PM accepts an
image x and weights w along with the surrogate ensemble and returns the perturbed image x? = x+δ
after a fixed number of signed gradient descent steps for the ensemble loss.

Algorithm 1 Perturbation Machine: δ, x?(w) = PM(x,w, δinit)

Input:
Input x and the target class y? (for untargeted attack y? 6= y );
Surrogate ensemble F = {f1, f2, ..., fN};
Ensemble weights w = {w1, w2, ..., wN};
Initial perturbation δinit; Step size λ; Perturbation norm (`2/`∞) and bound ε

Output: Adversarial perturbation δ, x?(w)
1: δ = δinit
2: for t = 1 to T do
3: Calculate Lens =

∑N
i=1 wiLi(x+ δ, y?) . Ensemble loss

4: Update δ ← δ − λ · sign(∇δLens) . Gradient of ensemble via backpropagation
5: Project δ ← Πε(δ) . Project to the feasible set of `∞ or `2 ball
6: end for
7: x?(w)← x+ δ
8: return δ, x?(w)

3.3 Surrogate ensemble search as bilevel optimization

Let us assume that we are given a blackbox victim model, fv, that we seek to fool using a perturbed
image generated by the PM (as illustrated in Figure 1). Suppose the adversarial loss for the victim
model is defined as Lv. To generate a perturbed image that fools the victim model, we want to solve
the following optimization problem:

w = argmin
w

Lv(fv(x?(w)), y?). (6)

The problem in (6) is bilevel optimization that seeks to update the weight vector w for the PM so that
the generated x?(w) fools the victim model. The PM in Algorithm 1 can be viewed as a function that
solves the inner optimization problem in our bilevel optimization. The outer optimization problem
searches over w to steer the PM towards a perturbation that fools the victim model.

BASES: blackbox attacks via surrogate ensemble search. Our objective is to maximize the attack
success rate and minimize the number of queries on the victim model; hence, we adopt a simple yet
effective iterative procedure to update the weights w and generate a sequence of queries. Pseudocode
for our approach is shown in Algorithm 2. We initialize all entries in w to 1/N and generate the
initial perturbed image x?(w) for input x. We stop if the attack succeeds for the victim model;
otherwise, we update w and generate a new set of perturbed images. We follow [21] and update
w in a coordinate-wise manner, where at every outer iteration, we select nth index and generate
two instances of w as w+,w− by updating wn as wn + η, wn − η, where η is a step size. We
normalize the weight vectors so that the entries are non-negative and add up to 1. We generate
perturbations x?(w+), x?(w−) using the PM and query the victim model. We compute the victim
loss (or score) for {w,w+,w−} and select the weights, the perturbation vector, and the perturbed
images corresponding to the smallest victim loss. We stop if the attack is successful with any query.
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Algorithm 2 BASES: Blackbox Attack via Surrogate Ensemble Search

Input:
Input x and the target class y? (for untargeted attack y? 6= y );
Victim model fv; Maximum number of queries Q; Learning rate η;
Perturbation machine with surrogate ensemble

Output: Adversarial perturbation δ, x?
1: Initialize δ = 0; q = 0; w = {1/N, 1/N, ..., 1/N}
2: Generate perturbation via PM: δ, x?(w) = PM(x,w, δ) . first query with equal weights
3: Query victim model: z = fv(x+ δ)
4: Update query count: q ← q + 1
5: if argmaxc zc = y? then
6: break . stop if attack is successful
7: end if
8: while q < Q do
9: Update surrogate ensemble weights as follows. . outer level updates weights

10: Pick a surrogate index n . cyclic or random order
11: Compute w+,w− by updating wn as wn + η, wn − η, respectively
12: Generate perturbation x?(w+), x?(w−) via PM . inner level generates query
13: Query victim model: fv(x?(w+)), fv(x?(w−)) . 2 queries per coordinate
14: Calculate victim model loss for {w,w+,w−} as Lv(w),Lv(w+),Lv(w−)
15: Select w, δ, x?(w) for the weight vector with the smallest loss
16: Increment q after every query, and stop if the attack is successful for any query
17: end while
18: return δ

4 Experiments

4.1 Experiment setup

Surrogate and victim models. We present experiments for blackbox attacks using image classifica-
tion models from Pytorch Torchvision [30], which is a comprehensive and actively updated package
for computer vision tasks. At the time of writing this paper, Torchvision offers 56 classification mod-
els trained on ImageNet dataset [31]. These models have different architectures and include the family
of VGG [37], ResNet [38], SqueezeNet [39], DenseNet[40], ResNeXt [41], MobileNet [42, 43],
EfficientNet [44], RegNet [45], Vision Transformer [46], and ConvNeXt [47]. We choose different
models as the victim blackbox models for our experiments, as shown in Figures 2, 3, and 4. To
construct an effective surrogate ensemble for the PM, we sample 20 models from different families:
{VGG-16-BN, ResNet-18, SqueezeNet-1.1, GoogleNet, MNASNet-1.0, DenseNet-161,
EfficientNet-B0, RegNet-y-400, ResNeXt-101, Convnext-Small, ResNet-50,
VGG-13, DenseNet-201, Inception-v3, ShuffleNet-1.0, MobileNet-v3-Small,
Wide-ResNet-50, EfficientNet-B4, RegNet-x-400, VIT-B-16}. We vary our ensemble
size N ∈ {4, 10, 20} by picking the first N model from the set. In most of the experiments, our
method uses N = 20 models in the PM, unless otherwise specified. To validate the effectiveness of
our methods in a practical blackbox setting, we also tested Google Cloud Vision API.

Comparison with other methods. We compare our method with some of the state-of-the-art
methods for score-based blackbox attacks. TREMBA [10] is a powerful attack method that searches
for perturbations by changing the latent code of a generator trained using a set of surrogate models.
GFCS [11] is a recently proposed surrogate-based attack method that probes the victim model using
the surrogate gradient directions. We use their original code repositories [48, 49]. For completeness,
we also compare with two earlier methods, ODS [27] and P-RGF [26], that leverage transferable
priors, even though they have been shown to be less effective than GFCS and TREMBA. Additional
details about comparison with TREMBA and GFCS are provided in the supplementary material.

Dataset. We evaluated all methods using 1000 ImageNet-like images from the NeurIPS-17 challenge
[50, 51], which provides the ground truth label and a target label for each image.

Query budget. In this paper, we move towards a limited-access setting, since for many real-life
applications, legitimate users will not be able to run many queries [28]. In contrast with TREMBA
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(c) ResNext-50
Figure 2: Comparison of 5 attack methods on three victim models under perturbation budget l∞ ≤ 16 for
targeted attack. Our method achieves high success rate (over 90%) with few queries (average of 3 per image).

Table 1: Number of queries vs fooling rate of different methods and the search space dimension D.

Method D
Number of queries (mean± std) per image and fooling rate

VGG-19 DenseNet-121 ResNext-50
Targeted Untargeted Targeted Untargeted Targeted Untargeted

P-RGF [26] 7,500 - 156 ± 113
93.5% - 164 ± 112

92.9% - 166 ± 116
92.5%

TREMBA [10] 1,568 92 ± 107
89.2%

2.4 ± 14
99.7%

70 ± 104
90.5%

5.9 ± 28
99.5%

100 ± 109
85.1%

7.5 ± 38
98.9%

ODS [27] 1,000 261 ± 125
49.0%

38 ± 48
99.9%

266 ± 123
49.7%

52 ± 64
99.0%

270 ± 116
42.7%

54 ± 65
98.4%

GFCS [11] 1,000 101 ± 95
89.1%

14 ± 21
100.0%

76 ± 75
95.2%

16 ± 36
99.9%

86 ± 87
92.9%

15 ± 18
99.7%

Ours 20 2.8 ± 5.1
93.2%

1.2 ± 1.6
99.7%

1.7 ± 3.0
98.9%

1.1 ± 0.9
99.7%

1.8 ± 3.2
99.0%

1.2 ± 1.5
100.0%

and GFCS, which set the maximum query count to 10, 000 and 50, 000, respectively, we set the
maximum count to be 500 and only run our method for 50 queries in the worst case. (TREMBA also
uses only 500 queries for Google Cloud Vision API to cut down the cost.)

Perturbation budget. We evaluated our method under both `∞ and `2 norm bound, with commonly
used perturbation budgets of `∞ ≤ 16 and `2 ≤ 255

√
0.001D = 3128 on a 0–255 pixel intensity

scale, where D denotes the number of pixels in the image. For attacking Google Cloud Vision API,
we reduce the norm bound to `∞ ≤ 12 to align with the setting in TREMBA. Results for `2 norm
bound are provided in the supplementary material.

Targeted vs untargeted attacks. All the methods achieve near perfect fooling rates for untargeted
attacks in our experiments. This is because untargeted attack on image classifiers is not challenging
[11], especially when the number of classes is large. Thus, we primarily report experimental results
on targeted attacks in the main text. Results for untargeted attacks are in the supplementary material.

4.2 Score-based attacks

Targeted attacks. Figure 2 presents a performance comparison of five methods for targeted attacks
on three blackbox victim models. Our proposed method provides the highest fooling rate with the
least number of queries. P-RGF is found to be ineffective (almost 0% success) for targeted attacks
under low query budgets. TREMBA and GFCS are similar in performance; TREMBA shows better
performance when query count is small, but GFCS matches TREMBA after nearly 100 queries.
Nevertheless, our method clearly outperforms these two powerful methods by a large margin at any
level of query count. We summarize the search space dimension D and query counts vs fooling rate
of different methods under a limited (and realistic) query budget for both the targeted and untargeted
attacks in Table 1. Our method is the most effective in terms of fooling rate vs number of queries
(and has the smallest search dimension). Additional results and details about fair comparison and
fine tuning of TREMBA and GFCS are provided in the supplementary material.

Surrogate ensemble size (N). To evaluate the effect of surrogate ensemble size on the performance
of our method, we performed targeted blackbox attacks experiment on three different victim models
using three different sizes of surrogate ensemble: N ∈ {4, 10, 20}. The results are presented in
Figure 3 in terms of fooling success rate vs number of queries. As we increase the ensemble size,
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(c) ResNext-50
Figure 3: Comparison of targeted attack fooling rate with different number of ensemble modelsN ∈ {4, 10, 20}
in PM. Every experiment is performed with whitebox gradient (denoted as ‘WB’ with dotted lines) and blackbox
score-based coordinate descent (denoted as ‘BB’ with solid lines). Experiment was run on 100 images.
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EfficientNet-B2
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VIT-L-16
ConvNeXt-Base

(b) Untargeted

Figure 4: Performance of blackbox attack on 6 hard-label classifiers. Our method generates a sequence of
queries for targeted attack using VGG-19 as a victim model while the PM has N = 20 models in the surrogate
ensemble. Experiment performed on 100 images.

the fooling rate also increases. With N = 20, the targeted attack fooling rate is almost perfect
within 50 queries. Specifically, for VGG-19 with N = 20, we improve from 54% success rate at the
first query (with equal ensemble weights) to 96% success rate at the end of 50 queries; this equals
78% improvement. DenseNet-121 and ResNext-50 can achieve 100% fooling rate with N = 20.
With DenseNet-121, using 10 surrogate models, we can achieve a fooling rate of 98%. While
using 4 models is challenging with respect to all victim models, we can see a rapid and significant
improvement in fooling rates when the number of queries increases.

Comparison of whitebox (gradient) vs blackbox (queries). To check the effectiveness of our
coordinate descent approach for updating w, we compare its performance with the alternative
approach of calculating the exact gradient of victim loss under the whitebox setting. The results
are presented in Figure 3 as dotted lines. We observe that our blackbox query approach provides
similar results as the whitebox version, which implies the coordinate-wise update of w is as good as
a complete gradient update.

4.3 Hard-label attacks

The queries generated by our PM are highly transferable and can be used to craft successful attacks
for hard-label classifiers. To generate a sequence of queries for hard-label classifiers, we pick a
‘surrogate victim’ model and generate queries by updating w in the same manner as the score-based
attacks for Q iterations (without termination). We store the queries generated at every iterations in
a query set {δ1, . . . , δQ}. We test the victim hard-label blackbox model using x+ δ by selecting δ
from the set in a sequential order until either the attack succeeds or the queries finish.

In our experiments, we observed that this approach can achieve a high targeted attack fooling rate
on a variety of models. We present the results of our experiment in Figure 4, where we report
attack success rate vs query count for 6 models: {MobileNet-V2, ResNet-34, ConvNeXt-Base,
EfficientNet-B2, RegNet-x-8, VIT-L-16}. We used VGG-19 as the ‘surrogate victim’ model
to generate the queries using the PM with 20 surrogate models. Using the saved surrogate perturba-
tions, we can fool all models almost 100%, except for VIT-L-16 [46] that is a vision transformer
and architecturally very different from the majority of surrogate ensemble models (thus difficult to
attack). Nevertheless, the fooling rate increases from 18%→ 63%, which is a 250% improvement.
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4.4 Attack on commercial Google Cloud Vision API

We demonstrate the effectiveness of our approach under a practical blackbox setting by attacking
the Google Cloud Vision (GCV) label detection API. GCV detects and extracts information about
entities in an image, across a very broad group of categories containing general objects, locations,
activities, animal species, and products. Thus, the label set is very different from that of ImageNet,
and largely unknown to us. We have no knowledge about the detection models in this API either. We
randomly select 100 images from the aforementioned ImageNet dataset that are correctly classified
by GCV, and perform untargeted attacks against GCV using 20 surrogate models with perturbation
budget of `∞ ≤ 12 to align with the setting in TREMBA [10].

For each input image, GCV returns a list of labels, which are usually the top 10 labels ranked by
probability. Under the success metric of changing the top 1 label to any other label, same as in [10],
our attack can achieve a fooling rate of 91% with only 2.9 queries per image on average, which is
much lower than 8 queries TREMBA reported for similar experiment. We present some successful
examples in Figure 5. We present additional results in the supplementary material that show our
attacks from classification can transfer to object detection models.

(a) Original Image - Bus (b) Attacked Image

(c) Original Image - Fly (d) Attacked Image
Figure 5: Visualization of some successful attacks on Google Cloud Vision.

5 Conclusion and discussion

We propose a novel and simple approach, BASES, to effectively perform blackbox attacks in a
query-efficient manner, by searching over the weight space of ensemble models. Our extensive
experiments demonstrate that a wide range of models are vulnerable to our attacks at the fooling rate
of over 90% with as few as 3 queries for targeted attacks. The attacks generated by our method are
highly transferable and can also be used to attack hard-label classifiers. Attacks on Google Cloud
Vision API further demonstrates that our attacks are generalizable beyond the surrogate and victim
models in our experiments.

Limitations. 1) Our method needs a diverse ensemble for attacks to be successful. Even though the
search space is low-dimensional, the generated queries should span a large space so that they can
fool any given victim model. This is not a major limitation for image classification task as a large
number of models are available, but it can be a limitation for other tasks. 2) Our method relies on
the PM to generate a perturbation query for every given set of weights. The perturbation generation
over surrogate ensemble is computationally expensive, especially as the ensemble size becomes
large. In our experiments, one query generation with {4, 10, 20} surrogate models requires nearly
{2.4s, 9.6s, 18s} per image on Nvidia GeForce RTX 2080 TI. Since our method requires a small
number of queries, the overall computation time of our method remains small.

Societal impacts. We propose an effective and query efficient approach for blackbox attacks. Such
adversarial attacks can potentially be used for malicious purposes. Our work can help further explain
the vulnerabilities of DNN models and reduce technological surprise. We also hope this work will
motivate the community to develop more robust and reliable models, since DNNs are widely used in
real-life or even safety-critical applications.
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Blackbox Attacks via Surrogate Ensemble Search
Supplementary Material

Summary

In this supplementary document, we provide additional discussion on the selection of hyper parameters, results
for classification and object detection tasks, and influence of ensemble weights on the loss landscape of the
victim model. Below is a summary of main sections of this document.

A. As mentioned in Section 3 of the main text, we provide experimental results justifying our selection of
hyper-parameters, such as the choice of loss function for individual surrogate models, ensemble loss
function, step size of PGD attack in PM, and the selection of models in the surrogate ensemble. We select
the hyper-parameters that achieve the best performance for our experiments.

B. As promised in Section 4 of the main text, we provide more details about the comparison with TREMBA
and GFCS. We also provide additional comparisons with state-of-the-art methods for untargeted attacks
and attacks under `2 norm constraints.

C. We present experiments and results for vanishing attacks on object detectors. Our results indicate that the
proposed approach is also effective for tasks beyond classification.

D. We present some examples of adversarial images generated in our experiments.
E. We analyze the effect of ensemble weights on the loss landscape of different victim models.

A Analysis of hyper-parameters

A.1 Hyper-parameters for inner optimization (PM)

Hyper-parameters can greatly impact the attack performance but can get overlooked sometimes. In our experi-
ments, we analyzed how different hyper-parameters influence the performance of our algorithm. The experiment
setup is similar to Figure 2a (in main text) using only the first 100 images to speed up experiments (because we
observed similar trends using all 1000 images).
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Figure 6: Analysis on the effect of some hyper-parameters. (a) Loss function for individual surrogate models.
(b) Ensemble loss function using three types of weighted combinations. (c) Step size λ of inner optimization
in PM. (d) Order of surrogate models in PM. (e) Learning rate η in updating ensemble weights w for outer
optimization. All the experiment are performed for targeted attacks on victim model VGG-19, with ensemble
size N = 20, and evaluated on 100 images.

Loss function. Two popular candidates of loss functions (C&W, Cross Entropy) show similar performance as
shown in Figure 6a. We choose C&W for the sake of convenience in determining success from its sign.
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Ensemble loss function. Some previous papers (e.g., MIM [7]) claimed that ensemble with weighted logits
(equation (4) in main text) outperforms ensemble with weighted probabilities and weighted combination of
loss (equations (3) and (5) in main text). In our experiments, shown in Figure 6b, we observe that weighted
combination of surrogate loss functions provide similar or even higher fooling rate compared to weighted
probabilities or logits.

PGD step size λ. Since we are running the PGD-based attack in PM, the step size λ can influence the
attack success rate. For perturbation budget ε = 16 and T = 10 iterations, I-FGSM will use a step size of
λ0 = ε/T = 1.6 to prevent the perturbation from exceeding the `∞ norm bound. Since PGD projects the
perturbation back to its feasible set at each iteration, we can increase the step size λ such that more pixels
saturate, which leads to a higher attack success rate. In Figure 6c, we report results using λ as a multiple of λ0

using multiplying factors {2, 3, 5, 8}. We choose the best step size for our experiments, which is λ = 3λ0.

Selection of surrogate models. As specified in the main text, our method needs a diverse en-
semble for attacks to be successful. Following the setting in TREMBA [10], we start with four
surrogate models, {VGG-16-BN, ResNet-18, SqueezeNet-1.1, GoogleNet}. To improve the
diversity of our ensemble, we insert more models from different families. We expand it to ten
by adding {MNASNet-1.0, DenseNet-161, EfficientNet-B0, RegNet-y-400, ResNeXt-101,
Convnext-Small}. Finally, we add {VGG-13, ResNet-50, DenseNet-201, Inception-v3,
ShuffleNet-1.0, MobileNet-v3-Small, Wide-ResNet-50, EfficientNet-B4, RegNet-x-400,
VIT-B-16} to create an ensemble with 20 models. We observe that by using 20 models in the ensemble, our
method can already achieve an almost perfect targeted attack fooling rate.

A.2 Hyper-parameters for outer optimization

Order of surrogate models. Since we are using a coordinate descent approach, the order of coordinates (i.e.,
surrogate models in our case) may influence the performance of our method. We performed different experiments
by shuffling the order of the models using different random seeds (10, 20, 30, 40, 50). The results in Figure 6d
suggest that our method provides identical results for different sequences of surrogate models.

Learning rate η. Learning rate is often an important hyper-parameter that can influence performance, and
we selected our learning rate to be 1/10th of the average ensemble weight with 20 models (i.e., η = 0.005).
We compare different learning rates in the range of {0.02, 0.01, 0.005, 0.002, 0.001} while ensuring that all
individual surrogate weights remain non-negative. The results in Figure 6e suggest that our approach is robust to
variations in the learning rates.

B Experiments on classification

Comparison with TREMBA. TREMBA [10] requires one trained generator for each target class; thus, it is not
feasible to test it for any arbitrary target label selected from 1000 classes in ImageNet. For a fair comparison, we
attack each image using one of the 6 target labels available in trained TREMBA model {0, 20, 40, 60, 80, 100}
and average the query counts. Furthermore, TREMBA generator was trained using an ensemble of 4 surrogate
models; while it is possible to train the generator with more surrogate models, training one generate per target
label is expensive and non-trivial in terms of hyper-parameter tuning. Therefore, in our experiments, we used the
trained generator from the paper. It is worth pointing out that our method with 4 surrogate models (as shown in
Figure 3) is still better than TREMBA in the low query count regime. TREMBA can provide better success rate
at the expense of increased queries.

Why is our method better than TREMBA? TREMBA generates patterns by optimizing over the latent code of a
trained generator, which contributes to the high success rate. TREMBA generator has a large enough range that
it can generate adversarial perturbations that fool a victim model. Our experimental results suggests that the
space of perturbations generated by our PM (via weighted surrogate ensemble) is better (in terms of diversity
and low dimensionality) than TREMBA’s generator. That is the reason why we see a steep slope for the first few
queries in our success vs query curve.

Comparison with GFCS. To perform our experiments, we used the same set of N = 20 surrogate models
for GFCS [11] that are used in our PM. GFCS used `2 norm constraint and did not compare with TREMBA.
While our method can generate perturbations with `2 and `∞ constraints, TREMBA generates perturbations
with `∞ constraint. To perform a fair comparison, we modified GFCS code to have `∞ constraint and tuned the
hyper-parameters to achieve the best performance. The step-size is the key parameter that we choose as 0.005
after searching over a grid of {0.2, 0.02, 0.01, 0.005, 0.001, 0.0005}. As shown in 7, the performance reported
in Figure 2 for `∞ attacks is on par with the performance achieved with original settings of `2 norm constraint.

Why is our method better than GFCS? Our method is more query efficient because we leverage all surrogate
models for each query, whereas GFCS only uses one surrogate model per query. We can see that our method has
the steepest slope in Figure 7 and the highest success at the starting point.
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Figure 7: Adversarial attacks generated with `2 constraint (equivalent to Figure 2 in main text that uses `∞
constraints). Comparison of our method with GFCS / ODS on three victim models under perturbation budget
`2 ≤ 3128 for targeted attacks.

Note about P-RGF. The original implementation of P-RGF is in Tensorflow, but to unify the platform, we use
the Pytorch implementation provided by GFCS [48].

Untargeted attacks. Un-targeted attacks are ‘easy’ [11] in image classification, especially when the number
of classes is large (e.g., in ImageNet that has 1000 categories). We show that our method can readily achieve
a fooling rate over 99% with only 1–2 queries (on average), as depicted in Figure 8 below and Table 1 in the
main text. The initial perturbations from the PM (with all ensemble weights set to 1/N ) can already achieve
a fooling rate of over 94%, close to that of TREMBA. Other methods require tens or hundreds of queries to
achieve near-perfect success rate.
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Figure 8: Untargeted attacks (version of Figure 2 in the main text). Comparison of 5 attack methods on three
victim models under perturbation budget l∞ ≤ 16 for untargeted attack. All methods can achieve near perfect
success rate within 500 queries.

C Experiments on object detection

To demonstrate the generalizability of BASES beyond classification tasks, we also performed experiments for
vanishing attacks on object detectors. The results indicate that our proposed method can be easily adopted for
other tasks.

C.1 Experiment setup

Surrogate and victim models. We evaluate BASES using object detectors from MMDetection [52, 53], which
provides a diverse set of models form over fifty model families, including Faster R-CNN [54],
YOLOv3 [55], RetinaNet [56], FreeAnchor [57], RepPoints [58], CenterNet [59],
DETR [60], and Deformable DETR [61]. We choose different models {RetinaNet, RepPoints,
Deformable DETR} as victim blackbox models, as shown in Figure 9. For surrogate models in the PM, we
select some popular models {Faster R-CNN, YOLOv3, FreeAnchor, DETR, CenterNet} and vary our
ensemble size N ∈ {2, 3, 4, 5} by choosing the first N models from the set.

Dataset, attacks, query, and perturbation budgets. All models are trained on COCO 2017 train dataset [62].
We randomly sample 100 images of stop sign from COCO 2014 validation dataset to perform blackbox vanishing
attacks. The attack is considered successful if the victim model fails to detect the stop sign in the adversarial
image. The constraints on the query budget Q ≤ 50 and perturbation budget `∞ ≤ 16 are the same as the
classification setting.
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Loss functions and ensemble loss. For individual surrogate models, we use the original loss function used for
their training. We defined the ensemble loss as a weighted combination of loss over all the surrogate models.
The confidence score of stop sign detected by the victim model is used as a feedback from the victim model.

C.2 Attacks on object detection

The results of attacking object detectors are shown in Figure 9 and Table 2. We observe that our attack method is
effective and query efficient in attacking object detectors. In particular, for RetinaNet, a simple transfer attack
(first iteration) has 27% fooling rate with N = 2 surrogate models. The fooling rate improve from 27%→ 81%
with a small number of queries, which is a 300% improvement. Our attack gets stronger as the number of
surrogate models increases. When N = 5, we can get almost perfect (≥ 99%) fooling rate for all victim models
with less than 3 queries on average.
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Figure 9: Fooling rates for vanishing attacks on three victim object detectors using different number (N ∈
{2, 3, 4, 5}) of surrogate models in PM.

Table 2: Number of queries (mean± std) per image and fooling rate of attacks on three victim models using
different number of surrogate models in PM.

Victim model→ RetinaNet RepPoints Deformable DETR

N = 2
8.5 ± 11

81%
8.0 ± 9.9

86%
8.5 ± 11

74%

N = 3
3.9 ± 6.5

100%
2.8 ± 4.1

99%
5.4 ± 9.3

95%

N = 4
2.2 ± 2.4

100%
2.2 ± 3.1

98%
2.1 ± 2.2

97%

N = 5
2.0 ± 2.1

100%
2.1 ± 3.0

99%
2.1 ± 2.9

99%

C.3 Attacks on Google Cloud Vision API

We also observe that the attacks generated by our method can also fool object detection models, as shown in
Figure 10.

D Visualization of adversarial examples

Classifiers. We present some examples of adversarial images generated by different methods for targeted
attack on VGG-19 classifier in Figure 11. We observe that even with the same perturbation budget, `∞ ≤ 16,
perturbation from our method is less visible than TREMBA, and is comparable with the ones from ODS and
GFCS. TREMBA perturbs all images to ‘Tench’ and has a very structured semantic pattern that becomes visible.
ODS, GFCS, and our method perturb ‘Butterfly’ to ‘Dog’, ‘Coot’ to ‘Jacamar’, and ‘Parrot’ to ‘Fountain’.

Detectors. We visualize some example images of attacking different object detectors in Figure 12. Our method
effectively vanishes stop sign in the scene.

E Loss landscape vs ensemble weights

Why does ensemble weights-based query update work? We visualize the loss landscape of some victim models
with respect to ensemble weights of three surrogate models in the PM. The plots in Figure 13 illustrate the loss,
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(a) Original Image - Bus (b) Attacked Image

(c) Original Image - Fly (d) Attacked Image
Figure 10: Attacks generated by our PM can fool object detection models. Visualization of some successful
attacks on Google Cloud Vision object detection API. (Compare to Figure 5 in main text.)

Clean image ODS GFCS TREMBA Ours

(a) Original: Butterfly; Target: Dog for ODS, GFCS, and Ours; Target: ’Tench’ for TREMBA.
Clean image ODS GFCS TREMBA Ours

(b) Original: Coot; Target: Jacamar for ODS, GFCS, and Ours; Target: ’Tench’ for TREMBA.
Clean image ODS GFCS TREMBA Ours

(c) Original: Parrot; Target: Fountain for ODS, GFCS, and Ours; Target: ’Tench’ for TREMBA.
Figure 11: Visualization of adversarial images generated by different methods for targeted attack. (Corresponds
to experiments in Figure 2 in main text.)

where the vertices of each triangle represent the surrogates models in the PM used for attacking a victim model
on one image (as shown in sub-caption). The location of each point inside the triangle corresponds to the weight
vector w (in terms of Barycentric coordinates). For instance, the centroid (marked by ×) has the barycentric
coordinate w = [1/3, 1/3, 1/3], which implies the losses for all the surrogate models in the ensemble are weighted
equally. More weight is given to a model if the weight vector moves closer to the vertex of that model. The color
of each point inside the triangle represents the victim loss value for the corresponding w. The attack is more
successful when the loss value is low (indicated by blue color) and less successful when the loss value is high
(indicated by red color). We created this figure using VGG-16, ResNet-18, and SqueezeNet as Model 1,2, and 3,
respectively. The main takeaway is that, in many cases, an arbitrary weight vector does not provide successful
perturbation for a given victim model; therefore, we need to adjust the weights to generate successful attacks.
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Figure 12: Visualization of adversarial images generated by different methods for vanishing attacks on ‘stop
sign’. Top row is detection on clean images and bottom row is detection on adversarial images. (Corresponds to
results in Figure 9 with N = 5.)

Model1 Model2

Model3

(a) VGG-19, Image A

Model1 Model2

Model3

(b) ResNet-34, Image A

Model1 Model2

Model3

(c) ResNet-34, Image B
Figure 13: Illustration of the effect of weights of ensemble models on the attack loss for a victim model. Red
color indicates large loss values (unsuccessful attack), and blue indicates small loss (successful attack).
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