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Steerable cameras that can be controlled via a network, to retrieve telemetries of interest have become popular.
In this paper, we develop a framework called AcTrak, to automate a camera’s motion to appropriately switch
between (a) zoom ins on existing targets in a scene to track their activities, and (b) zoom out to search for
new targets arriving to the area of interest. Specifically, we seek to achieve a good trade-off between the two
tasks, i.e., we want to ensure that new targets are observed by the camera before they leave the scene, while
also zooming in on existing targets frequently enough to monitor their activities. There exist prior control
algorithms for steering cameras to optimize certain objectives; however, to the best of our knowledge, none
have considered this problem, and do not perform well when target activity tracking is required. AcTrak au-
tomatically controls the camera’s PTZ configurations using reinforcement learning (RL), to select the best
camera position given the current state. Via simulations using real datasets, we show that AcTrak detects
newly arriving targets 30% faster than a non-adaptive baseline and rarely misses targets, unlike the baseline
which can miss up to 5% of the targets. We also implement AcTrak to control a real camera and demonstrate
that in comparison with the baseline, it acquires about 2x more high resolution images of targets.
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1 INTRODUCTION

Networked surveillance cameras are becoming ubiquitous. It is estimated that around one billion
surveillance cameras are currently installed globally [1-3]. A standard surveillance camera has a
fixed and limited view of the scene of interest depending on its orientation and the width of its lens.
In many applications however, there is a need for a complete coverage of the scenes of interest (e.g.,
trespass prevention) and leaving parts of the scene uncovered can lead to security breaches. In ad-
dition, in many applications, high resolution/ fine grained images of suspicious targets or objects
are crucially needed. Pan-Tilt-Zoom (PTZ) cameras have been considered a suitable solution
satisfying these demands [4, 5]. Such cameras have the ability to maneuver around, covering the
entire scene unlike standard surveillance cameras. The “zoom” feature offered by such cameras,
allows the camera to zoom in to acquire high resolution images of the targets and objects of inter-
est, and yet provide wide view coverage when needed (via a zoom out). Most PTZ cameras can be
controlled remotely over a network to satisfy various surveillance requirements, which opens up
opportunities for building reliable and autonomous surveillance systems [4, 6]. One fundamental,
unexplored question that arises in this case is: in an evolving scene, how to automatically control a
PTZ camera to facilitate applications where there will be a need to (a) zoom out to identify any new
target quickly when it enters the scene of interest, and (b) frequently zoom in on existing targets
to be able to monitor their fine-grained activities via high resolution images. For example, we envi-
sion scenarios with a need to capture prohibited activities (e.g., eating/drinking or photographing
in museums, and smoking in shopping centers). Another application relates to deployments in
shopping centers, to track target shopping interests i.e., what products customers are looking at,
in addition to catching shoplifting activities. Such information would aid data analytics to under-
stand customer behavior and/or even guide re-organizing product placements across aisles (e.g.,
distribute popular products to enable Covid-19 social distancing needs).

Challenges: The control algorithm requires a good balance between the actions of zooming
in and out. A simple example is shown in Figure 1. If we focus on target zoom-ins, we may miss
out on arriving targets in the lower left corner and a continuous zoom out does not shed light
on target activities. Achieving this balance by changing the camera’s views is challenging due to
two delay components associated with camera motion: mechanical camera movements incurred
due to motion from one position (e.g., zoom out) to another (e.g., zoom in) and computational and
networking latencies of processing and retrieving the captured frames. Therefore, a careful orches-
tration is needed for managing the frequency and patterns of zoom ins among targets especially
in the case when several targets exist in the scene, while ensuring that we do not miss new targets.

Related Work: Multi-objective surveillance problems have been studied widely in static and
steerable multi camera systems [7]. Cameras usually co-ordinate to achieve one or more objec-
tives such as scene coverage, opportunistic acquisition of zoom-in images of targets [8], tracking
[9-12], or power efficient surveillance [13]. However, in our work we consider a single camera that
balances the trade-off between two conflicting objectives (Figure 1), and previous work on multi-
camera solutions cannot satisfy these objectives in a single camera setup. The closest work to ours
is [8], where the authors consider a multi camera system that (1) fully covers the physical scene all
times. and (2) opportunistically captures high resolution shots of existing targets. This is different
from ours in two aspects. First, the physical scene coverage constraints cannot be used in our setup
(when a single camera is used), because when the camera zooms-in on a target, only a partial view
of the scene is obtained (violating the physical scene coverage constraints). If for cost constraints
(multiple camera deployments are more expensive) the full physical scene cannot be covered, one
has to manage the zoom-in shots of targets without sacrificing coverage of new targets arriving
to the scene; we consider this specific case in our work. Second, we consider continuous zoom-in
tracking of existing targets for activity recognition, unlike the work in [8], where the focus is on
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Fig. 1. Zoomed out (left) and zoomed-in (right) views. The zoomed out view enables the detection of new
targets as they enter the scene. However, it is insufficient for inferring target activities. The zoomed in view
facilitates inferring target activities (i.e., a target reads a book) but only partially covers the scene. AcTrak
balances zooming in and out such that target activities are captured, while ensuring that arriving targets are
detected quickly when they step in to the scene.

opportunistic acquisition of high resolution shots. More discussion is provided later (Section 5)
on why a single camera solution can be desirable, and we tackle this important problem in this
work. While there is prior work on controlling the PTZ of steerable cameras (e.g., [14, 15]) in a
single camera setup, they have different objectives from ours; importantly, none consider changes
in the target population in the scene (new arrivals) and most do not consider arbitrary motions
of targets. For example, the authors in [15] propose an approach to orient the camera to zoom in
on various (but fixed and pre-determined) chosen locations. Their approach allows the tuning of
how frequently these locations are to be visited, but leaves other locations uncovered. Thus, this
method is ineffective when tracking targets activities outside the selected locations is required. We
argue that the camera should focus on activities rather than location coverage (since coverage of
unoccupied locations yields little or no information).

Contributions: In this paper, we design and implement AcTrak to control a PTZ camera such
that it (a) quickly identifies dynamically arriving targets to a scene, and (b) with appropriate fre-
quency (target specific), obtains high resolution images of each target in the scene to capture their
activities at fine time scales.! Importantly, AcTrak accounts for the associated latencies when de-
termining the camera movement.

We formulate the problem as Markov decision process (MDP), where a reinforcement
learning (RL) agent dynamically learns, and thereby determines the best PTZ configuration given
the current situation. This works in an online fashion i.e., it continuously tunes the camera PTZ
dynamics to cope with the evolving scene. Importantly, it tries to minimize the latencies incurred
in changing the camera views, by choosing visitation patterns in an informed way. Furthermore,
it does not require expensive computations to derive its next PTZ configuration during runtime (a
single feed forward neural network operation is needed).

In brief, our key contributions in this paper are as follows:

(1) We design AcTrak, a framework for the PTZ control of a steerable camera. AcTrak is based on
MDP, which selects the PTZ configuration that provides the highest utility (discussed later)
in terms of a trade-off between the goals of balancing rapid acquisition of new targets and
obtaining fine grained information about existing targets, while minimizing latency penal-
ties due to camera motion.

INote that we do not store biometric features of targets (for privacy reasons), but rather use high resolution shots for
activity recognition.
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(2) Typically, RL agents need heavyweight training to deliver high accuracy [16]. While a cre-
ation of the requisite, a huge number of training instances is possible on fast machines, it is
time-prohibitive in our scenario since camera mechanical movements and networking and
computational latencies can be in the order of seconds. Hence, instead, we develop a simula-
tor to mimic the camera, target movements, and other dynamics to enable training and we
deploy the trained agent during test time.

(3) We showcase the merits of AcTrak via both simulations and real world experiments with
an implementation on an off-the-shelf PTZ camera. In our real world experiments AcTrak
outperforms a non-adaptive baseline by acquiring 2 X more high resolution images of targets.
Our simulations using public datasets show that our agent detects new targets that arrive to
the scene 30% faster than a state of the art baseline.

2 OUR RL BASED CONTROL FRAMEWORK

In this section, we first describe the trade-offs between the functionalities we seek to achieve (zoom
outs to find new targets and zoom in to track current targets). Next, we provide an overview of
AcTrak, and then describe it in detail.

2.1 Functionalities and Associated Trade-offs

Scene coverage. The camera can zoom out to cover the entire scene (to find new targets) and we
call this the coverage tour. Invoking unnecessary coverage tours at high frequencies will reduce the
time for (frequency of) acquiring high resolution images of existing targets. Instead, if the camera
undervalues coverage tours, new targets may leave unseen.

Zoom-ins. Upon identifying a target, AcTrak marks its location so that the camera can zoom in
on it again in the near future, to track its activity; this obviates the need to zoom out each time in
order to find that object. To acquire the high resolution image, an appropriate PTZ configuration is
chosen to direct the camera at the last known (updated) location of the target. Since targets can be
located at different distances from the camera, each target requires a different zoom level denoted
as Z;, where j is the target’s index. Target locations are updated during coverage tours and the
zoomed in visitations. A location becomes outdated when the target moves outside its previous
zoom-in view, which depends on the target’s motion (e.g., walking, jogging). The camera must
obtain an updated location before zooming in on the target.

Managing zoom-ins of multiple targets. AcTrak’s control algorithm is driven by two ob-
jectives: (A) if a target has not been visited recently, the highest priority should be given to that
target, and (B) try to maximize the number of targets that can be seen with the same camera beam
or field of view (this is dictated by the camera’s orientation and targets’ proximity to each other).
The second objective saves time via visits to cover multiple targets (instead of multiple different
visits to cover those targets). An auxiliary benefit not explicitly considered is that it can detect
target group interactions (e.g., when multiple people meet as a group).

Scheduling visitations across multiple targets have to be carefully orchestrated in order to min-
imize the overall latency associated with changing the PTZ configuration to switch targets; recall
that this is a latency expensive operation. For example in Figures 2(A) and 2(B), there are two dis-
tant clusters, each containing targets in close proximity. If the camera alternates between targets
from the two clusters (as in Figure 2(A)), the overall time for making a visit to all targets will be
large due to wasteful, repeatedly large PTZ configuration changes. However, if it visits the targets
within one cluster before it moves to the other cluster (as in Figure 2(B)), this overall time will be
much smaller (small changes to the PTZ configuration at each step). Thus, the proximity of targets
has to considered while zooming in on different targets.
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(A) (B)

Fig. 2. Zoom-In Scenarios. In Figures (A) and (B), we show different camera strategies of zooming-in on
existing targets (Note the arrows). The overall time to visit all targets of the strategy in Figure (A) is higher
in comparison with the scenario in Figure (B) due to the camera’s longer (wasteful) moves.

Continuing with the example, assume that there are only two targets within a cluster and there
is a time budget 1 s, associated with visiting these two targets. The camera can stay with the first
target for A/2 s, and move on to the second target and stay with the latter for remaining 1/2 s.
A better strategy is to alternate between the targets, staying with each for a small period each
time. In the first strategy, the camera stays with a target for a longer time collecting continuous
(and more) high resolution shots; however these shots are unlikely to yield new information and
the other target is not monitored for a big time gap (1/2 s). In the second strategy, fewer high
resolution shots of each target are obtained due to additional PTZ changes, but the time gap for
which a target is not monitored is smaller. Further, each visit is more more likely to capture new
activity (e.g., due to a new posture). As discussed later, our framework can be tuned to trade-off
between the two strategies.

Overview. As discussed earlier, we seek to balance two tasks: (a) tuning the frequency of cov-
erage tours and (b) managing zoom-ins across the multiple targets in the scene. AcTrak seeks to
avoids wasteful PTZ configuration changes to the extent possible (i.e., zooming out when no new
targets have arrived and zooming-in on obsolete locations of current targets which have moved).
RL has been shown to be effective in applications needing adaptive parameter tuning (e.g., [17]),
which is what we need to achieve the balance we seek. Our trained RL agent determines the next
visit while accounting for the impact of this decision on future decisions, via a simple and quick
feed forward operation, depending on the current state of the environment (determined by for
example, clustering of targets, application needs, etc.).

To learn the appropriate frequency of coverage tours we monitor: (1) target arrivals: if no target
appears within the current period between coverage tours, the camera learns to decrease the fre-
quency of coverage tours, and (2) new target locations: if new targets have moved significantly from
the coverage boundaries (have not been detected for a while), the camera infers that it needs to
increase the coverage tour frequency. With regards to managing zoom ins, we seek to efficiently
determine the next visit while accounting for the impact of this decision on future decisions. A
trained RL agent determines this via a simple and quick feed forward operation, depending on the
current state of the environment.

In an evolving scene, given what is observed by the camera beam, AcTrak’s control algorithm
seeks to determine a PTZ configuration that maximizes a given utility that captures our goal. Then,
the camera changes its current PTZ configuration to that new PTZ configuration. The PTZ config-
uration is adapted over a sequence of steps (time epochs) denoted as k € [1, o). We can model this
problem as a Markov decision process (MDP), wherein we seek to make a decision with regards
to an action relating to a PTZ configuration change, towards either a coverage tour or a specific
zoom in, based on the utility. This utility is the long term reward (discussed later) accrued by a
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Table 1. Key Notation

Symbol | Description

k A time step in the discrete set of time steps

O Set of new targets appear in the scene at time k
O # of new targets appear in the scene at time k
Ni Set of targets exist in the scene at time step k
Ck Camera’s zoom magnification level at step k
Z; Zoom level requirement for target j

T; Target j

T A threshold on the time gap between two

consequent visitations for the same target
d A threshold on the target’s displacement two
consequent visitations for the same target.

tjl.’ ase The last time the camera is rewarded when it
zoomed on target j

l;’“s ¢ Target’s location at which the camera was last
rewarded when it zoomed in on the target j

V;.k # of zoom in visits to T; up to step k

u(Tj) Visual features of target j

Y Discount on the future rewards

€ Exploration rate to balance exploration

exploitation tradeoff

Q-learning agent. In an offline phase, the agent learns a camera control policy that is to be deployed
in the online phase to maximize the given utility. Our approach is consistent with previous work
[18-20]. While alternatively, the problem can be formulated as a semi-MDP that captures steps
(i.e., camera PTZ change) of different lengths corresponding to different distances of movement
[21], we choose the MDP formulation due to its simplicity and success with previous work (where
steps of varying length are also present [18]).

2.2 Problem Formulation

AcTrak is geared towards a single camera system monitoring a dynamic scene with dynamic target
arrivals and departures. As discussed, it considers discrete time epochs k € [1, o) over which it
continously adapts the PTZ configuration based on scene evolution. It tracks targets that exist in
the scene and saves them in a list. We note that this list may not exactly reflect the ground truth
because the camera may only have a partial view of the scene at several of these steps. At each
step k, new targets may arrive and may be observed by the camera; we denote those targets as O
and the size of the set of these new objects as Oy. Note that it is possible for the camera to find
new targets in a zoom-in view (e.g., while zooming in on a door to observe a target that is leaving,
a new target may arrive). We denote a set of targets that exist in the scene at step k as Ng; this set
includes targets that previously existed at step k — 1 and Og; formally, N « Nj_; U Ok. If the
action at step k is a coverage tour, we may remove targets € Ny_; that do not appear in the scene
(i.e., those targets that have left the scene). The maximum number of targets that can exist in the
scene is assumed to be N. The key notations is shown in Table 1.

We collect features about existing targets (e.g., locations, time stamps at which they were last
observed) which we use to compose the state in our MDP formulation (discussed next).
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State. The state s describes the environment at the kth step of the evolving scene and is defined
by the following extracted features from the environment:

(1) The camera PTZ at step k; the Pan and tilt ranges are (0, 360)°, and (—90, 90)°, respectively,
and the zoom ranges from 0 to mx. We denote camera’s zoom magnification level at step k
as Cy.

(2) Location vectors: We add three vectors (each of size N) to describe the targets’ locations
in terms of their associated PTZ configurations: (a) a vector with the most recently updated
locations of all targets at step k, (b) the penultimate location where each target was observed,
and (c) the location base, which is the location of a target at which the system was last
“positively rewarded” (rewards are discussed later) for observing that target.

(3) Time vectors: We add three vectors (each of size N) that capture the following time features
for each target. Specifically, we add the time difference between the time instance at step
k and (a), (b) and (c), respectively: (a) the times when the targets were last observed in a
zoom-in mode, (b) the times when the camera acquired the penultimate location for each
target, and (c) the time when the agent got a positive reward for each target.

(4) Coverage tour latency: We also add a feature that includes the time difference between the

time recorded at the kth step and the time of the last coverage tour.

(5) Number of visitations: Finally, we include a vector of size of N that contains the number of
visitations that the camera has made to each of the targets up to step k.

Action. An action ay is performed at each state and leads to a new PTZ configuration which
causes a new state to be composed.

There are a discrete set of N + 1 possible actions. These correspond to visiting a specific target
(recall that the maximum number of targets is N), or a coverage tour to determine if new targets
have arrived.

Rewards. Upon transiting from a state si to state si,; via action ag, the agent accrues an im-
mediate reward, ri. The projected cumulative reward at step, k, is computed as:

[oe]

R=ri+ Z Y rkse (1)

c=1

where, y € [0, 1) is a discount factor for the future rewards.

Policy. The policy 7 selects an action (the next PTZ configuration) at each given state that
maximizes the projected cumulative reward for current and future actions. This is defined formally
as follows.

7(sk) = arg max B[R|sg, a, 7] (2)
a

where a is the action selected from the action space and E[R] is the expected value of the cumulative
reward.

2.3 Design of the Immediate Reward

We define the immediate reward, rx, when an action ay is taken in state s to be:
rr = PRy — NR; (3)

In the above, we decompose the immediate reward into two parts, a positive reward (PR) and a
negative reward (NR), that together drive the trade-off between zooming in and out.

Positive rewards (PRy): The agent gets rewarded if it discovers new targets regardless of the
camera’s zoom (this is captured in the first term in the equation below) or successfully revisits an
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existing target in a zoom in mode if certain conditions are satisfied (captured in the second term
in the equation). Formally, this is expressed as:

& vk base base
PRk = Zall(Tj ¢ Nk—l) +tpJ a’z{l(Tj € Nk—l) l(Ck > Zj)l(t - tj >, |l] — lj |Z d)}

j=1
©

where, T; represent the targets captured with the camera’s PTZ at the kth step. 1(.) is an indicator
function that is equal to 1 if at least one of its argument conditions holds true, and 0 otherwise. We
capture the prior existence of a target in the scene with the indicator 1(T; ¢ Ni_;) = 1-1(T; € Ni_4)
as follows:
U(Tj ¢ Ni—1) =1 (.min (o(T)) —o(T)l] < o ©)
€Nk
where, v(T;) represent the visual features of target T; and o is a pre-defined threshold; the target
was in the scene previously if the visual features match those of a target seen at step k — 1.
A reward of a; € [0,1] is accrued if the target is new (Tj ¢ Ni_), regardless of the zoom

configuration of the camera. A reward of pVJ'k @ is obtained when the camera zooms in on a target
but with different conditions (discussed next); p is a factor € (0, 1] and ij is the number of zoom
in visits that are made by the camera to obtain the fine grained features of target T;. This means
that for each repeated visit to the same target, (if p < 1) the camera receives a lower reward than
in its previous visits. This ensures that the camera visits other targets with fewer high resolution
images, rather than revisiting a target repeatedly. The reward is accrued if the conditions 1, 2, and
at least one of 3(a) or 3(b) are satisfied:

(1) The observed target has been seen in the prior step i.e., (T; € Ni_1).

(2) Cy, is larger than the required magnification level for obtaining the fine grained features of
the target T}, (referred to as Z; as discussed in Section 2.1).

(3)(a) The time gap (t — t}’““), between two consequent zoomed in visitations is larger than a

threshold, 7, where t}"” ¢ is the last time the camera is rewarded when it zoomed in on the

target and ¢ is the time instance at the kth step. Note that we make the assertion t;’““ =t

when the camera visits a target and gets a reward of prk Q.

(b) The target’s displacement between two consequent visitations is larger than a threshold,
d, where ljl.’ 4s¢ is the target’s location at which the camera was last rewarded when it
zoomed in on the target and [ is the location of the target at the k-th step. Similarly, we

k
make lj’.’ 4%¢ = [; when the camera visits a target and gets a reward of pVi a.

The last condition helps control the time gap between acquiring two consequent images of the
same target. For example, if the user is interested in receiving a continuous sequence of a target’s
images (video), 7 can be set to zero. Similarly, if the user is only interested in tracking a target’s
activities when its location changes by a certain distance, d can be set to that value.

Negative Rewards (NRy): The positive rewards do not guarantee that targets are left without
being visited (the camera can stick with only one target and still get rewarded). Hence, next we
introduce negative rewards (penalty) that coerce the agent to visit targets that have not been visited
for a while. Specifically, this penalty (NR) increases in proportion to the time the camera was away
from the target (not zooming in on the target) and is given by S Z:Zk{l(t — 1;), where t; is the last
time when the camera zoomed in on target T;, and ¢ is the time of the k-th step.

Note that ay, a; and f € [0,1], are coefficients that are selected to balance the positive and
negative rewards.
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2.4 Learning the Camera Control Policy

We find the optimal policy 7" that selects the best action in each state towards maximizing the
accumulated reward, R. Since the problem is stateful (i.e., the action is selected based on the state),
we use a Q-learning approach [22] as a basis, due to its relevance and ease of deployment.

The value of E[R|s, a, 7] is denoted as Q(sk, a), where the Q-value is updated by the following:

Qk+1(Sk»ak) = (1 = n)Qk(sk»ax) + 1 (rk + y max Ok (Sk+15 a)) (6)

where 1 € (0,1] is the learning rate and Qg (sk, ax) is value of the state action pair at step k (the
Q-value is learned by updates at each step). The optimal value of the accumulated reward at step
k that is achieved by taking the action ay, is given by Q*(sg, ax) and is computed using the well
known Bellman equation as follows [23]:

Q" (sk-ax) =rk +y max Q" (Sk+1, a) (7)

Our model has a finite action space but an extremely large state space, since the targets can exist
in any location in the scene. If we have L (quantized) locations where the N targets can exist, the
complexity of the state space is O(LY). Thus, creating a table with the Q values of every state action
pair combination is prohibitive. Thus, we use a neural network to approximate the Q value for a
given state action pair [16]. The neural network is trained based on previously assigned rewards,
and predicts the reward (similar to regression) when a new state action pair is encountered.

For reducing complexity and uncertainty we use a Double Deep Q Network (DDQN) [24],
which uses two neural networks to provide an approximate Q value for a state action pair; one is
used for action selection and the other for action evaluation. We also use the duelling architecture
from [25] to enhance the performance of our model. The interested reader can find details in [25]
and [24].

We use the mean square error between the output of the neural network and the Q value as
the loss function to be minimized. We apply an e greedy exploration policy, where a random
action is selected at a given state with probability e while the action that currently maximizes
the reward is chosen with probability 1 —€; €, the exploration rate, is tuned to balance exploration
and exploitation.

3 REALIZING ACTRAK IN PRACTICE

The implementation of our RL framework is on a real camera platform, but a simulator is used
for training prior to online deployment. Specifically, we implement our system on Avipas HD
PTZ camera (Model: Av- 1080w) [4]. The camera allows pans and tilts with ranges + 135 and +
35 degrees, respectively. The camera has a 10X optical zoom capability, quantized over 33 zoom
levels. We have developed all our code using Python3 on an Apple Macpro machine, and both the
camera and machine are part of wired local network where the machine acquires the frames for
processing and controls camera’s movement. Our model is capable of adapting to variations in
computational, communication, and mechanical latencies that could be specific to the system and
the setting.

3.1 System Setup

The camera frames undergo the the following pre-processing steps to compose the RL-state. A pre-
trained tiny-Yolo model (YOLOV3 [26]) is used to detect targets in the frames (yielding bounding
boxes in terms of frame coordinates) [26, 27]. While tiny-Yolo can detect targets in the processed
frame, it cannot determine if the observed targets in the current processed frame have been ob-
served before. This is important for composing the RL state (as discussed in Section 2.2). For that
purpose, we crop each target’s region from the frame and feed it to the humanReid module, which
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Fig. 3. A high level depiction of AcTrak.

associates the observed target with previously seen targets.? Although we obtain the targets’ lo-
cations in the frame coordinates (using tiny-Yolo), the associated PTZ configuration that makes
the target appear in the middle of the frame, with the required zoom level Z;, is not known. We
use the Location Predictor module to estimate this. Finally, using the outputs of the two modules,
we compute the step rewards and compute the RL-state as discussed in Section 2.2. A depiction of
AcTrak is in Figure 3.

3.1.1 humanReid. humanReid (human re-identification module) associates current tar-
gets with previously seen targets. Human re-identification is very challenging in itself [28, 29],
and is beyond the scope of this work. For ease of experimentation, our targets wear distinctive col-
ored apparel to enable the use a light weight pre-trained humanReid deep learning architecture,
mobileNet [30]. We further tune the model by training it with traces of targets in different colors
viz., red, blue, green, and black. We collect 24 one minute videos where each target walks in an
area of interest with these colored shirts, and we randomly sample frames of those traces to train
the model.

3.1.2  Location Predictor. The PTZ configuration required by the camera to observe the target
in a zoomed in view cannot be accurately obtained from the bounding box dimensions in frame co-
ordinates. This is because the depth relating to the target (how far is the target from the camera) is
not known. The depth can be obtained using monocular depth estimation approaches [31-33] that
estimate the depth of each pixel in the captured frame; however, associating the depth information
with the required PTZ configuration to zoom on targets given the camera’s intrinsic parameters
such as focal length and distortion is not straight forward [34]. A better solution would be camera
calibration, a technique via which we can learn the position and the orientation of the camera
with respect to the world’s 3D coordinates and its intrinsic parameters such as focal length and
distortion [35]. However, camera calibration is sophisticated and may not be accurate because of
optical lens distortion that may exist in PTZ cameras [15, 36]. Our aim is to make our solution
generic and usable by non expert users with a simple pre-setup process.

2Technically, we can re-train a new model from scratch that performs the two tasks simultaneously (identifying targets
from the raw frame and associating identified targets in the current frame with previously observed targets). However, we
choose to use off the shelf trained models and architectures for ease of use, given that these existing models serve their
intended purpose.
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The approximation we make to support flexibility and generality by trading off accuracy is to
estimate the PTZ configuration for an object based on the size of the detected bounding box sur-
rounding that target (detected by tiny-Yolo): the larger the area of the bounding box the more
likely the target is closer to the camera. To infer targets locations’ in PTZ coordinates, we use a
Decision Tree Regressor [37] that takes as input the camera’s current PTZ and the bounding box
frame coordinates and outputs the PTZ coordinates for the target. We point out that this approach
has sufficient accuracy for our purpose but it is not extremely accurate for two reasons. First, the
size of the bounding box is sensitive to the size of the person (e.g., children have smaller bounding
boxes than adults even when their depth in the scene is similar). Second, if the size of the bounding
box is not accurately determined (due to mis-detection from tiny-Yolo), the estimated location is
also affected. As will be discussed, in our real camera and simulation experiments, we were not
affected by such mis-detections that may have been caused by tiny-Yolo. Note that estimating the
depth is orthogonal to our contributions and our method (i.e., controlling a camera using reinforce-
ment learning) can work in scenes where camera calibration is computed; in other words, it can
be combined with a camera calibration method.

3.2 Simulator

Creating a large number of training instances with a PTZ camera where each mechanical move-
ment induces high delay (up to 3s in our camera), is inconvenient and prohibitive. For example,
training our agent with ~ 800K+ camera movements requires more than 18 days (assuming many
targets and training round the clock and that each movement takes 2 seconds). In areas with sparse
pedestrians, training will take much longer. Thus, we build a simulator that mimics targets and
camera movements to accelerate the learning process. With our simulator, the training takes less
than 18 hours as is the norm in such experiments.

3.21 Composing Training Datasets. We evaluate our model via simulations with public
datasets, and real camera experiments for which we collect a training dataset (discussed in
Section 4).

Public datasets: We use two datsets (described later) with ground truths of targets’ locations
(described by bounding box coordinates). This obviates the need for the object detection model or
the humanReid model; our Location Predictor module uses the ground truths of targets’ locations
to associate them with PTZ configurations. When zooming in on a target in a dataset, we pick an
image patch that coincides with the bounding box of the target. We associate the PTZ configu-
ration latencies associated with moving from the acquisition of one image patch to another. We
acknowledge that there is an implicit assumption that the cameras capturing those videos are sim-
ilar to ours (similar overall delays exist), but since both our platform and these are based on a real
world camera, we believe that this assumption is realistic.

Real camera dataset: We collect training videos from the area of interest with the maximum
zoom out and label the ground truth target locations for all frames, which can be obtained using
the models from tiny-yolo, humanReid and Location Predictor.

3.2.2  Accounting for AcTrak’s Mechanical and Computational Delays. Accounting for the de-
lays experienced in live experiments while training the agent in the simulator is important to
ensure that the simulator emulates reality. Otherwise the discrepancy between the real system
and the simulator leads to poor performance during run time (test time).

Modeling camera’s mechanical delays: The time it takes the camera to change its PTZ
configuration depends on the displacement magnitude and the speeds of the camera’s mechanical
control motors across its axes. We observe that the camera motor does not move with a constant
speed, but there is an acceleration component that makes the prediction of the time taken hard.
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Fig. 4. The neural network architecture of the Delay Estimator model.

We also observe that the camera’s average speed along an axis (e.g., the pan axis) changes even
with the same displacement magnitude, if there is simultaneous movement on another axis (e.g.,
tilt). Besides mechanical delays, there are other factors such as camera response times and network
communication latency that contribute to the overall latency. To deal with these challenges, we
use a machine learning predictor that takes as an input the starting and ending PTZ configurations,
and predicts the time it takes for the displacement (after accounting for all sources of latency). We
have collected delay traces from random changes in the PTZ configurations and used these to train
the neural network. We use a simple three multilayer perceptron model (shown in Figure 4) and
a loss function that captures the normalized difference between the true and estimated latencies;

more formally, the loss function is IW |. Our model has a mean normalized absolute error

of 4% and a mean absolute error of 40 ms. We denote this model as Delay Estimator.

Modeling computational delays: In real world experiments, we run a tiny-yolo module to
detect targets in the scene. To emulate edge device computations, we run all computations on
a standard computer (with no GPU). Because of that and due to the large frame size of the HD
camera, we observe that the computational latency of tiny-yolo is very large (up to 3s in some
cases), which causes significant latency. To account for this delay, we run 1,000 tiny-yolo queries
and record their response times. The response time of 95% of the queries are between 1.8s and 2.5s.
We use the average (2.15s) and add a random value in the range of +0.35s when processing each
frame, so that the model can account for computational latencies that occur in real deployments.

Modeling camera focus delays: We also experience a delay during the process of the camera
focusing on a target. Specifically, we observe that images collected even when the camera has
slight motion are blurry and cannot identify observed targets. Hence, we stabilize the camera at
its selected location for 0.2s to ensure that no mechanical noises affect the quality of captured
images. We account for this latency in the training as well.

3.2.3 Training the RL Agent. We train AcTrak with multiple episodes where each episode is
a training video that is made available to the simulator. A flowchart of the training process is
shown in Figure 5. The frame is processed to compose the RL state that is made available to the
agent. The agent then selects an action either based on its learned policy or by randomly selecting
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Fig. 5. A given frame is processed to compose the state as described in Section 3.1, upon which the agent
selects an action (selecting the new PTZ). We compute the latencies associating with PTZ change. Subse-
quently, we skip a number of frames that correspond to the computed latency and use the first retrieved
frame. If the selected action is zoom-in, a cropped frame is passed to the frame processor. Otherwise, the
entire frame is passed.

an action from the action space depending on the value of € (RL exploration rate). We assume
that the camera does not acquire images of the scene while it is processing a frame and changing
its PTZ configuration. For computing the mechanical latencies, the new PTZ associated with the
selection of the action is now provided, along with the current PTZ, to the Delay Estimator, which
returns the estimated time (latency incurred) that the camera would need to make such a move. To
account for the delays, we skip a number of frames that correspond to the latency obtained from
Delay Estimator and other latencies, and feed the first retrieved frame to to the object detection
system for the subsequent processing.

If the selected action is a zoom out, then the entire frame is considered and the agent can observe
all the targets in the scene and record their updated locations. With a zoom in, a cropped image
of the frame that makes “the ratio of the size of the bounding box surrounding the target to the
cropped image” equal to a pre-selected value, denoted as M, and centered around the target’s last
observed location, is provided to the object detection system. If the system detects a target(s), it
compares its features with those in the existing list of targets, and if there is a match, the system
updates the target’s most recent location. Otherwise, it adds the newly identified target(s) to the
list of the existing targets. Next, the system computes the rewards as described in Equation 3. A
new state is created with the most recent locations of the targets, and the system continues in the
same fashion. During test time, we set the exploration rate to zero so that the agent relies solely
on its learned policy.

Differences between the trained agent with the live camera and that with the public
datasets: When processing public datasets, both in training and testing, we exclude the computa-
tional and camera focus latencies so that we can observe the performance under the effect of the
mechanical latencies solely. In real camera experiments, we used all the associated latencies while
training the agent so that it can work in live experiments and showcase the performance in this
realistic setup.

4 EVALUATIONS

In this section, we present results from simulations, and from real experiments on our camera
platform, to showcase the effectiveness of AcTrak.
Baselines: We consider the following baselines:

(1) Standard tour: We propose this simple baseline that makes the camera greedily hover only
across the hot spots (areas of interest). We select four hot spots (the most heavily populated
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locations) using the method proposed in [15]. Note that we did an exhaustive search to find

the locations which have the highest populations per unit time; we also find via a search of

a plurality of dwelling times that the best value for this parameter is 1 s.
(2) Panoptes [15]: This is similar to the Standard tour but uses a machine learning model to
predict targets’ mobility. The model takes as input a target’s location and predicts its new
hotspot location after a “look ahead” time period. If Panoptes predicts a new hotspot location
for a target, it re-schedules the camera tour accordingly (details in [15]). The look ahead times
depend on the hotspot locations, and are computed by measuring the average time targets
in the dataset take, to move from one hotspot location to another. The mechanical delays
for the camera to switch from one location to the other are accounted for while computing
the look ahead time periods.
Tracking greedy (greedyB): Inspired by Panoptes and Standard tour, this is a greedy algorithm
which, instead of hovering over hot spot locations, sequentially hovers over targets’ last
observed locations and zooms out to discover if new targets have arrived. This baseline uses
the same system setup and pre-processing modules as that of AcTrak (see Section 3). We add

—~
W
~

rule based enhancements to the previous baselines for better performance i.e., if the camera
views a target with an incorrect zoom, it zooms in further for the higher resolution image.
Since the targets can appear anywhere and not just at hotspots, and move arbitrarily, we
do not try to perform look ahead predictions; we show that greedyB already outperforms
Panoptes later.

Metrics: We consider the following evaluation metrics.

o Time gap between a target’s entry and its discovery (TG): The difference between the time the
camera first observes a target and the time of the target’s entry to the scene.

e Percentage of unseen targets (UT): The fraction of targets that enter the scene but leave unseen
by the camera.

e Percentage of targets with zero zooms-ins (ZZI): The fraction of targets observed by the camera
via a zoom out but for which, the camera never acquires a zoom-in image.

e Number of visits per target (NumV): The number of high resolution shots acquired for each
target normalized by the total time the target spends in the scene (# of visits/second).

e Maximum time away from target (MTA): The maximum gap for which the target’s activity
was not monitored (i.e., the maximum time between any two consecutive visits to the same
target or the time between when the last high resolution target image was acquired and
when the target left the scene).

Model: Our model is implemented using Keras (TensorFlow based platform) and it is trained on
a Tesla 100 GPU. As discussed in Section 2.2, we use the DDQN approach [24], where two neural
networks with identical architectures but with different weights (updated while learning), are used
to compute the Q-values of the state action pairs. The neural network architecture is described in
Figure 6. We set the discount factor, y, to be 0.975 and the exploration rate, €, decays from 1 to
0 at a rate of 0.00001. The learning rate of the neural network is 0.00001. We use the concept of
experience replay [16], where we train the agent on its past experiences. We store the actions,
states, and rewards from the last 30,000 camera transitions in memory, where we sample from to
train the agent. We show the learning curves of AcTrak in terms of the average accrued rewards
as a function of number of steps taken by the agent in Figure 7.

4.1 Evaluations with Datasets

Setup: For our dataset based evaluations we use the Virat [38] and Zara datasets [39]. Zara consists
of two videos that are taken from a birds eye view in front of a shopping mall, where most of the
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Fig. 6. AcTrak Model Architecture: The neural network consists of multiple layers as shown. First, for each
target, a vector composed of its collected features (i.e., features related to timeliness, location, and number
of visitations as described in Section 2.2) is fed to a NN layer of size 64. The camera location and time
coverage tour latency (both features are part of the state) are concatenated and fed to an NN layer of size 64.
Subsequently, the outputs are concatenated into a layer of size 64 * (N+1) with a ReLU activation function.
Subsequently, the output is fed to two subsequent neural layers followed by the RL duelling layer.
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Fig. 7. Average reward accrued by the AcTrak agent and greedyB (with 10% and 90% confidence intervals)
as a function of # of steps taken. This is collected with the Zara dataset.

targets are seen almost with the same depth with respect to the camera. The duration of the first
video is 7 minutes and the second is 6 minutes. The videos have footages of large crowds (148 and
204 pedestrians) with different motion speeds and arbitrary entry and egress times. We use the first
video for training and the second for testing. Virat contains 28 videos of various durations. The
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Table 2. Baselines Evaluations (Zara Dataset)

Metric TG uT 771 MTA
Standard tour | 5.24s 59% 0% 98s
Panoptes [15] | 5.56s 52% 0% 91s
greedyB 1.79s | 0.89% 16% 8.1s
AcTrak 1.25s 0.09% 8.1% 6.2s

footages are from a camera looking at the scene from an inclined angle where targets are viewed
with different zooms. Experiments with Virat show that AcTrak works with different camera view
angles and heights. Our model is trained with the 20 shortest videos and tests are on the other 8
longer videos (to evaluate AcTrak in long term surveillance).

Targets perform different activities in the scene (e.g., walking, standing at a STOP sign); thus,
the overall times they spend in the scene vary. Hence, in each dataset, we sort the targets accord-
ing to their speeds in the scene. We estimate a target’s speed by measuring the target’s overall
displacement divided by the overall time the target spent in the scene. We report the results on
50% of the fastest and slowest targets, individually to show the merits of our method (they are
denoted as fast targets and slow targets, respectively).

Tuning reward function coeflicients: The coefficients are selected based on synthetically
collected validation data from the training instances, where we instrument the targets in the train-
ing dataset by changing their arrival times to the scene. We tune the coefficients with the objective
of minimizing the number of unseen targets and configure AcTrak so as to acquire high resolution
single shots (the exact coefficients values are defined within the experiment descriptions corre-
sponding the specific dataset). We also report other results (with other coefficients) where we
favour the acquisition of continuous high resolution images of targets (video) at the cost of less
frequent coverage tours (shown in Table 4).

Baseline comparisons: We mentioned earlier that the tour mode incorporated in both Stan-
dard tour and Panoptes [15] fail when the goal is to track activities of targets that may span the
entire scene of interest (locations not limited to hotspots). To show this, we evaluate their perfor-
mance using the Zara dataset and show the results Table 2. The two most important metrics that
we are interested in are UT and MTA, because the goal is to ensure discovery of targets that appear
in the scene (measured by UT), and track their activities frequently with small time gaps (captured
by MTA). Clearly Tracking greedy (greedyB) outperforms the other two baselines with regards to
both these metrics. This is because many targets do not appear in the locations of interest (i.e., the
hot spots). Furthermore, many targets may arrive at these hot spots and leave while the camera is
pointed at another hot spot. Although Standard tour and Panoptes are superior in other metrics,
the big gap in UT, TG, and MTA make them unsuitable in achieving our dual objectives. Since they
are outperformed by Tracking Greedy, we exclude them from the following discussions and use
Tracking Greedy (with the label greedyB).

We note that adding a prediction module to greedyB, to predict or account for targets’ future
locations is difficult because it is hard to know when and where targets could be, in our scenarios.
A simple prediction model similar to the one used in Panoptes [15] cannot be applied because,
unlike Panoptes, the target can exist in any location of the scene, which makes the prediction
uncertainty high; we have run experiments and observe that it does not make greedyB any better
(not shown due to space constraints) and even makes it worse many times. Coming up with a
more sophisticated location prediction method in such scenarios is difficult. This is because the
problem of what and when to observe data (i.e., targets’ locations) in order to maximize a long
term objective (e.g., reliable mobile target location prediction) is a hard problem and is referred
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Fig. 8. CDF of the time gap between target’s entry and discovery for Zara (left) and Virat datasets.

to as Active sensing [40, 41]. While there are existing solutions that tackle similar problems in
different contexts, none, to the best of our knowledge, has tackled this problem before. The closest
is called PatchDrop [41], and we discuss in (Section 6) why it cannot be utilized in our scenario.
We point out here that in fact, AcTrak is an deep RL based method that does this task implicitly
and outperforms all the baselines (as shown next).

Experiments with Zara: In these experiments, we set ar; and @, to be 0.15 and 0.08, respectively.
We set 7 to be 2s (50 frames), f§ to be 0.00035 and p to be 0.85. We first evaluate AcTrak in terms
of the cumulative distribution function (CDF) of the time gap between the arrival of targets
to the scene and when they are first discovered by the camera. As shown in Figure 8, 90% of the
arriving targets are discovered within 2s, while greedyB takes around 4s to do so, for both fast and
slow targets. The average time gap with AcTrak is 1.25s for both slow and fast targets, whereas
the greedyB’s time gap is 1.76s and 1.82s for slow and fast targets, respectively. This is because
AcTrak adapts its zooming out frequency with the expected arrival rate leading to fast capture of
targets that step into the scene. On average, AcTrak detects new targets in the scene 30% faster than
greedyB. As shown in Table 2, due to this fast detection of arriving targets, our agent rarely misses
targets that arrive to the scene.

From the observed targets, AcTrak captures high resolution images of = 92% of the targets while
greedyB does so for ~ 84% of the targets. This is because AcTrak prioritizes visits to targets that
were not visited before, in addition to smart scheduling of its zoom-ins to capture as many targets
as possible without wasteful PTZ changes.

In Figure 9, we evaluate the maximum time gap between two consecutive zoom-ins on the
same target. AcTrak has higher gains in the case of fast targets in comparison with the case of
slow targets. This is because, with greedyB fast targets’ locations observed by the camera become
outdated faster than those of the slower targets; hence, when the camera visits a target at its
previous location, it does not observe the (fast) target (leading to a wasteful zoom-in visit). AcTrak
avoids wasteful zoom-ins by observing target displacements and adapting target visits accordingly.

We finally evaluate the number of visits for each target as shown in Figure 10. Both AcTrak and
greedyB relatively, exhibit the same performance. The key difference between our agent’s visits
and greedyB’s visits is that the agent’s visits are distributed over time whereas greedyB visits are
concentrated over the same time periods leading to big time gaps where certain targets’ activities
are not monitored (this can be verified from Figure 9).

Experiments with Virat: For this dataset, we tune the values of the coefficients ¢4, and a; to
be 0.3, and 0.06, respectively. We set 7 to be 4s (100 frames), f§ to be 0.00025, and p to be 0.75.
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Fig. 9. CDF of the maximum time away from target for Zara (left) and Virat datasets.
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Table 3. Virat Dataset Results

Methods TG UT 771 MTA
AcTrak 1.49s 1.1% 0.027% 8s
greedyB 2.3s 1.3% 0.11% 9s

As shown in Table 3, the percentage of unseen targets is relatively higher in comparison with
the other dataset (but we still outperform greedyB). This is because the dataset has mostly videos
with random start and end times, and so some targets may appear in the scene in only a very
few frames; they appear in the scene right before the video ends or they leave just after the video
starts. With the other metrics, we observe a similar trend with this dataset (compared with the
Zara dataset) but with lower gains. This is because the camera is positioned with an inclined angle
with respect to the scene of interest where targets can move deeper in the scene (their distances to
the camera increase) but target’s displacement in terms of x and y coordinates (translated to pan
and tilt) does not change significantly. Thus, the camera does not lose track of targets easily, as is
the case with the Zara dataset (even if the zoom magnification is not met when the camera visits
a target, it can potentially know its updated location). The plots associated with the results of this
dataset are Figures 8, 10, and 9. We observe that in cases with sparse target arrivals, greedyB zooms
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Table 4. Continuous High Resolution Shots (Video) Results

Methods TG UT 771 MTA | TCVA
AcTrak 1.95s 1% 18% 9s 1.2s
greedyB 3.3s 5.4% 24% 15.8s 1.1s

Table 5. Performance with Varying Crowdedness

Arrival Rate (1) | Method | TG | UT | ZZI | MTA
2 AcTrak | 1.15s | 0% | 0% | 5.2s
small greedyB | 1.3s | 0% | 6% | 6.7s
P AcTrak | 14s | 0% | 3% | 7.6s
medium greedyB | 1.9s | 0% | 11% | 9.7s
2 AcTrak | 2.0s | 0.3% | 9% | 10.1s
large greedyB | 2.4s | 0.8% | 20% | 11.5s

out unnecessarily wasting opportunities for acquiring high resolution images. AcTrak avoids these
and does better in terms number of visits to each target as shown in Figure 9. Note that this effect
is also seen in our in real camera experiments discussed later.

Understanding the variable 7: In this experiment, we tune the coefficients of the agent’s re-
ward function to bias it towards acquiring sequences of high resolution images of targets (videos)
rather than single shots as in earlier experiments. Here, our aim is to showcase the merits of
AcTrak in performing different tasks and its flexibility in tuning the trade-off between zoom ins
and coverage tours for different applications. The key parameter that we tune towards this is z;
unlike previously, we now select a small value to cause the agent to acquire a sequence of images
(video) of targets. We run again the prior experiment on Zara, but with a different set of reward
coefficients. We set a; and «, to be 0.0 and 0.025, respectively. We set 7 to be 0.08s (2 frames),
to be 0.00025, and p to be 1. We use the same baseline (greedyB) but we vary its dwelling time,
so that it can acquire a sequence of images of the same target. With regards to this experiment,
we report the average time of continuous video acquired per target, denoted as TCVA. The re-
sults are in Table 4. As shown, AcTrak misses 1% of the targets while greedyB misses 5.4% of the
targets.

4.2 AcTrak Performance with Change in “Crowdedness” in the Scene

In many practical scenarios, the number of targets (referred to as crowdedness [42]) in the scene
changes over the day, even in the same scene. We show the performance of AcTrak with varying
crowdedness. We consider a single scene associated with the Zara dataset but we create synthetic
data where we tune the arrival rates of targets to create varying crowdednesss. In particular, we
tune target arrival rates (i.e., number of targets per minute) in accordance with a Poisson distribu-
tion, with mean arrival rates of Asmair, Amedium and Ajqrge per minute; these values are 2, 5, and
10, respectively. Targets’ entry and exit locations into and from the scene are selected randomly
and the targets speeds are chosen randomly from three different speeds equal to the 25% and 50%
and 75% percentile of target speeds in Zara dataset. We evaluate AcTrak using the trained model
on the Zara dataset on this setup and the results are reported in Table 5. As shown, as the arrival
rate increases, it becomes harder for the camera to visit targets frequently. AcTrak outperforms
greedyB with respect to all metrics of interest. For example, in a scenario where the target’s arrival
rate is tuned to be A;4,4. (more frequent arrivals), the percentage of observed targets with zero
zoom-ins (ZZI) is 20% when greedyB is used. However, while using AcTrak, the ZZI is only 9%.
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Table 6. Results of Real World Experiments

Methods TG uT 771 MTA
AcTrak 5 0% 0% 25s
greedyB 7 0% 0% 33s
Lor —— AcTrak fl'o | —— AcTrak
o8 greedyB ; osl greedyB
x o
. I
F o6l £0.6f
@ g
2 g
>
504} T0.4f
§ :
= -
0.2 %0.2
E
Q -
00660 005 010 015 020 025 0075 10 20 30 40
# of visits/s (x) Maximum time away from target (s)
Fig. 11. Live camera: frequency of visits per Fig. 12. Live camera: maximum time cam-
target. (NumV). era is away from a target. (MTA).

4.3 Real World Experiments

We showcase our approach in an IRB approved, real-world setting where volunteers walk ran-
domly in a scene on interest. Figure 1 (left) shows the scene at which the real experiments are
conducted. To train our agent, we have collected a total of 12 traces of individual random walks
(each ranges from 90 seconds to 150 seconds), and we obtain their PTZ coordinates using our Lo-
cation Estimator module. In our simulator (used for training), we further instrument those targets
to vary their arrival times over different execution runs, and create many different possible tar-
get interactions to enable the agent to learn how to adapt to different scenarios and conditions.
For this experiment, we set up the reward coefficients (4, a2, f and 7) to be 0.15, 0.1, 0.00001, 8s
(200 frames), respectively.

At test time, we have four volunteers that were asked to move randomly in the scene of interest.
We select their entry locations and time instances arbitrarily for each new experiment. We have
repeated the experiment five times using our trained agent, and five times using the baseline al-
gorithm). Each experiment lasts for 3 minutes. Our model on average obtains 38 zoomed in shots
(per experiment).

Quantitative results. The results from the real camera experiments are shown in Figures 11
and 12 and Table 6. Because of higher PTZ change latencies (associated delays with tiny-Yolo),
we observe that the baseline makes many more wasteful moves (zooms on outdated locations of
targets or zooms in on a target with a zoom level lower than the required zoom). We also observe
that due to the sparsity of arrivals (only four targets over a long period), the baseline zooms out
more often than necessary. Our agent outperforms the baseline by a big margin in terms # of
acquired high resolution shots. In particular, on average, the agent obtains 2x more high resolution
images of targets.

Case studies: Next we present two microscopic case studies of both algorithms from our real
deployment (see Figures 13 and 14).

Unnecessary zoom-outs (Figure 13): In this scenario, a single person appears alone in the scene
and stays for some long time (around 50s). greedyB reacts to this by alternating between zoom ins
on the target and zoom outs to continuously check for new targets. However, AcTrak, learns upon
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Fig. 13. Snapshots from the surveillance videos obtained by AcTrak and the baseline (we hide targets’ faces
for privacy reasons). In the first image, a single target is observed via a zoom out view (blue shirt at bottom
left near door). AcTrak zooms-out much less frequently than greedyB, learning that the scenario does not
change (no new targets arriving). The second image shows that AcTrak while zooming in on the first target,
discovers a new target that appears in the scene (light green shirt). The third image shows greedyB’s behavior
in a similar scenario; it zooms out much more than necessary. There was no other target stepping in to the
scene, and instead of zooming in on the red target it zoomed out; this leads to much fewer high resolution
images per target, thereby potentially missing activities.

Fig. 14. Snapshots from the surveillance videos obtained by AcTrak and the baseline (we hide targets’ faces
for privacy reasons). The first picture shows a case where greedyB goes back to a target and finds the lo-
cation empty because the target has already left its marked location. This is due to the computational and
mechanical latencies and the unorganized patterns of zoom-in on targets (which greedyB does not account
for). The final image shows that AcTrak is able to zoom in on the green shirt target when eating chips and
at that point it also re-locates the blue shirt target.

zooming out and not discovering new targets; it then zooms in on the target for longer times and
avoids wasteful zoom outs.

Adapting to high latency (Figure 14): We observe that the high latency makes greedyB zoom in on
empty places because the targets have already left their marked locations (stale data). AcTrak’s RL
agent learns to tackle this issue and thereby avoids zooming in on outdated locations and perform-
ing unnecessary zoom outs. It does so by visiting fast moving targets more frequently, avoiding
expensive moves and by opportunistically obtaining updated target locations while it is capturing
other targets (other targets may appear in the background with lower zoom requirements).

5 DISCUSSION

Single camera vs multicamera: A single camera can address the multiple goals compared to
using multiple cameras, but provides significant cost reductions. A quick search on Amazon.com
[43] and Bhphotovideo.com [44] reveals that a two lens PTZ camera and supporting optical zoom
is more than twice the price of a single camera. Thus, our approach can be desirable to small
business owners who can just use one standalone camera instead of networking multiple cameras
with associated issues such as synchronization and configuration issues, camera calibration issues
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[45], incompatible software from different vendors, and so on. If two cameras are used, one can
provide target locations at all times and the other can be used for acquisition of high resolution
images. AcTrak can be used with the second camera to manage the frequency and patterns of
zoom ins on targets. A study of how to harmonize multiple cameras for surveillance is left to future
work.

AcTrak’s computational overhead: We process the captured frames from the camera using pop-
ular models from computer vision viz. MiniYolo (identifying targets) and humanReid (associat-
ing observed targets with existing targets). Recall that the baseline, greedyB, uses the same pre-
processing modules that are used by AcTrak. The only difference is in executing the trained RL
agent that determines what action to take given a state. We run the 10,000 random queries us-
ing the trained model for Zara dataset on a regular Apple macpro machine, and find that the
average response time in terms of determining the proper action, is 4.3ms which is negligible in
comparison to the latencies incurred with the computer vision models themselves and the cam-
era’s mechanical latencies (which are of the order of seconds). Our expectation is that this time
will not increase by three orders of magnitude, even if a less powerful computation machine was
used.

Impact of the tiny-yolo’s performance on the takeaways: AcTrak accounts for latencies due
to various factors and this is a key reason why it outperforms greedyB. We show that AcTrak
outperforms greedyB in various simulation and real camera setups where different latencies (e.g.,
mechanical and computational latencies) are accounted for. In the simulation setup, computational
costs are ignored (including those relating to tiny-yolo) and only mechanical latencies are included;
this causes the overall latencies to be much smaller than in the case of the real camera setup. This
is similar to lowering some of the processing latencies in the real deployment (that might decrease
from GPU usage). Based on these results, we do not expect that the take-aways from the real
camera experiments will change in flavor, when we run tiny-yolo on GPU or when using a low
resolution camera (lower processing delays).

AcTrak’s performance when the runtime setup is different from the training setup: In this
part, we discuss different forms of ‘deviation’ between training and test scenarios in the following
list:

e AcTrak’s trained model can adapt to crowdedness change: We observe that the trained model
can work even if crowdedness changes over the day with no need to retrain. To showcase
this, we run a set of experiments, wherein we vary the arriving rates of targets to the scene
of interest. We use the setup associated with the Zara dataset, but we create synthetic data
with three different arrival rates. We show that the same exact same trained agent on the
Zara dataset can work even if ‘crowdedness’ changes and can still outperform the baseline.
We present these results in Table 5.

AcTrak’s transferability across different scenes: AcTrak cannot transfer to scenes that are not
part of the training. For example, the model trained on the Zara dataset may not work on
Virat dataset and vice versa. This is because the nature of the scene varies. In the Zara dataset,
all targets are viewed from a bird’s eye view (e.g., all of them are approximately at the same
distance); thus, there is not much variation in the zoom level required to zoom in on targets.
In contrast, in the case in Virat, the camera is observing the scene from an angle such that
the target distances from the camera vary significantly. Thus, the policy learned by the agent
from the training samples from Zara dataset cannot be applied on Virat. In this work, we
do not consider transfer learning (i.e., learning a global model with different scenes). This is
beyond the scope of this work and requires significant new effort.
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e AcTrak’s performance may degrade if target profiles significantly change: In cases where
target profiles significantly change, one can expect the performance of AcTrak to degrade.
For example, let us say AcTrak is trained on a dataset from a public park for kids. If the
park is repurposed and now teenagers with skateboards and bikes can play in the park, the
performance of AcTrack may degrade since the testing data/setup has completely changed
from the training setup. In this case, retraining with the new target profiles may be necessary
to boost the performance. We argue that in practice such dramatic changes in target profiles
are uncommon. In scenes with various target profiles, the training dataset collected from the
scene should cover those various profiles. Thus, AcTrack is expected to work. In conclusion,
as long as the training video(s) have a good coverage of scenarios and target profiles expected
to be present during test time, AcTrack is extremely effective.

o AcTrak can be extended to scenes with dynamic target profiles by using an ensemble of models:
In cases where target profiles and dynamics change dramatically, AcTrack can be simply
extended by using an ensemble of trained models, each tuned to the specific dynamics with
specific target profiles. During run time, the camera uses the maximum zoom out to ob-
serve targets’ movements (i.e., targets’ profiles) for a small time period. It can then use a
neural network which is trained to determine the model that best fits the profile - (it out-
puts the best model for the specific scenario). For example, consider a public street with
walking pedestrians. In the uncommon event of protest/ parade, the model associated with
such events (e.g., parade/ protest) can be deployed on the camera. We leave examining this
possibility for the future along with the transferability of a trained model across different
cameras.

Sensitivity of selected reward coefficients: Any RL Framework is sensitive to reward function
coeflicients (i.e., hyperparamaters) [46, 47]. The rewards need to be tuned with respect to the
given setup. We give an example by considering the coefficient 7. To recall, an agent is given a
positive reward for visiting the same target if the time gap between two consequent zoom-in is
larger than 7. In the Virat dataset, target zoom requirements vary significantly and thus moving
from one target to another incurs higher delays in comparison with Zara dataset where all targets
have very similar zoom requirements. When selecting a smaller 7 (=2s) similar to Zara dataset),
we observe that the camera favors the continuous zoom ins of targets (video) and does not move
quickly to different targets. The exercise suggests that using the Virat coefficients blindly, with
the Zara dataset or vice versa causes the model to underperform, even to significant extents in
some cases. One solution is to use the correct set of hyperparameters with each member of the
ensemble from the previous paragraph; in other words, each model in the ensemble has its own
set of hyperparameters appropriate for the scenario in which it is to be used. Thus, by using the
ensemble, the hyperparameters are also properly changed as scenario dynamics evolve, and thus,
can provide superior performance. These aspects are beyond the scope of this current paper, and
will be investigated in future work.

6 RELATED WORK

There are works that model camera based tracking as an NP-hard, travelling salesman problem
[14]. The problem is different from ours in two ways. First, it does not consider dynamic new target
arrivals to the scene (where the camera has to capture and subsequently track them). Second, in
our context, targets move arbitrarily with different velocities. Prior work such as [14], impose a
pre-determined deadline within which a target has to be visited [14]. This assumption is unrealistic
when there is unexpected mobility (the target will be missed). We assume no such deadlines; rather,
dynamically changing deadlines are implicitly learnt and the camera avoids wasteful moves (e.g.,
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when it zooms in on an expected target location, it does not find it). Further, AcTrak induces zoom
outs with appropriate frequencies to detect new targets.

There is work in multi-camera networks on co-ordination among the cameras to achieve a par-
ticular goal such as target tracking [9-11] or scene coverage [48] or both [8, 49-51]. The key
difference is that these works assume using multiple cameras to cover the entire scene, thus ob-
viating the need for adaptation to the arrival rate of new targets. However, deploying additional
cameras incurs cost, and if certain areas are sparsely populated deploying cameras to cover them
always is wasteful (dual optical PTZ cameras are at least twice the price of mono optical PTZ cam-
eras [6]). We consider a more cost effective single camera setting, wherein the frequency of zoom
outs to cover the scene fully, are tuned in accordance with target arrival rates while zooming in at
other times to acquire high resolution images for activity tracking. We point out that in [8, 50, 51],
the focus is on only obtaining high resolution images of existing targets.

There is prior work on using RL to control a PTZ camera’s to achieve a single simpler objective.
In [52], the authors use RL to opportunistically zoom in on targets that satisfy certain conditions
(e.g., a frontal pose available for face recognition). In [53], the authors use RL to rapidly tune the
camera’s PTZ to zoom in on a target with a required magnification level from a zoomed out view.
However, unlike in AcTrak, they do not consider the problem of fine-grained tracking of multiple
targets nor do they invoke zoom outs to capture new arrivals.

A recent work called PatchDrop formulates an RL approach wherein the goal is to select where
and when to acquire high resolution data (patches) to train a model while preserving training accu-
racy [41]. This work is different from ours in two aspects. First, the work assumes the availability
of lower resolution data at all times (the environment is completely observable). In contrast, we
assume only a single camera and the environment to be only partially observable while zooming-
in. Second, the work does not account for the delays associated with switching between low and
high resolution data acquisitions (incurred by PTZ mechanical movements) and between different
patches (different targets).

Very few efforts consider a realistic scenario setup like ours viz., the use of a single camera
system with multiple objectives [15, 54]. In Panoptes [15], the authors propose a mobility-aware
camera scheduling algorithm over a few pre-selected fixed locations (maximizing coverage in these
locations only). In contrast, we consider mobile targets whose locations change arbitrarily (not tied
to fixed locations). We show in the evaluation section that their approach is not suitable for target
activity tracking.

7 CONCLUSIONS

In this paper, we design a framework, AcTrak, for the adaptive steering of a camera to zoom in on
targets to track their activities, while appropriately zooming out to detect newly arriving targets
to a scene. AcTrak incorporates an RL agent that selects the best PTZ configuration that achieves
good trade-offs between the aforementioned goals. Via evaluations on two datasets, we show that
AcTrak detects new targets 30% faster compared to the best current non-adaptive baseline we are
aware of. Our real world experiments with volunteers show a 2x improvement in terms of proper
zoom ins of targets in the scene compared to the baseline.

APPENDIX
A VISUALISATION EXAMPLE FROM ZARA DATASET

We finally show in Figures 15 and 16 an example of a sequence of actions taken by greedyB and
AcTrak in the same specific scenario, respectively. As shown, AcTrak movements are much more
efficient.
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Fig. 15. greedyB camera’s movement: We show a snapshot of a trace from Zara dataset, where four targets are
moving in the scene, and the camera zooms-in to acquire high resolution images of targets. We use different
colors for targets to distinguish them. The red rectangle is the view port of the camera (note that in zoom in
action, the view port is small). The camera acquires updated locations of targets via the zoom out action in
frame (a). It iterates over the targets sequentially while successfully acquiring high resolution shots of yellow
and blue targets in frames (b) and (c), respectively. However, it zooms on outdated locations when it zooms
on green and black targets due to their fast movement as shown in frames (d) and (e). Finally, it zooms out
to obtain the updated locations of targets while also observing if new targets arrive.
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Fig. 16. AcTrak camera’s movement: After acquiring the updated locations of targets in frame (a), it zooms
in on blue and green targets in frames (b) and (c), respectively. Unlike the case with greedyb, Actrak zooms
out to acquire updated locations of targets before zooming on black and yellow targets. After zooming on
the black target, it zooms in on the yellow target while simultaneously observing the blue target (to avoid
having a dedicated zoom in for the blue target).
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