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Abstract

Blackbox transfer attacks for image classifiers have been ex-
tensively studied in recent years. In contrast, little progress
has been made on transfer attacks for object detectors. Ob-
ject detectors take a holistic view of the image and the de-
tection of one object (or lack thereof) often depends on
other objects in the scene. This makes such detectors inher-
ently context-aware and adversarial attacks in this space are
more challenging than those targeting image classifiers. In
this paper, we present a new approach to generate context-
aware attacks for object detectors. We show that by using co-
occurrence of objects and their relative locations and sizes
as context information, we can successfully generate targeted
mis-categorization attacks that achieve higher transfer suc-
cess rates on blackbox object detectors than the state-of-the-
art. We test our approach on a variety of object detectors
with images from PASCAL VOC and MS COCO datasets
and demonstrate up to 20 percentage points improvement in
performance compared to the other state-of-the-art methods.

1 Introduction
Generating adversarial attacks (and defending against such
attacks) has recently gained a lot of attention. An over-
whelming majority of work in these areas have considered
cases when images contain one predominant object (e.g.,
ImageNet (Deng et al. 2009) data), and the goal is to perturb
an image to change its label. In real-life situations, we usu-
ally encounter images with many objects. Object detectors
take a holistic view of the image and the detection of one ob-
ject (or lack thereof) depends on other objects in the scene.
This is why object detectors are inherently context-aware
and adversarial attacks are more challenging than those tar-
geting image classifiers (Goodfellow, Shlens, and Szegedy
2015; Moosavi-Dezfooli, Fawzi, and Frossard 2016; Carlini
and Wagner 2017; Liu et al. 2017).

In this paper, we focus on the problem of generating
context-aware adversarial attacks on images to affect the
performance of object detectors. Our approach is to craft an
attack plan for each object, which not only perturbs a spe-
cific victim object to the target class, but also perturbs other
objects in the image to specific labels or inserts phantom
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objects to enhance the holistic context consistency; these as-
sociated objects are called helper objects. The helpers are
selected based on the context graphs, which capture the co-
occurrence relationships and relative location and size of ob-
jects in the image. The context graphs can be learned empir-
ically from natural image datasets. The nodes of a context
graph are object classes, and each edge weight captures the
co-occurrence, relative distance, and size likelihood of one
object conditioned on the other. The intuition is that each
class is often associated with certain classes, and unlikely to
be associated with certain others.

Our interest lies in blackbox attacks where the perturba-
tions generated for an image are effective on a variety of de-
tectors that may not be known during the perturbation gener-
ation process. The conceptual idea of our proposed approach
is to generate perturbations with an ensemble of detectors
and subsequently test them on an unknown detector. Such
attacks are referred to as transfer attacks, and we refer to the
unknown detector we seek to fool as the victim blackbox
model. To achieve this goal, we propose a novel sequen-
tial strategy to generate these attacks. We sequentially add
perturbations to cause the modification of the labels of the
victim and helper objects, based on the co-occurrence ob-
ject relation graph of the victim object. This strategy is the
first to use explicit context information of an image to gener-
ate a blackbox attack plan. Note that the sequential strategy
makes a small number of queries (2–6 in our experiments)
to the blackbox detector as new helper objects are added in
the attack plan. The blackbox detector provides hard labels
and locations of detected objects. We use this information
only as a stopping criterion for the attack generation, unlike
query-based approaches (Wang et al. 2020b) that often need
to use thousands of queries to estimate local gradients. The
framework is illustrated in Figure 1.

The main contributions of this paper are as follows.

• This is the first work that considers co-occurrence be-
tween different object classes in complex images with
multiple objects to generate transferable adversarial at-
tacks on blackbox object detectors.

• We show how to generate context-aware attack plans
for targeted mis-categorization attacks. The attacks gen-
erated using context-aware attack plans provide signifi-
cantly better transfer success rates on blackbox detectors
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Figure 1: Overview of our framework for generating the context-aware sequential attack. a) Given a natural image, our goal is to trick
an object detector to assign the victim object a given target label (e.g., bird to table). b) We construct a context graph that encodes the
co-occurrence probability, distance, and relative size distribution relating pairs of objects (e.g., the edge from table to chair represents they
co-occur with probability 0.46). c) Given the attack goal and context graph, we generate a context-aware attack plan that has a small number
of steps. In each step, we assign target labels for existing objects and introduce new helper objects if needed. For example, co-occurrence
of chair with table is most probable, we change the bird to a chair for stronger context consistency (depicted in Attack Plan Step 1). We
may need to add a phantom chair around the table (as depicted in Attack Plan Step 2). d) Given the attack plan and the victim image, we
generate perturbations using I-FGSM on the surrogate whitebox models in our perturbation machine. We test the perturbed image with the
given blackbox model and based on the hard-label feedback, we either stop (when the attack is successful or when we exhaust our budget of
the helper objects) or craft new attack based on the next steps and repeat the process.

than those generated by methods that are agnostic to con-
text information (an average improvement of more than
10 percentage points in fooling rate, see Table 1).

• Our comprehensive evaluations also include context-
aware adversarial attacks on multiple datasets using mul-
tiple object detectors. We also provide analysis on the ef-
fect of helper objects in generating successful attacks and
the generalizability of contexts.

2 Related Work
Context in object detection. The importance of context
has been studied extensively to enhance visual recognition
technologies (Strat and Fischler 1991; Torralba, Murphy,
and Freeman 2005; Divvala et al. 2009; Galleguillos and
Belongie 2010; Marques, Barenholtz, and Charvillat 2011;
Yao, Fidler, and Urtasun 2012; Mottaghi et al. 2014). Mod-
ern object detectors (Ren et al. 2015; Redmon and Farhadi
2018; Carion et al. 2020) consider holistic information in
the image to locate and detect different objects, and sev-
eral works explicitly utilize context information to improve
the performance of object detectors (Bell et al. 2016; Zhang

et al. 2017; Chen, Huang, and Tao 2018; Liu et al. 2018;
Barnea and Ben-Shahar 2019; Wang et al. 2020a). Some re-
cent papers have considered context consistency to detect
adversarial attacks (Li et al. 2020c; Yin et al. 2021), but the
attack generation uses existing whitebox attack schemes that
do not consider context information explicitly. To the best of
our knowledge, we are the first to use context information of
objects explicitly for generating attacks on object detectors
for images with multiple objects.

Blackbox adversarial attacks. Blackbox attacks is a
practical setting where the attacker can only query the model
and get the output instead of having access to the model’s
internal parameters. Two common strategies targeting this
challenging problem are transfer-based attacks and query-
based attacks. Query-based attacks have high success rates
but require an overwhelmingly large number (often hun-
dreds or thousands) of queries (Brendel, Rauber, and Bethge
2018; Chen et al. 2017; Guo et al. 2019; Huang and Zhang
2020; Cheng et al. 2019; Chen, Jordan, and Wainwright
2020; Li et al. 2020a; Wang et al. 2020b). In this paper,
we explore a more stringent case where only a very small



number of model calls is allowed. Several papers (Paper-
not et al. 2017; Liu et al. 2017; Dong et al. 2018; Li et al.
2020b) have examined the phenomenon of transfer attacks
where the adversarial examples generated using a surrogate
network can fool an unknown network. The previous works
studying transfer attacks focus on image classifiers. In this
paper, we focus on object detectors, which is considered to
be a much harder problem (Xie et al. 2017; Wu et al. 2020).

Attacking object detectors. Almost all existing attacks
on object detectors focus on whitebox setting. Some patch-
based attacks (Liu et al. 2019; Saha et al. 2020) are very
effective but the patches are obviously visible to observers.
Some attacks such as DAG (Xie et al. 2017), RAP (Li et al.
2018), and CAP (Zhang, Zhou, and Li 2020) rely on region
proposal network (RPN), thus only work for proposal-based
(two-stage) object detectors. Some attacks are more generic
such as UAE (Wei et al. 2019) and TOG (Chow et al. 2020)
that work for both one-stage and two-stage models. Among
them TOG is the most generic approach that can attack all
different kinds of models regardless of their architectures as
long as backpropagation on training loss is feasible. Even
though some of these works have reported transfer attack
results on a small set of blackbox models, since they are
mainly designed for whitebox attacks, they fail to provide
systematic evaluation in a realistic blackbox settings.

3 Context-Aware Sequential Attacks
While algorithms in prior approaches search for adversarial
examples that misclassify the victim objects only, we pro-
pose to formulate the optimization problem towards perturb-
ing both the victim object and the “context” associated with
the victim object. The context of an object is determined by
the objects that co-exist with it. We hypothesize that the con-
text not only plays an important role in improving classifica-
tion/detection performance, but can also boost the ability to
realize efficient adversarial attacks against object detectors.

Next, we show how we compose context-aware attack
plans and search for adversarial examples by sequentially
solving optimization problems that are defined for a context-
aware attack plan. The context-aware attack plans utilize
the contextual information with regard to the co-existence
of instances of different categories and their relative loca-
tions and sizes. We first describe how we represent the con-
textual information. Then we discuss how to compose the
so-defined context-aware attack plan. Finally, we describe
how we generate the adversarial examples by solving rele-
vant optimization problems sequentially. The framework is
explained in detail in Figure 1.

3.1 Context Modeling
We represent a natural scene image as I and the distribu-
tion of all natural images as D. Each I ∈ D could contain
one or multiple object instances. We denote the possible ob-
ject categories in the distribution D by C = {c1, c2, ..., ck},
where k is the total number of object categories. We define
the context graph (an example shown in Figure 1 b) as a
fully connected directed graph, in which each node is asso-
ciated with an object category ci and the weight on the edge

ei,j encodes different properties relating two nodes such as
their co-occurrence probability, distance, and relative size.
The number of nodes in the context graph is same as the
number of object categories k.

Co-occurrence graph. We aim to model the co-
occurrence probability of each pair of instances in a natural
image. To be more specific, we seek to determine the prob-
ability of the event that an instance of category cj appears
in the image given that an instance of category ci also ap-
pears in the image. Co-occurrence graph inherits the struc-
ture of the aforementioned context graph, and the directed
edge ei,j represents the probability that an instance of cat-
egory cj appears in the image given an instance ci already
exists. This probability is denoted by poccur

i,j = p(cj |ci). Note
that for each node, we also have an edge pointing to itself
(i.e., ei,i). According to the definition of probability we have
0 ≤ poccur

i,j ≤ 1 and
∑
j=1,...,k p

occur
i,j = 1 for all i.

To compose such a co-occurrence graph, we can calcu-
late a matrix P = {poccur

i,j |i, j = 1, . . . , k} using a large-
scale natural scene image dataset D′, whose distribution is
deemed to be similar to D. We approximate co-occurrence
probabilities using the relative co-occurrence frequencies of
objects from D′.

Distance graph. Suppose the bounding box of an object
is given as [xc, yc, h, w], where (xc, yc) denote the center
pixel location of the box and (h,w) denote the height and
width in pixels. In distance graph, the edge ei,j captures the
distribution of the `2 distance between center points of cj
and ci. The bilateral edges are equivalent. Considering the
fact that the image size (H,W ) varies in the dataset, which
will also influence the distance between two objects, thus to
minimize this scaling effect, we normalize the distance by
image diagonal L =

√
H2 +W 2. The distance distribution

is denoted as pdist
i,j (`2([x

c
i , y

c
i ], [x

c
j , y

c
j ])/L|ci).

Size graph. Similarly, size graph models the 2D distribu-
tions of object height and width, where edge ei,j represents
psize
i,j (hj/L,wj/L|ci), which is the distribution of height and

width of cj given ci is also present in the image.

3.2 Context-Aware Attack Plan
Given an image I , we denote the instance categories in the
image as X = [x1, x2, ..., xm], where m is the total number
of detected objects in the image. Note that different xi could
be the same because two instances of the same category can
co-occur in a scene.

For the miscategorization attack, the goal is to miscatego-
rize xi to x′i for i ∈ {1, . . . ,m}. We call the object asso-
ciated with xi as the victim object or the victim instance.
To simplify our discussion, let us assume that our goal is to
miscategorize x1 to x′1. Note here that methods that focus on
miscategorizing the victim object/instance only will search
for a perturbation so that the labels for all the objects become
X ′ = [x′1, x2, ..., xm]. We call X ′ the attack plan, since it
yields the target labels for attackers.

In our proposed context-aware attack method, in addition
to miscategorizing x1 into x′1, we may also want to miscat-
egorize one or more helper objects that can provide impor-



tant context information for x1. We create a context-aware
attack plan as X ′

c = [x′1, x
′
2, ..., x

′
n]. We will use subscript

c with context-aware attack plans to distinguish them from
the context-agnostic attack plans. The x′i could be the same
as xi when we do not seek to miscategorize the instance as-
sociated with xi. All the xi (except the victim object) that
change to a different label x′i in X ′

c are called helper in-
stances. Note that in the context-aware attack plan, X ′

c, n
could be greater than m in cases where we decide to insert
new instances as helper objects. We illustrate an example
attack plan in Figure 1(c), where the bird at the bottom is
the victim object that we want to mis-categorize to a table;
the bird at the top (to be mis-categorized as chair) and the
additional appearing chair are the two helper instances.

The number of helper instances is a hyper-parameter that
we tune. We use the co-occurrence graph, defined previ-
ously, to decide which existing instances (xi) should serve
as helper instances, and what category labels (x′i) should be
assigned to these instances. From the co-occurrence graph,
we obtain the co-occurrence probability with respect to ev-
ery possible instance pair category. Given the goal of miscat-
egorizing victim object from x1 to x′1, we choose the label
for every helper instance (x′i) by sampling the label space
C according to the co-occurrence probability p(x′i = c|x′1)
for all c ∈ C. Note that

∑
c∈C p(x

′
i = c|x′1) = 1. We could

model the joint probability of all helper instances given the
target label, but that would require a large amount of data.
Our sampling approach assumes conditional independence
of helper instances (akin to naı̈ve Bayes), in which we draw
the most probable labels for our helper labels by sampling
one row of the co-occurrence probability matrix. By random
sampling the label space in this manner, we expect that ob-
jects that occur more frequently will be selected as labels
for the helper objects. We first select the helper objects from
among them objects present in the scene. In case we need to
add new helper instances (> m), we choose their locations
and sizes according to the mean values of the distributions
given by distance and size graphs.

3.3 Sequential Attack Generation
We propose a sequential perturbation generation strategy,
where we start with zero helper objects in the attack plan and
sequentially add one helper object until the attack succeeds
on the blackbox, as shown in Figure 1. We generate adver-
sarial attacks using a single or multiple surrogate model(s) in
our perturbation machine. As we sequentially add the helper
objects in the attack plan, we query the black-box model to
see if our attack succeeds. In our experiments, we make up
to 6 queries to the blackbox detector, which provides hard
labels for the detected objects. We use this information only
as a stopping criterion for the attack generation. We stop the
sequential attack process if the adversarial example fools the
black-box model or we run out of the budget of helper ob-
jects. Note that our strategy is orthogonal to query-based
methods that aim to generate adversarial examples or es-
timate gradients of the blackbox models (often using hun-
dreds or thousands of queries) (Wang et al. 2020b; Cheng
et al. 2019; Huang and Zhang 2020).

Our attack generation method with a single surrogate de-

tector is based on targeted adversarial objectness gradient
attacks (TOG) (Chow et al. 2020), which can be viewed
as training the detector for modified labels given in the at-
tack plan X ′. The weights of the detector network remain
fixed but a perturbation image δ is added to the clean im-
age as I + δ at every iteration to minimize the training loss
L(clip(I+δ);O′) for a desired outputO′. The value of I+δ
is clipped at each iteration to make sure it is legally bounded.
We generate the desired output O′ based on our attack plan
X ′. The attack plan in X ′ only contains label information,
but we also assign location and confidence score informa-
tion in O′. At every iteration, we update the perturbation
using the iterative fast gradient signed method (I-FGSM),

δ ← δ − ε · sign[∇δL(clip(I + δ);O′)], (1)

where ε is the step size at each iteration. We can also use an
ensemble of detectors as the surrogate models in perturba-
tion machine, where we generate perturbation by minimiz-
ing the joint loss function over all detectors:

L = α1L1 + α2L2 + ...+ αNLN, (2)

while keeping
∑N
i=1 αi = 1 and αi > 0 for all i. We can

easily modify our method to use other perturbation genera-
tion methods and loss functions (Madry et al. 2018; Carlini
and Wagner 2017; Dong et al. 2018; Xie et al. 2019; Lin
et al. 2020; Wang and He 2021).

4 Experiments
We perform comprehensive experiments on two large-scale
object detection datasets to evaluate the proposed context-
aware sequential attack strategy. We mainly show that the
context-aware sequential attack strategy can help with mis-
categorization attacks in blackbox setting. We also present
results with whitebox setting, for completeness, even though
this is not our primary objective.

4.1 Implementation Details
Object detection models. We evaluate our attack plans on
a diverse set of object detectors, including
• Two-stage detectors. Faster R-CNN (Ren et al. 2015),

Libra R-CNN (Pang et al. 2019, 2021);
• One-stage detectors. YOLOv3 (Redmon and Farhadi

2018), RetinaNet (Lin et al. 2017);
• Anchor-free detectors. FoveaBox (Kong et al. 2020),

FreeAnchor (Zhang et al. 2019);
• Transformer-based detectors. DETR (Carion et al.

2020), Deformable DETR (Zhu et al. 2021).
We use MMDetection (Chen et al. 2019) code reposi-

tory for the aforementioned models. Inspired by (Liu et al.
2017; Wu et al. 2020), we use an ensemble of locally trained
object detection models as the surrogate model. Selecting a
good surrogate ensemble is an interesting question, where
the number and type of surrogate models will influence the
attack success rate. We tested different single and multiple
models as surrogates in our preliminary tests and observed
a similar trend that the context-aware attacks significantly
outperform the baseline attacks that are context-agnostic.



Table 1: White-box and black-box mis-categorization attack fooling rate on different models with different perturbation budgets (L∞ ≤
{10, 20, 30}) using VOC and COCO dataset. Baseline only perturbs the victim object, while ours also perturbs other objects conforming to
context. Random perturbs other objects but assign random labels. Abbreviation: Faster R-CNN (FRCNN), RetinaNet (Retina), Libra R-CNN
(Libra), FoveaBox (Fovea), FreeAnchor (Free), Deformable DETR (D-DETR).

Perturbation
Budget Method Whitebox Blackbox

FRCNN YOLOv3 Retina Libra Fovea Free DETR D-DETR

Results on PASCAL VOC

L∞ ≤ 10
Baseline 40.0 53.8 13.8 9.2 22.2 27.4 9.6 23.2
Random 52.4 69.2 19.4 17.4 31.6 37.8 17.4 36.8

Ours 55.8 75.6 22.6 20.4 33.6 39.2 20.2 39.2

L∞ ≤ 20
Baseline 65.2 67.8 24.0 21.4 34.4 41.8 14.4 37.6
Random 74.4 83.8 31.0 29.6 46.2 54.4 28.0 52.6

Ours 78.6 87.2 35.2 38.4 51.6 56.6 34.0 58.4

L∞ ≤ 30
Baseline 70.6 70.4 29.8 28.6 41.6 48.0 20.4 38.6
Random 79.2 82.6 37.8 36.8 53.4 59.8 34.4 52.8

Ours 80.6 88.0 42.0 44.2 56.8 63.6 40.2 59.0

Results on MS COCO

L∞ ≤ 10
Baseline 29.0 32.2 7.4 4.8 11.6 16.6 3.4 19.0
Random 40.2 48.4 11.2 8.0 14.6 20.0 6.2 23.6

Ours 41.2 54.4 12.0 11.2 18.6 25.0 10.8 27.8

L∞ ≤ 20
Baseline 51.8 49.2 13.4 11.8 22.0 28.6 8.8 26.8
Random 60.6 66.4 20.6 18.8 31.4 37.2 20.2 39.2

Ours 64.4 70.0 20.8 22.2 35.4 40.8 20.0 43.2

L∞ ≤ 30
Baseline 57.6 54.4 18.2 15.4 25.6 34.8 8.0 28.8
Random 65.8 73.6 23.8 21.8 34.8 47.8 18.4 42.0

Ours 68.6 75.4 27.2 27.2 39.2 46.2 21.2 48.6

Therefore, we selected two most commonly-used models,
Faster R-CNN and YOLOv3, as the surrogate ensemble in
our experiments. The weighting factor α is chosen such that
the individual loss terms are balanced. On the blackbox vic-
tim side, we choose the leftover models that have a variety
of different architectures.

Datasets. We use images from both PASCAL VOC (Ev-
eringham et al. 2010) and MS COCO (Lin et al. 2014)
datasets in our experiments. VOC contains 20 object cate-
gories which commonly appear in natural environment, and
COCO contains 80 categories which is a super-set of the
categories in VOC. We randomly selected 500 images that
contain multiple (2 − 6) objects from voc2007test and
coco2017val. Since all models in MMDetection are
trained on coco2017train, while testing the detectors
on VOC images, we only return the objects that also exist in
VOC categories.

Context graph construction. For VOC and COCO im-
ages, we extract context from voc2007trainval and
coco2017train respectively. For each dataset, we build
three N ×N arrays (N is number of labels) that contain co-
occurrence probability, distance distribution, and size distri-
butions. The (i, j) cell in the co-occurrence array stores the
number of co-occurrences of object ci and object cj normal-
ized by the summation of that row; each cell in the distance
array is a 1D distribution of the distances between ci and cj
found in the images; each cell in the size table is a 2D distri-
bution of h and w of cj given ci. These three arrays can be
easily computed form the datasets.

Attack generation. We use I-FGSM-based method to
generate a perturbation on the whole image (as discussed in
Eqn. (1)), and we limit the maximum perturbation level to be
L∞ ≤ {10, 20, 30}. The number of helper objects is empir-
ically chosen to be 5. We present an analysis study on how
the attack performance changes with the number of helper
objects in Section 4.3 of analysis study.

Baseline and comparisons. TOG (Chow et al. 2020)
shows better performance compared to UEA (Wei et al.
2019) and RAP (Li et al. 2018); therefore, to understand the
performance of the proposed context-aware attack plan strat-
egy, we use the current state-the-art attack strategy based on
TOG (Chow et al. 2020). The attack plan generated by the
baseline (labeled as Baseline in Table 1) is context-agnostic
and only associated with the victim object. To validate that
our proposed context-aware attack really benefits from co-
occurrence, location and size information, we also present
results for a setting (labeled as Random in Table 1) in which
we choose helper objects label and location at random.

Evaluation metric We use attack success rate (or fool-
ing rate) to evaluate the adversarial attack performance on
any victim object detector. Since we perform targeted mis-
categorization attack, instead of using mAP which takes ac-
count of all existing objects, we only focus on the victim
object and define our attack success rate as the percentage
of attacks in which the victim object was successfully mis-
classified to the target label. In experiments, we check if the
target object exists in the detection with an intersection over
union (IOU) greater than 0.3. If yes, the attack is successful
(or the detector is fooled); otherwise, the attack fails. For the
selection of target objects, we randomly selected one target
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Figure 2: Examples where baseline attack fails but context-aware method succeeds by introducing helper objects in the attack. The pertur-
bation (L∞ ≤ 10) is generated from our perturbation machine (whitebox ensemble of FRCNN and YOLOv3) and tested on the blackbox
model (RetinaNet). The detection results on original image, image perturbed by baseline attack, and image perturbed by our context-aware
method are shown in the subfigures from left to right. In these examples, we introduce pottedplant as a helper object to mis-categorize
the victim monitor to sofa, introduce another bird to mis-categorize the person to a bird, and add a few chairs to mis-categorize
the cow to a sofa. Visualization of perturbation level L∞ <= 20, 30 can be found in supplementary materials.

label that is not present in the original image to mimic the
out-of-context attack as well as eliminating the chance of
miscounting the existing objects as success.

4.2 Evaluation of Attack Performance
Whitebox attack performance. We observe that the at-
tack success rate suffers even in whitebox setting, especially
when the perturbation budget is small. As shown in Table 1,
the baseline whitebox attack with L∞ ≤ 10 on COCO can
only achieve around 30% fooling rate. This is because we
simultaneously attack multiple objects in the image and also
use an ensemble loss to fool multiple models jointly, the tar-
geted mis-categorization attack is challenging. Even in this
difficult setting, our context-aware attack can successfully
improve the fooling rate by 10 − 20 percentage points. Be-
sides this, we can observe that our method provides signif-
icant improvement (by at least 10 percentage points) over
the baseline method at all perturbation levels on both VOC
and COCO dataset. Our performance is not only better than
baseline method, but also has clear advantage over sequen-
tial attacks with random context. This validates the effective-
ness of the proposed context-aware sequential attack strat-
egy in the whitebox settings.

Blackbox attack performance. We test the performance
of the attacks generated by the surrogate detectors in the

perturbation machine on different blackbox detectors. Our
hypothesis is that the context-aware adversarial examples
transfer better to the unseen models, and thus have better
attack performance compared to context-agnostic (baseline)
attacks in the blackbox setting. We use the same baseline
and evaluation metrics as in the evaluation of the whitebox
attack. Our results corroborate our hypothesis as we observe
that even though the blackbox attack success rate is signif-
icantly lower compared to the whitebox attack success rate,
our proposed context-aware sequential attack strategy still
provides significantly better transfer success rate compared
to the context-agnostic (baseline) attacks. For both VOC
and COCO datasets, for all levels of perturbation. Overall,
for every test setting, our method improves the success rate
over baseline method by 5–20 percentage points (average
improvement is beyond 10 percentage points). This is a sig-
nificant improvement for the notoriously difficult problem of
transfer attacks on object detectors in blackbox settings by
using just 2–6 queries. Our proposed context-aware attack
strategy has better transfer rates than the context-agnostic
baseline and random assignment of labels, which further
shows the benefits of utilizing co-occurrence relationships,
location and size information to generate the attack plans.

Visualization. We show three attack examples in Figure 2.
In the first example, we aim to miscategorize a TV monitor



Number of Helper Objects Allowed

Fo
ol

in
g 

R
at

e 
(%

)

0

25

50

75

100

0 1 2 3 4 5

YOLO3 FRCNN FreeAnchor Libra R-CNN
DETR

(a) PASCAL VOC, L∞ ≤ 20

Number of Helper Objects Allowed

Fo
ol

in
g 

R
at

e 
(%

)

0

25

50

75

100

0 1 2 3 4 5

YOLO3 FRCNN FreeAnchor Libra R-CNN
DETR

(b) MS COCO, L∞ ≤ 20
Figure 3: Mis-categorization attack fooling rate of white-box and black-box models at perturbation level L∞ ≤ 20 w.r.t. number of helper
objects allowed (changed or added). Circles denote white-box models (FRCNN and YOLO3) and squares denote black-box models (FreeAn-
chor, Libra R-CNN, and DETR). Plots of perturbation level L∞ ≤ 10, 30 can be found in supplementary material.

to sofa. We observe that the baseline attack fails to transfer
to the blackbox model, RetinaNet (middle row). In compari-
son, the context-aware adversarial example from our method
fools the victim blackbox model to detect the TV monitor
as a sofa by introducing a pottedplant as the helper object,
which frequently co-occurs with the target label, sofa. In the
second example, we aim to miscategorize a person into a
bird. The baseline attack fails since the person is still de-
tected. However, our method succeeds by introducing an-
other bird as the helper object. In the third example, we seek
to mis-categorize a cow as a sofa. The baseline attack fails
as no object is detected near the victim object. Our context-
aware attack plan succeeds by assigning the person and other
cow in the image to chairs (helper objects).

4.3 Analysis Study
Number of helper objects. Even though helper objects
boost the adversarial attack success, we do not need a large
number of them. Since the perturbation budget is fixed, us-
ing too many helper instances may reduce the effect for the
victim instance. On the other hand, not using any helper in-
stances would completely eliminate the benefits of context-
aware attacks. To investigate how the number of helper
objects affects the attack performance, we plot the mis-
categorization attack success rate with respect to the num-
ber of helper objects in Figure 3. We observe that adding
more objects improves attack success rate both for the white-
box and blackbox attacks. The improvement is profound for
some blackbox attacks that have low baseline attack success
rates. We also observe that the first few helper objects boost
the attack performance significantly and the improvement
gradually plateaus as we add 4–5 helper objects.

Context graphs of different datasets. To demonstrate
that the context graphs are generic enough to be used across
different natural scene datasets, we evaluate the similar-
ity of the co-occurrence matrices extracted from the two
large-scale datasets (VOC and COCO). The average Perason
correlation coefficient of each corresponding row of VOC
matrix and COCO matrix is 0.90, which signifies strong

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4: Co-occurrence matrices for VOC (left) and COCO
(right) for 20 object categories that are common in both datasets.

positive correlation between co-occurrence relationships en-
coded by these two context graphs. We can visually see the
similarities of these two co-occurrence matrices in Figure 4.
One of the salient patterns common in these two matrices is
that the column of person is colored in dark green, show-
ing that person generally has a high probability to co-occur
with other objects. This is a notable feature of natural scene
images. Because of the high similarity of the contexts in the
two datasets, we can use their context graphs interchange-
ably. It is indeed possible that if the original context of ob-
jects in the given image is very different from the context
graph we use to build the attack plan, the transfer attack suc-
cess rate will suffer. This can be corroborated by the com-
parison of Random and Ours in Table 1.

5 Conclusion
In this paper, we propose a novel context-aware adversar-
ial attack method that exploits rich object co-occurrence
relationships plus location and size information to effec-
tively improve mis-categorization attack fooling rate against
blackbox object detectors. Our experimental results on two
large-scale datasets show that our attack success rate is
significantly higher than baseline and comparing methods,
which validates the effectiveness of our methods. The con-
textual relationships modeled by our method holds true in
different datasets within natural image domain, thus imply-
ing the wide applicability of our methods.
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Supplementary Material
A More Analysis on Number of Helper Objects

We present additional results for perturbation levels L∞ ≤ 10, 30. We observe a similar trend as in Figure 3 that success of
mis-categorization attacks increases as we add helper objects in our attack plans. In some cases, the success rate almost doubles
compared to baseline as we add 5 helper objects.
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(a) PASCAL VOC, L∞ ≤ 10
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(c) PASCAL VOC, L∞ ≤ 30
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(d) MS COCO, L∞ ≤ 30
Figure 5: Mis-categorization attack fooling rate of white-box and black-box models at perturbation level L∞ ≤ 10, 30 w.r.t. number of helper
objects allowed (changed or added). In the legend, circle denotes white-box models (FRCNN and YOLO3) and square denotes black-box
models (FreeAnchor, Libra R-CNN, and DETR). Baseline is where no helper objects is allowed.

B More Visualization Examples
We present some additional images to show comparison between our context-aware attack method with baseline method. We
show examples where the perturbations generated by our method can successfully transfer to the blackbox model while the
perturbations generated by baseline method fail. The experiment settings are the same as Figure 2 in the main paper.
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Figure 6: Supplement to Figure 2, here we visualize four more examples under different perturbation budgets (L∞ ≤ 20, 30) where baseline
attack fails but our context-aware method succeeds by introducing helper objects in the attack. The perturbation is generated from our
perturbation machine (whitebox ensemble of FRCNN and YOLOv3) and tested on the blackbox model (RetinaNet). The detection results on
original image, image perturbed by baseline attack, and image perturbed by our context-aware method are shown in the subfigures from left
to right. In these examples, we introduce car as a helper object to mis-categorize the victim monitor to motorbike, introduce a potted plant to
mis-categorize the cow to a chair, add a few persons and a car to mis-categorize the chair to a car, and change the bottle to a person in order
to mis-categorize the dining table to a horse.
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Figure 7: Correspond to the previous visualizations on VOC dataset, here we also visualize examples for COCO dataset, where baseline attack
fails but our context-aware method succeeds by introducing helper objects in the attack. The perturbation (L∞ ≤ 10, 20, 30) is generated
from our perturbation machine (whitebox ensemble of FRCNN and YOLOv3) and tested on the blackbox model (RetinaNet). The detection
results on original image, image perturbed by baseline attack, and image perturbed by our context-aware method are shown in the subfigures
from left to right. In (a), we introduce a person as a helper object to mis-categorize the victim elephant to a dog, introduce a chair to mis-
categorize the tie to a laptop; in (b), we add a few cows in the scene to mis-categorize the car to a cow, added an other donut to mis-categorize
the stop sign to a donut; in (c), we perturb the airplane a bird and add a few persons to mis-categorize the airplane to an elephant, introduce a
car to mis-categorize the person to a traffic light.
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