
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021 729

MLSNet: A Policy Complying Multilevel Security
Framework for Software Defined Networking

Stefan Achleitner , Quinn Burke , Student Member, IEEE, Patrick McDaniel , Fellow, IEEE,
Trent Jaeger, Member, IEEE, Thomas La Porta, Fellow, IEEE,

and Srikanth Krishnamurthy, Fellow, IEEE

Abstract—Ensuring that information flowing through a
network is secure from manipulation and eavesdropping by unau-
thorized parties is an important task for network administrators.
Many cyber attacks rely on a lack of network-level information
flow controls to successfully compromise a victim network. Once
an adversary exploits an initial entry point, they can eavesdrop
and move laterally within the network (e.g., scan and penetrate
internal nodes) to further their malicious goals. In this article, we
propose a novel multilevel security (MLS) framework to enforce a
secure inter-node information flow policy within the network and
therein vastly reduce the attack surface available to an adversary
who has penetrated it. In contrast to prior work on multilevel
security in computer networks which relied on enforcing the
policy at network endpoints, we leverage the centralization of
software-defined networks (SDNs) by moving the task to the con-
troller and providing this service transparently to all network
nodes. Our framework, MLSNet, formalizes the generation of
a policy compliant network configuration (i.e., set of flow rules
on the SDN switches) as network optimization problems, with
the objectives of (1) maximizing the number of flows satisfying
all security constraints and (2) minimizing the security cost of
routing any remaining flows to guarantee availability. We demon-
strate that MLSNet can securely and efficiently route flows that
satisfy the security constraints and route the remaining flows
with a minimal security cost (e.g., route >85% of flows, where
the heuristic achieves 89% and 87% of the optimal solutions for
the optimization problems).

Index Terms—Software-defined networks, security services,
security management.

Manuscript received May 1, 2020; revised October 23, 2020 and
December 10, 2020; accepted December 11, 2020. Date of publication
December 21, 2020; date of current version March 11, 2021. This research
was sponsored by the U.S. Army Combat Capabilities Development Command
Army Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). This
work was also supported by the National Science Foundation under award
CNS-1946022. The associate editor coordinating the review of this article
and approving it for publication was J.-M. Kang. (Corresponding author:
Quinn Burke.)

Stefan Achleitner was with the Department of Computer Science and
Engineering, Pennsylvania State University, University Park, PA 16802 USA.
He is now with Security Research Department, Palo Alto Networks, Inc.,
Santa Clara, CA 95054 USA (e-mail: stefan@stefanachleitner.com).

Quinn Burke, Patrick McDaniel, Trent Jaeger, and Thomas La Porta are
with the Department of Computer Science and Engineering, Pennsylvania
State University, University Park, PA 16802 USA (e-mail: qkb5007@psu.edu;
mcdaniel@cse.psu.edu; trj1@psu.edu; tfl12@psu.edu).

Srikanth Krishnamurthy is with the Department of Computer Science and
Engineering, University of California Riverside, Riverside, CA 92521 USA
(e-mail: krish@cs.ucr.edu).

Digital Object Identifier 10.1109/TNSM.2020.3045998

I. INTRODUCTION

ENSURING that information flowing through a network is
secure from manipulation and eavesdropping by unautho-

rized parties is an important task for network administrators.
Many attacks against modern networks rely on a lack of
network-level information flow controls to infiltrate an orga-
nizational network. Here, adversaries initially subvert edge
defenses to target and compromise an internal node. Once
inside the network, the adversary can probe network nodes or
eavesdrop on flows to penetrate further into the network [1].
This adversary-enabling freedom of movement and lack of
secure routing (to prevent eavesdropping) can be cast as a
classical information flow problem in security [2].

Even with defenses such as firewalls, information flow con-
trol in networks often fails: configuration is error-prone [3],
and compromised internal hosts may initiate flows that never
have to cross a firewall boundary [4]. Thus, adversaries can
exploit firewall rule conflicts to exfiltrate information, and
internal adversaries can eavesdrop and move laterally (i.e.,
scan and penetrate internal nodes) within their network bound-
ary without restriction. Fundamentally, they are enabled by a
lack of security policy governing what flows are permitted and
what paths they may take in the network.

Multilevel security (MLS) provides the means to enforce
such a policy. A multilevel security framework controls
information flow among entities of different security classes
with security labels (i.e., levels and categories) assigned to
those entities. In fact, multilevel security already plays a crit-
ical role in controlling access to information for both military
personnel and employees of commercial businesses with dif-
ferent levels of clearance [5]. Common use cases include
controlling file access in an operating system [6] or table
access in a relational database [7]. The notion of multilevel
security can also be applied to computer networks, where the
MLS policy dictates which nodes are allowed to communi-
cate, what type of traffic they may exchange, and what paths
the flows may take in the network. This strategy can prevent
eavesdropping and unrestricted lateral movement that plague
modern networks.

Lu and Sundareshan [8] envisioned such a model that
enforces the information flow policy at network endpoints;
however, the scale and dynamic behavior of modern networks
make deploying such an enforcement mechanism on every
endpoint impractical. Despite this, the inherent centralization

1932-4537 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5499-6101
https://orcid.org/0000-0003-1719-3112
https://orcid.org/0000-0003-2091-7484

730 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

of software-defined networks (SDNs) allows enforcement of
a network-level MLS policy in a scalable and efficient man-
ner. Determination of whether or not flows are permitted can
be done by the controller, and the access-control policy can
be enforced by the data-plane switches in the form of flow
rules—which allows the service to be provided transparently
to the entire network.

Thus, in this article, we propose an SDN-based MLS frame-
work to enforce an inter-node information flow policy that
preserves confidentiality. The challenge here is to fit the orga-
nizational needs by allowing entities to exchange permitted
flows while also configuring the network (by leveraging flow
rules) to be policy compliant. Permitted flows between two
endpoints may not always find a secure path due to limited
network resources (e.g., link capacity). Then, to guarantee
availability, a flow may have to be routed through an inse-
cure path. We refer to such a situation as a policy conflict,
and each conflict imposes a security cost in terms of the risk
the flow is being exposed to.

Unlike prior work [8], we approach the challenge of secur-
ing information flow in the network by considering two
optimization models: one that can provide a secure network
configuration (i.e., composition of flows rules) that obeys the
security policy, supplemented by a model that can minimally
relax the security policy to ensure that every flow can be
routed. The key contributions are:

• An optimization model to maximize the number of flows
routed according to the given security policy in an SDN.

• An optimization model to minimize the security cost of
routing any remaining flows to guarantee availability.

• A method for constructing flow rules which adhere to a
given security policy.

• A comprehensive evaluation of MLSNet’s ability to gen-
erate policy compliant network configurations and resolve
policy conflicts in realistic network topologies.

II. DEFINITIONS AND BACKGROUND

In this section, we extend prior work’s [8] terms and nota-
tions (Table I) to an SDN setting and provide background on
related network security threats and defenses, and MLS.

A. Term Definitions

Node: A resource connected to a network (e.g., a user,
server, router, or SDN switch).

Subject: A node that initiates communication to other nodes
in the network.

Object: A node that either provides (provider) and/or
receives (receiver) information to/from subjects

Forwarding Node: A node (SDN switch) that processes
incoming flows according to the installed flow rules.

Controller: An application in the SDN control plane that
has a global view of the topology and installs flow rules to
forwarding nodes based on the security policy.

Security Levels: Hierarchical attributes (e.g., top-secret,
public) that indicate relative authorization power.

Security Categories: Non-hierarchical attributes (e.g., TCP,
IP) that offer finer-grained authorization (for any layer of the

TABLE I
NOMENCLATURE AND NOTATION

Fig. 1. A corporate network scenario, detailing different regions of a network
that may contain nodes (switches and hosts) of different security levels.

network stack) besides the security level. In MLSNet, security
categories are only assigned to objects and subjects but not
forwarding nodes.

Security Label: The security level and categories combined,
used by the controller to admit or deny flows.

B. Network Threats to Confidentiality

Confidentiality ensures that information is only being
accessed by authorized parties. In the context of networking,
preserving confidentiality means that only explicitly allowed
communication can flow between any two nodes in the
network to prevent data from falling into the hands of untrusted
entities. A lack of a formal communication policy to realize
this may allow adversaries who have compromised internal
nodes to explore the network or eavesdrop on flows. For
example, in Figure 1, a compromised trusted node in the
software center may be able to probe other nodes in the soft-
ware and commercial centers as they are all behind the same
firewall boundary; the firewall itself cannot prevent the adver-
sary from probing all nodes on TCP port 22. Indeed, this
is possible regardless of the (implicit) security level of the
nodes; however, we can reduce attacker capabilities (enforce
least-privilege) with multilevel security.

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

ACHLEITNER et al.: MLSNET: POLICY COMPLYING MULTILEVEL SECURITY FRAMEWORK FOR SOFTWARE DEFINED NETWORKING 731

TABLE II
DEFENSES AGAINST DISCUSSED ATTACK TECHNIQUES

Recent work has demonstrated the ability of an adversary
to freely probe within their network boundary to recover sen-
sitive information about the network [9], [10], [11], [12], [13],
including active network hosts and even switch flow table
rules [14]. We observe that although discovered attacks on
networks in the literature pursue different goals, the strategies
of those posing a threat to confidentiality can be reduced to a
small set of techniques.

Packet Spoofing: Spoofing packets is the most common
technique. By spoofing, adversaries may be able to imperson-
ate other nodes to escalate privilege [15] or leak information
to untrustworthy nodes or outside of the network [16].

Lateral Movement: Adversaries can also move laterally by
probing many other nodes in the network. This nonessen-
tial communication may allow them to extract sensitive
information from nodes of higher security levels or compro-
mise nodes and escalate privilege to move deeper into the
network [14].

Man-in-the-Middle: Adversaries can also position them-
selves as a man-in-the-middle (MiTM), silently eavesdropping
on communications traversing them or within their broadcast
domain [17].

C. Proposed Defenses

Although there have been defenses proposed against some
of the discussed attack techniques, they are limited in their
ability to preserve confidentiality.

Source Validation: To address the issue of packet spoofing,
source validation seeks to only permit packets into a network
which’s source IP is valid on the given network interface. This
is typically implemented via ingress filtering [18] in wide-area
networks; however, it is difficult to implement, especially in
data-center networks [19], and does not prevent adversaries
from spoofing nodes within their own subnetwork.

Firewalling: The primary purpose of a firewall is to prevent
unauthorized packets from entering a network or subnetwork.
However, firewalling is limited with respect to preventing
lateral movement as configuration is error-prone [3], and com-
promised internal hosts can still probe within their network
boundary [4] to compromise internal nodes.

Encryption: Active man-in-the-middle attacks (i.e., those
staged by spoofing) may be mitigated with source validation;
however, preventing passive MiTM (eavesdroppers) is difficult.
Even with services such as encryption, adversaries can still
perform traffic analysis to extract sensitive information [20].

D. Preserving Confidentiality With Multilevel Security

Broadly speaking, existing defenses solve distinct prob-
lems and only partially address the issue of confidentiality.
Adversaries are enabled by a lack of policy preventing them

from probing network nodes and eavesdropping on communi-
cations. What is needed are means to specify what flows are
permitted and what paths they may take in the network.

MLS: A multi-level security policy provides the means to
prevent these problems with a secure flow model between enti-
ties that are assigned specific security labels (i.e., a level and
categories). The security labels form a lattice structure, which
reflects a hierarchical ordering of their relative authorization
power. We consider a node’s label to be higher than another
node’s if the former’s level is greater than or equal to, and
the categories form a superset of, the latter’s. With respect
to confidentiality, information should only flow to nodes with
the same or higher security label to prevent the potential leak-
age of sensitive data to nodes of lower security labels. This is
typically summarized as “no read up, no write down”.

Network MLS: Multilevel security already plays a critical
role in controlling access to files and databases in military
and commercial business contexts [5], [6], [7]. This notion
can also be applied to computer networks to prevent the
eavesdropping and unrestricted lateral movement that plague
modern networks. For example, nodes with lower security lev-
els should not be able to probe or communicate with nodes of
higher levels on specific TCP ports, and sensitive (e.g., top-
secret) flows should not traverse a node of lower security level.
In this context, for communication to be permitted and routed
between two nodes, both nodes and any intermediate nodes
must adhere to the “no read up, no write down” policy.

Lu and Sundareshan [8] envisioned such an MLS model
that enforces the information flow policy at network endpoints.
The problem with this approach is that the scale and dynamic
behavior of modern networks make deploying such an enforce-
ment mechanism on every endpoint impractical. However, the
inherent centralization of software-defined networks (SDNs)
allows enforcement of a network-level MLS policy in a scal-
able and efficient manner.1 Determination of whether or not
flows are permitted can be done by the controller, and the pol-
icy can be enforced by the data-plane switches in the form of
flow rules. This offers the significant advantage over previous
work of allowing the service to be provided transparently to
the entire network, because network devices do not have to
run specialized software. The controller’s global view of the
network also offers greater flexibility as changes to labels and
policy can be reflected by simple changes to flow rules, as
opposed to manually re-configuring individual devices.

Ultimately, multilevel security can ensure that the network
achieves (to the degree possible) least-privilege isolation of
entities of different access classes (per their security labels).
Source nodes of certain levels are not permitted to, for exam-
ple, send data to any nodes of lower security level. Similarly,
switches of certain security levels are not permitted to forward
(specifically, receive then forward), or potentially eavesdrop,
flows of higher security levels. Thus, we denote the flow paths
in this paradigm as secure paths.

1Note that, in general, SDNs suffer the threat of single-point-of-failure. In
the event of failure, MLSNet is just one of all controller applications affected,
and this problem is out of scope of this work.

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

732 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

III. MLSNET OVERVIEW

In this section, we present our threat model, lattice of
security labels, and policy constraints for MLSNet.

A. Threat Model and Assumptions

For the assignment of security labels, we assume a Network
Security Officer (NSO), as defined by Lu and Sundareshan [8],
who assigns appropriate security labels (i.e., levels and cat-
egories) to the network entities (e.g., endpoint devices and
forwarding nodes). 2 The assignment can be done by lever-
aging the controller as it has a global view of the network,
and it must be based on a security assessment of the entities
in the network. For example, endpoints with unpatched oper-
ating systems should be assigned a lower security level, as
they are more likely to contain vulnerabilities than others with
the latest software updates. IoT devices or forwarding nodes
connected to third-party networks can also be considered less
secure, and therefore should be assigned a lower security level
and a restricted set of categories. In contrast, endpoints con-
taining more sensitive (e.g., top-secret) data should have a
higher security level assigned since information flow to nodes
with lower levels should be prevented.

MLSNet aims to protect confidentiality by preventing leak-
age to unauthorized entities. We assume that nodes connected
to a network may become compromised and have malicious
intentions. In this scenario, we aim to limit an adversary’s
ability to further compromise the network.

Additionally, we assume the controller has an accurate view
of the topology (i.e., nodes have not been spoofed). MLS
cannot detect all forms of packet spoofing, and we rely on
other SDN-based defenses to detect packet spoofing against
the topology discovery service [9].

B. Multilevel Security Lattices for Computer Networks

To compute an SDN-based network configuration (set of
flow rules installed to SDN switches) that satisfies the security
policy, we must first consider security levels and categories. As
drawn from Denning [2], we order the security levels used in
our model according to the following: TopSecret (4) > Secret
(3) > Confidential (2) > Public (1). For an SDN, we define
the security categories as the packet types supported by the
OpenFlow [21] protocol for matching incoming packets to
flow rules: TCP, ICMP, etc. Although, any number of levels
and categories can be defined to separate classes of flows; we
just use the above descriptions as one example for evaluation.

The combination of a level and one or more categories
then forms the label at a node. These labels form a lattice,
a partially ordered set that reflects the secrecy and privilege
requirements of communication in the network. We consider
a node’s label to be higher than another node’s if the former’s
level is greater than or equal to, and the categories form a
superset of, the latter’s. This can be seen in the sample lattice
shown in Figure 2. We note that this construction may lead to

2Note that if business continuity required any nodes to communicate, then
they should be labeled appropriately. Our assumption is that MLSNet is given
as input a set of labels deemed appropriate per business needs, while the
problem of changing labels to fit business needs is orthogonal to our work.

Fig. 2. An OpenFlow specific security lattice for the networks used in our
evaluations. Here, information may only flow to nodes with the same or higher
security label (i.e., from left to right in the lattice).

incomparable labels, where neither label is a subset/superset
of the other, in which case communication would be denied by
default. This will preserve confidentiality but with the caveat
that not every flow may be accommodated.

Given the labels, the controller will install flow rules to the
SDN switches to allow communication only if the security
constraints are satisfied.

C. Security Policy Constraints

In this section, we discuss the access control and flow
control constraints, which form the basis of our security policy.

Access Control: As the first step to compute a security pol-
icy compliant network configuration, we determine if a subject
(e.g., user or process) initiating communication with an object
(e.g., file or resource) is allowed to exchange information with
the object based on the security levels and categories. To define
the constraints for access control, we have to consider if the
subject is communicating with a receiver object (i.e., object
receives from subject) or a provider object (i.e., subject sends
to object). If the subject communicates with a provider object,
then information flows from object o to subject s; inversely, if
object o is a receiver object, then information flows from s to o.
In case the object is both a provider and receiver object at the
same time, information flow between s and o is bidirectional.

Considering these three cases, given security level σ and cat-
egories C of subject s and object o, the authorized information
flows are defined by a conventional MLS confidentiality
model [22]. For a subject s (e.g., workstation user) communi-
cating with a provider object o, (e.g., mail server in the DMZ
in Figure 1), the following constraint must be satisfied:

σo ≤ σs and Co ⊆ Cs , ∀o ∈ O , s ∈ S (1)

Secondly, for a subject s (e.g., Wi-Fi client) communicating
with a receiver object o (e.g., network printer), the following
constraint must be satisfied:

σo ≥ σs and Co ⊇ Cs , ∀o ∈ O , s ∈ S (2)

And for a subject s (e.g., workstation user) communicating
with an object o that is both a provider and receiver (e.g., git
repository), the following constraint must be satisfied:

σo = σs and Co = Cs , ∀o ∈ O , s ∈ S (3)

Upon the initial arrival of a flow at the SDN controller from
a subject, it can be determined if the subject s is allowed to
exchange information with object o by considering the access
control constraints. While we define our framework in a gen-
eral way, security levels and categories are defined specific to
SDNs, as discussed in Section III-B.

Flow Control: If the access control constraints are satisfied,
information is allowed to flow between object o and subject s.

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

ACHLEITNER et al.: MLSNET: POLICY COMPLYING MULTILEVEL SECURITY FRAMEWORK FOR SOFTWARE DEFINED NETWORKING 733

The next step before rule installation is for the controller to
determine whether there exists a path between o and s such that
the security level of any forwarding node on the path between
o and s is not lower than that of the flow. In Figure 1, the
security level of the switch connecting the publicly accessible
Wi-Fi to the network is lower compared to the switches con-
nected with the secure VPN, which are behind firewalls and
only for internal users. Traversing lower classified nodes puts
a flow at risk of being leaked to untrustworthy entities, being
modified, or otherwise disrupted. Thus, protection of confi-
dentiality is constrained by secure path selection, and MLSNet
will choose an optimal path (if one exists) that satisfies this
constraint for any candidate flow.

We can formulate such a constraint by stating that the secu-
rity level σ of a node j on the path between o and s cannot
be lower than the security level of the originating node of
the flow. As with the access control constraint, we have to
take into account whether a subject is communicating with a
provider object, a receiver object, or an object that is both. If
the subject is communicating with a provider object, then the
following constraint must be satisfied:

σo ≤ σj , ∀j ∈ V on path (o, s) for flow f ∈ F (4)

Secondly, if the subject is communicating with a receiver
object, then traffic is flowing from the subject toward the
object, and the following constraint must be satisfied:

σs ≤ σj , ∀j ∈ V on path (o, s) for flow f ∈ F (5)

Lastly, the access control constraint for communicating with
an object that is a receiver and provider at the same time
defines that s and o are required to have the same security
level as stated in (3). Therefore, the flow control for such a
case requires a forwarder node to have a security level that is
higher or equal compared to the level of s and o:

(σs , σo) ≤ σj , ∀j ∈ V on path (o, s) for flow f ∈ F (6)

In addition to the security labels, we also must consider the
capacity κij of a link (i, j) on a path between s and o for a flow
with a size of d f : κij ≥ d f ∀(i , j) on path (o, s). As a trade-
off for providing flow control, policy compliant paths may be
longer than a shortest available path which does not consider
a security policy. Additionally, in case two nodes satisfy the
access control constraint, there is no guarantee that a path
between the nodes can be found which fulfills the flow control
constraint. If such, there may be a path traversing nodes which
do not have a high enough security label. We refer to such
cases as policy conflicts. In Section IV-C, we present a model
to minimize policy conflicts on flow paths. In short, it will find
the best fitting configuration and report the exact locations on
paths where policy conflicts exist. By deploying additional
security mechanisms, such as declassification via encrypted
communication channels, such conflicts can be resolved, as
we further discuss in Section IV-F.

IV. POLICY COMPLIANT FLOWS

Given the policy constraints and security labels, we intro-
duce optimization models to compute a flow-rule-based

network configuration under consideration of policy compli-
ance and resource availability. We first introduce an integer
linear programming (ILP) model to maximize the number of
flows strictly satisfying all security constraints. If no path
meeting the required security constraints can be found for a
flow f, the model will suggest to drop f. However, if all flows
must be routed, we propose a second ILP-based optimization
model that minimizes the sum of policy conflict values along
paths for the remaining flows.

A. Policy Compliant Flow Maximization Problem

In this section, we introduce a binary integer programming
model, a special case of integer linear programming (ILP), to
maximize the number of flows that can be accommodated by
a network under consideration of capacity and security con-
straints. We refer to this problem as the policy compliant flow
maximization problem, and formulate the constraints in (7).
The optimization model shown determines if a network con-
figuration fulfilling the defined security policy can be found
to route the flows F between the subjects S and objects O. To
compute a path, we first introduce a binary decision variable
x
f
ij to indicate if link (i, j) ∈ E is used on the path for flow

f (i.e., x fij = 1) or not (i.e., x fij = 0). To decide if a flow f
can be accommodated, we also introduce the binary decision
variable αf .

max
∑

f ∈F
αf (7a)

s. t.
∑

i :(i ,s)∈E
x
f
is + αf =

∑

j :(s,j)∈E
x
f
sj , ∀f ∈ F (7b)

∑

j :(o,j)∈E
x
f
oj − αf = 0, ∀f ∈ F (7c)

∑

i ,j∈E
x
f
ij =

∑

j ,k∈E
x
f
jk , ∀f ∈ F (7d)

∑

i :(i ,j)∈E
x
f
ij ≤ 1, ∀f ∈ F , j ∈ V (7e)

∑

f ∈F
x
f
ij · d f ≤ κij , ∀(i , j) ∈ E (7f)

αf · lev(σo , σs) = αf , ∀o(f) ∈ O , s(f) ∈ S , f ∈ F

(7g)

αf · cat(λco , λcs) = αf ,

∀o(f) ∈ O , s(f) ∈ S , c ∈ C , f ∈ F (7h)

x
f
ij · orig(σo , σs) ≤ x

f
ij · σj ,

∀(i , j) ∈ E , o(f) ∈ O , s(f) ∈ S , f ∈ F

x
f
ij ∈ {0, 1}, ∀(i , j) ∈ E , f ∈ F

αf ∈ {0, 1}, ∀f ∈ F (7i)

In (7b), we add αf to the link indication variable x fis to
trigger a flow f at a subject s. To compute a path between the
subject node s and object node o, a flow f is consumed at a
node o, as stated in constraint (7c), by subtracting αf from the
link indication variable. In (7d), we state the flow preservation

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

734 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

constraint to ensure that the sum of incoming flows into a node
equals the sum of outgoing flows of a node.

We add constraint (7e) to limit the number of visits of a node
to one for each flow. Constraint (7f) ensures that the given
capacity κij of a link (i, j) ∈ E is not exceeded for forward-
ing flows over a link i, j with a size of d f per flow. Typically,
in bidirectional communication in computer networks the size
of the request flow is different than the size of the reply flow.
Since we assume symmetric routes, the flow size variable d f

should be chosen to account for the flow size in both direc-
tions. Additionally, since new flow demands typically arrive
at different times in a network, we can replace the above link
capacity κij with the residual capacity κ̃ij which states the
remaining capacity on a link (i, j) ∈ E considering the existing
flows in a network traversing link (i, j).

In constraints (7g) and (7h), we define the access control
properties. Constraint (7g) ensures that a flow f between a
subject s and an object o is only permitted if the function
lev(σo , σs), shown in (8), returns 1, indicating that the security
levels of s and o allow communication:

lev(σo , σs) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if o is provider object and σo ≤ σs
1, if o is receiver object and σo ≥ σs
1, if o is both and σo = σs
0, otherwise

(8)

As defined in Section III-C for access control, we fur-
ther have to ensure that the subject s and object o have the
appropriate security categories before calculating a path. In
function cat(λco , λ

c
s) shown in (9), we model the requirement

of security categories to allow a flow between s and o:

cat(λco , λ
c
s)

=

⎧
⎪⎪⎨

⎪⎪⎩

1− (λco − λco · λcs), if o is provider
1− (λcs − λcs · λco), if o is receiver
1− (λcs − λco) · (λcs − λco), if o is both
0, otherwise

(9)

To mathematically define this, we introduce variable λci which
indicates if a node i has a security category c, i.e., λci = 1,
or not, i.e., λci = 0. As an example for the operation of func-
tion cat(), suppose a subject s wants to communicate with a
provider object o. In order to permit the flow, the constraint
that Co ⊆ Cs must be satisfied. To evaluate if the security
categories Co of an object are a subset of the categories in
Cs , we introduce the formulation 1− (λco −λco ·λcs) as shown
in (9). This will evaluate to 0 if subject s does not have a secu-
rity category c, but object o does, i.e., (1 − (1 − 1 · 0)) = 0.
Such a case does not fulfill the access control constraint, and
therefore the flow cannot be admitted, i.e., αf = 0.

Function cat() works in a similar way if o is a receiver
object. In case o is both a provider and receiver, function
cat() evaluates to 1 if Co = Cs . As stated in constraint (7h),
the function cat() has to return 1 for all categories c ∈ C
for a flow f between a subject s(f) ∈ S and an object node
o(f) ∈ O. Additionally, in constraint (7i), we define the secure
flow property to prevent information flow to lower classified
nodes. Thus, for each next node j on a link (i, j) of a flow f,
indicated by the decision variable x fij , the security class of the

Algorithm 1 PolicyCompliantPath(G,s,o,d f)
1: V = nodes in G
2: for all v ∈ V do
3: dist[v] = infinity, prev[v] = null
4: end for
5: dist[s] = 0
6: N = nodes in G
7: if lev(σo , σs) = 1 and cat(λco , λ

c
s) = 1, ∀λco ∈ Co , λ

c
s ∈

Cs then
8: while N not empty do
9: i = node in N with smallest dist[]

10: remove i from N
11: for all adjacent node j of i do
12: if orig(σo , σs) ≤ σj and d f ≤ κ̃ij then
13: distnew = dist [i] + 1
14: if distnew ≤ dist [j] then
15: dist [j] = distnew
16: prev[j] = i
17: end if
18: end if
19: end for
20: end while
21: end if
22: return prev

originating node of flow f (i.e., the subject if the object is a
receiver, and the object otherwise) has to be less or equal to the
security class at the next node j on the path. We define function
orig(σo , σs) as shown in (10), where orig() returns the secu-
rity level depending on the type of object node o, according
to the defined flow control constraint in Section III-C:

orig(σo , σs) =

{
σs , if o is receiver
σo , otherwise

(10)

This last constraint ensures that on a path between a sub-
ject s and an object node o, no forwarding nodes with a
lower security level compared to the security level of the
originating node of the flow are visited. We then use the spec-
ified constraints (7b)-(7i) as the basis for our heuristic-based
maximization algorithm discussed in the next section.

B. Policy Compliant Flow Maximization Algorithm

The linear programming model introduced in Section IV-A
is a binary integer programming model, a special case of inte-
ger linear programming (ILP) since all variables are binary.
Integer linear programming models are NP-hard problems in
general, and the special case of binary integer programming
is one of Karp’s 21 NP-complete problems [23]. Although
solvers such as Gurobi [24] are efficient in computing a solu-
tion for such problems, binary integer programming models
can be impractical to solve for certain inputs.

To address this issue, we also formulate a heuristic
algorithm to compute a security compliant path between
subjects and objects based on a modification of Dijkstra’s
shortest path algorithm. In Algorithm 1, we extend Dijkstra’s

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

ACHLEITNER et al.: MLSNET: POLICY COMPLYING MULTILEVEL SECURITY FRAMEWORK FOR SOFTWARE DEFINED NETWORKING 735

algorithm by enforcing the access control constraints, flow
control constraints, and the residual link capacities (similar
to the constraints presented in (7). Specifically, we formulate
the access control constraint in line 7 based on the intro-
duced functions lev() as defined in (8) and cat() as defined
in (9). To compute a secure path between s and o we define
the constraints in line 12 to only consider an adjacent node
j of a link if the security level of node j is greater or equal
the security level of the originating node of flow f and the
link connecting node i and j has enough residual capacity
to accommodate flow f. In effect, the introduced model and
algorithm will compute paths that accommodate the maxi-
mum number of flows f ∈ F between a subject node s
and an object node o, with consideration for security and link
capacity. Moreover, a natural result of this strategy is that the
algorithm will tend to find similar paths for similar level flows,
thus further keeping flows isolated from dissimilar-labeled
switches.

C. Policy Conflict Minimization Model

Finding a path fulfilling all security conditions might
not always be possible considering the nature of real-world
networks. In contrast to the previous model, here we assume
that all flows fulfilling the access control and link capacity
constraints must be accommodated in the network, which may
lead to policy conflicts. Policy conflicts are conditions where a
flow is visiting a node on a path that has a lower security level
than the transferred information (i.e., than the sender node),
and we quantify a policy conflict as the numerical difference
between those security levels. In this scenario, the network
administrator is assuming the risk of using insecure paths in
order to achieve 100% coverage of flows. Thus, while the
network is still subject to traffic analysis attacks even with
encrypted traffic, we suggest here using encryption as a mini-
mal security measure over the data traversing the unsafe links,
if not already using encryption.

Considering the lattice in Section III-B, we assume that
nodes classified as Confidential (2) have a higher risk of being
compromised than nodes classified as Secret (3). The goal
here is to minimize policy conflicts; therefore, if information
classified as Top Secret (4) is transferred on a path with pol-
icy conflicts, it is preferable to select nodes with the smallest
numerical difference (i.e., Secret (3) nodes are preferred over
Confidential (2) nodes).

Resolving policy conflicts requires additional security mea-
sures (e.g., declassification). The larger a policy conflict (i.e.,
higher numerical difference in security levels), the more an
additional security measure will cost, in terms of transmission
time or computation overhead. By minimizing the numer-
ical distance of policy conflicts, we aim to minimize the
cost required to apply additional security measures to meet
a defined security policy.

To achieve this, we compute a network configuration in a
two-step process. We first select a subset of the flows Fl ⊆ F
that fulfill the access control constraints, and second, compute

Fig. 3. An example network where path selection is done selectively based
on the security levels of nodes. Here, multiple potential paths exists, where
the best one is chosen for the flow based on the imposed policy conflict value.

paths between subjects and objects with the objective to min-
imize security policy conflicts. We define the access control
constraints as follows:

Fl = {f ∈ F : lev(σo , σs) = 1 and cat(λco , λ
c
s) = 1,

∀λco ∈ Co , ∀λcs ∈ Cs , o ∈ O , s ∈ S} (11)

Next, for the set of legitimate flows Fl , we also define an
objective function, conf, to find a network configuration that
accommodates all flows in Fl while minimizing the policy
conflicts on a path of a flow f ∈ Fl between a subject s and an
object o. The function returns the difference between the secu-
rity level of the flow’s originating node, given by orig(σo , σs),
and the security level σj of a node j on the path between s
and o if σj < orig(σo , σs). More formally:

conf
(
σo , σs , σj

)

=

{
orig(σo , σs)− σj , if σj < orig(σo , σs)
0, otherwise

(12)

We aim to minimize the policy conflicts caused by visited
nodes with lower security levels. Assuming a flow originates
from a node o, we define the severity of the policy conflict by
the numerical distance from level σo of node o to a node j with
level σj , if σj < σo . Then, choosing a node j over a node h,
where (σo −σj) < (σo −σh), is preferable. And for selecting
a secure path, we want to give preference to these nodes with a
smaller difference in security level with the originating node,
even if such a path is significantly longer than the shortest
path. To model this, we introduce a factor γ and define our
objective function as follows:

min
∑

f ∈Fl

∑

i ,j∈E
x fij · γconf (σo(f),σs(f),σj) (13)

In (13), x fij denotes the decision variable if link (i, j) is selected
as part of the path between s and o for a flow f. In the objective
function as shown in (13), σo(f) denotes the security level of
object node o of a flow f, σs(f) denotes the security level
of subject node s of a flow f. The security level of a node
j on the path between s and o is defined by σj . The factor
γ controls the length of a path that should be chosen as a
trade-off for visiting nodes with a smaller distance in terms
of security levels. We visualize this in an example shown in
Figure 3.

Considering this small network, two possible paths exist
between s and o. The numbers in the nodes indicate their
security level. If we select a factor γ = 4, the top path results
in a value of 44−2 = 16, while the bottom path has a smaller

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

736 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

policy conflict value of 3 · 44−3 = 12, and thus would be
selected. In contrast, if we select a smaller value for γ (e.g.,
γ = 2) then considering the top path, a transition from the
node with security level 4 to the node with security level 2 has
to be made, resulting in a policy conflict value of 24−2 = 4.
Computing the policy conflict value for the bottom path would
result in 3 · 24−3 = 6, since we have to visit three nodes
with a difference in the security level of 1. Based on this,
the top path would be selected, although from a security per-
spective, the bottom path may be more preferable since nodes
with a smaller security level difference are visited. This exam-
ple shows that the factor γ controls the selection of longer
paths visiting nodes with a smaller security level difference.
To always select paths with the smallest security level differ-
ence, γ can be set to the network diameter +1, in terms of
hop count, which we prove as follows.

Lemma 1: To select a longer path with lower policy con-
flicts, we must set γ to the maximum path length +1.

Proof: Assuming a flow originating from an object o, we
have to show that for a path of flow f defined by a set of
links (i, j) ∈ E indicated by the decision variable x fij , the

value of policy conflicts specified as
∑

i ,j∈E x fij · γσo−σj and
assuming that ∀j , σj < σo , is larger for a path with higher
policy conflicts than a potentially longer path with a lower
conflict value if γ is chosen appropriately. Given a candidate
node for the path of flow f with a policy conflict of a, we
want to choose γ so that a potentially longer path y over a
set of nodes with a lower policy conflict of b is selected, i.e.,
γa > y · γb . Since a > b, we can express b as a − q, where
q is the numerical difference of the security levels of a and b,
i.e., q = a − b. By replacing b with a − q, we can write the
inequality above as γa · γq > y · γa . Assuming the smallest
absolute difference of two unequal security classes, i.e., q = 1,
the inequality above can be written as γ > y . Therefore, we
can say that in order to select a path that is y hops longer, over
a set of nodes with a lower policy conflict value, we have to
select a value for γ that is at least y + 1. This also holds for
larger security differences, since γq < γq+1 holds true for
positive values of q.

D. Policy Conflict Minimization Problem

To minimize the policy conflicts on a path, we formulate the
optimization problem as an integer linear programming (ILP)
model. We refer to this problem as the security policy conflict
minimization problem, as shown in (14).

To trigger a flow at a node s, (14b) adds 1 to the decision
variable x fis . In our formulation to compute a path from s to o,
the flow is consumed at node o as stated in constraint (14c).
In (14d), we state the flow preservation constraint to ensure
that the sum of incoming flows to a node equals the sum of
outgoing flows. Constraint (14e) ensures that the given capac-
ity κij of a link (i, j) ∈ E is not exceeded by forwarding
flows f ∈ Fl with a size of d f per flow. In (14e), we assume
that the flow size d f is chosen to include traffic between s
and o in both directions since we assume symmetric routes.
Since new flow demands typically arrive at different times in
a network, we can replace the above link capacity κij with

the residual capacity κ̃ij which states the remaining capacity
on a link (i, j) ∈ E considering the existing flows traversing
link (i, j). Accordingly, with the specified constraints (14b)-
(14e), the introduced model will compute a path for every
flow f ∈ Fl between a subject node s(f) and an object node
o(f) with the objective function as defined in (14a).

min
∑

f ∈Fl

∑

i ,j∈E
x
f
ij · γconf (σo(f),σs(f),σj) (14a)

s.t.
∑

i :(i ,s)∈E
x fis + 1 =

∑

j :(s,j)∈E
x fsj , ∀f ∈ Fl (14b)

∑

j :(o,j)∈E
x
f
oj − 1 = 0, ∀f ∈ Fl (14c)

∑

i ,j∈E
x
f
ij =

∑

j ,k∈E
x
f
jk , ∀f ∈ Fl (14d)

∑

f ∈Fl

x fij · d f ≤ κij , ∀(i , j) ∈ E

x fij ∈ {0, 1}, ∀(i , j) ∈ E , f ∈ Fl . (14e)

E. Policy Conflict Minimization Algorithm

As discussed in Section IV-B, ILP models with binary inte-
ger variables, such as (14), are typically NP-hard and can be
impractical to solve for certain input sequences. To address
this, we also propose a heuristic algorithm to approximate an
optimal solution and replace the objective to find the shortest
path with the objective to compute a path with the smallest
sum of policy conflict values (Algorithm 2, lines 12-13).

Since Algorithms 1 and 2 are based on Dijkstra’s short-
est path algorithm, we can express their time complexity as
O(|F | · (|E |+ |V |log |V |)) for a number of |F | flows.

F. Resolving Policy Conflicts

As we’ve shown in the previous section, paths with suffi-
cient security levels and capacity may not always exist for two
nodes permitted to communicate. In such a case, additional
security mechanisms must be applied on the flow in order to be
policy compliant. These mechanisms typically involve a cost
to implement (e.g., increased transmission delay, processing
time, or capacity), which the latter model aims to minimize.

An important mechanism for resolving policy conflicts is
declassification, which is the process of lowering the security
level of the information. Sabelfeld and Sands [25] discuss a
general framework for declassification by defining the dimen-
sions of information release, including: what information is
released, who releases the information, where information is
released, and when it is released. By analyzing these dimen-
sions, a network operator is then able to evaluate the risks
and benefits of declassification to resolve certain security pol-
icy conflicts. In our framework, declassification can involve
lowering a flow’s security level so it can traverse a path with
lower classified nodes than the originating node. Methods to
achieve this include traffic camouflaging techniques [26] or
VPNs to defend against traffic analysis.

Resolving policy conflicts can also be achieved by the NSO
relabeling certain nodes in the network (e.g., increasing the

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

ACHLEITNER et al.: MLSNET: POLICY COMPLYING MULTILEVEL SECURITY FRAMEWORK FOR SOFTWARE DEFINED NETWORKING 737

Algorithm 2 MinConflictPath(G,s,o,d f)
1: V = nodes in G
2: for all v ∈ V do
3: conf [v] = infinity, prev[v] = null
4: end for
5: conf [s] = 0, N = nodes in G
6: if lev(σo , σs) = 1 and cat(λco , λ

c
s) = 1, ∀λco ∈ Co , λ

c
s ∈

Cs then
7: while N not empty do
8: i = node in N with smallest conf []
9: remove i from N

10: for all adjacent node j of i do
11: if d f ≤ κ̃ij then
12: confnew = conf [j] + γconf (σo ,σs ,σj)

13: if confnew ≤ conf [j] then
14: conf [j] = confnew
15: prev[j] = i
16: end if
17: end if
18: end for
19: end while
20: end if
21: return prev

security level of forwarding nodes) after upgrading the security
measures on a switch and re-evaluating its security level. Our
proposed optimization model to minimize policy conflicts will
point out exactly which components of the network topology
are causing conflicts; therefore, relabeling of nodes can be a
permanent solution to policy conflicts which may reoccur.

V. SECURE FLOW RULE CONSTRUCTION

To realize a policy compliant network configuration, in the
following we define a set of principles for the construction of
secure flow rules which preserve confidentiality.

A. Isolating Flows

Attacks that exploit the composition of flow rules are
effective because the matching criteria often only identifies
packets by a limited set of header fields, as discussed by
Achleitner et al. [14]. If the flow rules are only matching pack-
ets against header fields of a certain network layer (e.g., IP
addresses), then the information in other layers will be seen
as “wild cards” and thus will be ignored. This problem moti-
vates the construction of SDN flow rules with consideration
of information spanning all network layers.

The OpenFlow protocol [21] defines a set of matching fields
supporting different network layers. Multiple endpoints may
share lower layer fields such as physical ingress port; thus,
to differentiate them and identify their security levels, we
must include fields from higher network layers (e.g., IP or
Ethernet addresses). But security leaks caused by the exchange
of certain packet types in SDN-enabled networks [9], [11],
[14] motivate the use of categories in a security lattice to
offer finer granularity of information exchange in SDN flow
rules. Therefore, we derive these categories from additional

Algorithm 3 GenerateFlowRule(R, A, P, next)
1: rule.append(”match:”)
2: for all r ∈ R do
3: if r ∈ P then
4: rule.append(r = P(r))
5: end if
6: end for
7: rule.append(”action:”)
8: if next ! = drop then
9: for all a ∈ A do

10: rule.append(a)
11: end for
12: rule.append(”next”)
13: else
14: rule.append(”drop”)
15: end if
16: return rule

packet header fields which may span all layers of the network
stack (e.g., ARP, IP, TCP, UDP and ICMP), and use them in
enforcing the security policy.

Additionally, with this general framework, a security cate-
gory can be defined with even finer granularity. For example,
by specifying field subtypes: ICMP type 8 code 0, to allow
ping packets. Thus, the various header fields allow greater
flexibility when defining the security policy, and unlike tra-
ditional networks, the policy can be efficiently managed by
sending flow_mod messages to the forwarding nodes to update
their routing tables.

B. Constructing Secure Flow Rules

In SDN-enabled networks, we must consider the assigned
security labels during the construction of flow rules at the
controller. As described previously, security leaks can arise
with imprecise matching criteria. Considering this, we must
construct precise flow rules which ensure that only packets
fulfilling the defined security level and category constraints
can be transmitted. We extend the general method for gener-
ating rules to accomplish this. More formally, given a security
label of a flow, for secure rule construction, we represent the
set of supported fields in the security label for network layer
Ni ∈ N , where N is the set of all network layers, as RNi .
Then, the superset of fields to be matched against some packet
P during secure rule construction can be realized by taking the
union of sets, which we denote as R:

R =
⋃

Ni∈N :∀Ni≤NP

RNi
(15)

This formulation ensures that—after satisfying access control
constraints—a flow is isolated and handled correctly according
to its security categories (i.e., packet fields).

Besides matching criteria, OpenFlow also defines action
sets, specifying what actions to apply on matched packets.
These include a required action part (e.g., forwarding or drop-
ping) and optional actions (e.g., rewriting packet header fields).
We denote the required action part as next, which specifies

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

738 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

TABLE III
FLOW MAXIMIZATION BENCHMARK

TABLE IV
POLICY CONFLICT MINIMIZATION BENCHMARK

to either send a packet to a specific output port or to drop
it. Similarly, we specify the set of optional actions, such as
rewriting addresses, as the action set A.

Based on sets R and A for a packet P, we formulate
Algorithm 3. We begin rule construction by defining the
matching part of a flow rule in line 1. We continue to iter-
ate through the set of matching fields in R, as defined in
Equation (15), and check in line 3 if a specified field r can
be applied to a value in packet P. If this evaluates to true, we
add the matching field r and its associated value P(r) to the
flow rule in line 4. In line 7, we add the action part of a flow
rule and check in line 8 if the action is to drop the packet. In
case we specify a rule to drop packets with specific protocol
types, we must ensure the priority of that rule is higher than
other rules for the flow that allow forwarding for other pro-
tocol types (i.e., allowing most IP traffic, but disallowing any
UDP over IP).

To resolve flow rule conflicts between rule actions, we refer
to existing frameworks such as Porras et al. [12]. However, we
note that MLSNet inherently generates a conflict-free set of
flow rules (per the guarantees offered by MLS), and our con-
tributions are not focused on methods for conflict resolution.
Nonetheless, if the packet is forwarded, then the set of action
fields and the output port are added to the rule, as shown in
lines 10 and 12. With this construction, we can properly gen-
erate a secure flow rule configuration and isolate the flows to
ensure that confidentiality of information flow is preserved in
the network.

VI. EVALUATION

With an MLS policy, adversarial capabilities (in terms of
probing, eavesdropping, and lateral movement) are by def-
inition restricted to only that allowed by policy. Here, we

still want to be able to route all legitimate flows. In the fol-
lowing, we demonstrate that (in comparison to not enforcing
a security policy) a network administrator can still provide
strong coverage of network flows. The goal of our approach is
to achieve this, while also reducing the security cost associated
with guaranteeing all flows be routed.

We perform a simulation-based analysis for both fat-tree
and extended-star topologies, which are representative of dat-
acenter and enterprise networks.3 In Table III, we report on
the performance of our framework to find policy compliant
paths for flows in various topologies and with lattices of dif-
ferent sizes. In Table IV, we report MLSNet’s performance
when minimizing the policy conflicts, where accommodating
the remaining flows may require routing along paths con-
taining nodes with a lower security-level than required. We
further show MLSNet’s ability to mitigate common attacks
(see Section II-B), such as those executed by the recently
proposed reconnaissance tool SDNMap [14], [27].

A. Flow Maximization Benchmark

To evaluate the ability of our framework to maximize the
number of policy compliant flows and minimize policy con-
flicts on paths, we test the introduced linear programming (LP)
models and heuristic algorithms (HA) on different network
topologies. We first consider a realistic autonomous system
(AS) network, which is an extended-star topology. Then, to
model common data-center and cloud topologies, we con-
sider different k-ary fat-tree networks [28], where k is the
port density of each switch in the network (e.g., 8, 12, and

3Note that simply moving sources and sinks to achieve better coverage of
flows requires manual relocation of devices, which is impractical for large
networks. With MLSNet, we have flexibility in that a network administrator
can achieve the same effect through logical security labels and flow rules; if
the topology or node levels change, no manual relocation is needed as the
changes can be reflected transparently through new flow rules.

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

ACHLEITNER et al.: MLSNET: POLICY COMPLYING MULTILEVEL SECURITY FRAMEWORK FOR SOFTWARE DEFINED NETWORKING 739

16 ports). We consider lattices of 2-4 security levels which
are evenly distributed and randomly assigned to the nodes in
a network. To generate flows, we randomly pick source and
destination node pairs which fulfill the access control con-
straint and compute paths with our linear program models and
heuristic algorithms. Further, we consider networks with dif-
ferent link capacities to simulate congestion. Our results for
flow maximization and policy conflict minimization (for the
remaining flows) are averaged over several runs and shown in
Tables III and IV.

We explore the number of flows able to be routed in the
AS3257 Rocketfuel [29] topology (161 nodes, 656 links), as
well as 8-ary (208 nodes, 384 links), 12-ary (612 nodes, 1296
links), and 16-ary (1344 nodes, 3072 links) fat-tree networks.
For flow maximization, shown in Table III, our framework
shows that a majority of flows was always routed securely.
For the ASN topology, the number of flows routed by the LP
reached a peak of 85% coverage, while the heuristic algorithm
reached a peak of 79.6% coverage (i.e., 94% of the optimal).
For the remaining three topologies, the heuristic was slightly
less performant. We also observed, for any of the topolo-
gies, that the number of flows routed securely decreases as
the number of security levels increases (from left to right in
any row). However, even at 4 security levels (common in mil-
itary networks), a majority of flows was routed securely in the
noncongested network. Certainly, congestion dynamics, node
labels, and different traffic types vary with different networks
and will affect the number of flows able to be routed, although
this situation can be remedied with conflict minimization.
Nonetheless, the results demonstrate that the framework is
feasible in several network topologies of different sizes.

In the case of congested networks, we observed for the ASN
topology that the heuristic is able to achieve 97.2% of the
optimal coverage, with quantitatively similar results for the
fat-tree topologies. We note that despite the low flow coverage
(∼50%) because new flows could not be supported by the
links at some specific time, rules may still have a scheduled
install at a delayed time (i.e., when the links can support the
new flows), so permitted flows do not necessarily have to be
discarded.

The key insight here is that the heuristics are effective,
achieving on average 89% of the optimal coverage across all
experiments. Moreover, in real data-center or cloud networks,
edge switches may carry similar traffic [30] and thus have
similar security levels and only be limited by the available
capacity (i.e., not the security levels). These results show that
even in the worst case of random level assignment—where
for example higher-level nodes may be surrounded by lower-
level ones and thus cannot communicate without a policy
conflict—paths (even if longer) can be found for a majority
of flows.

B. Flow Minimization Benchmark

We then evaluate our model’s ability to route the remain-
ing flows (in the noncongested case) to guarantee availability.
Table IV shows that all flows can be routed with minimal

policy conflict along the allowed path. We define policy con-
flicts as the scenario where a node is visited on a flow path
that has a lower security level than the transferred information
(i.e., the originating node), and quantify it as the difference of
the security levels. Minimizing the conflicts also minimizes
the additional security measures needed to protect the flows
traversing unsafe links (e.g., via stronger encryption).

For the AS network, paths with no conflict can be found
for the majority of flows, while most of the remaining flows
only impose a conflict of one security level difference. Less
than 5% of flows must be routed through even less secure
paths in order to guarantee availability. The case is similar
for the fat-tree networks; the majority of flow paths have no
conflict, approximately 20-30% of flows can be routed with
minimal policy conflict of one level, while feasible paths for
the remaining flows can also be found, fitting as many flows
along two-level difference paths, and so forth.

The key insight here is that most of the remaining flows
were able to be routed with a conflict of one security level
difference, and the heuristic algorithms are effective, approx-
imating the optimal solution by 87% on average across all
experiments. This leaves many questions for future work,
where it may be possible to identify whether or not this single-
level conflict occurs at hot (or commonly used) nodes, and
whether that information can be used to relabel nodes (and
perhaps repurpose them) or physically reconfigure the network
to reduce possible conflicts to a minimum, for any set of flows.

C. Running Time

We observed that the execution time of computing secure
paths is strongly correlated with the number of switches in the
network, scaling with a power law. As shown in Fig. 4, we
observed that the LP solver Gurobi [24] generally requires
>3 minutes to compute secure paths and >10 minutes to
compute minimal conflict paths when there are 500 flows in
the network, which is impractical in real networks. On the
other hand, the greedy heuristic algorithms (in a Python-based
implementation) require on average 8.7 seconds and 8.1 sec-
onds, respectively, even when k = 10 (with 250 hosts and 125
switches), while smaller networks (e.g., k = 8) only require
on average 2.7 seconds and 1.5 seconds to compute paths and
thus scales more effectively.

However, large datacenters may have thousands of
nodes [28] and/or flows, and even mid-sized datacenters may
contain several hundred nodes. In these scenarios, solving the
optimization with Gurobi can take on the order of several min-
utes or hours, while the greedy algorithms still may require
several minutes. Therefore, the greedy algorithms can compute
paths for individual flows in smaller networks. However, in
larger networks, the speed of MLSNet can be further improved
by buffering precomputed paths, implementation on hardware,
or clustering flows before computing paths.4

4Note that by clustering flows and generating rules by, e.g., subnets,
MLSNet can create secure paths between subnets (i.e., for flows that enter or
leave similar gateways), instead of generating rules for individual flows. This
may be useful when flow tables have limited size (e.g., in modern hardware
switches [31]). We leave development of such a system to future work.

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

740 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 4. Execution time for flow maximization (top) and conflict minimization
(bottom) benchmarks. The execution time for the ILP solver Gurobi has a
power law relationship with the number of flows, while the heuristic (greedy)
algorithms scale more efficiently.

Fig. 5. Experimental network setup with assigned security labels. Using the
SDNMap scanner, the (Public) adversary was only able to identify the other
Public node in the network, where MLSNet prevented any higher-level traffic
from ever reaching them, thus limiting their ability to reconstruct flow rules.

D. Defending Against Attacks

We then implement the network scenario shown in Figure 5
with the SDN simulator Mininet [32], assigning security labels
to the nodes and configuring the network to use our frame-
work MLSNet. Here, we use SDNMap [27] to demonstrate that
our framework can mitigate the attack techniques discussed in
Section II-B. SDNMap operates by iteratively probing network
nodes with crafted packets and eavesdropping on reply mes-
sages from all endpoints in the network to reconstruct flow

rules (by identifying active hosts and supported protocols).
The gathered information is then used to exploit flow rules
and bypass security measures such as access-control lists.

Here, we use the security lattice from Figure 2 to config-
ure the network. Running the MLSNet system at the SDN
controller, we assign the security classification of Public -
[ARP,IP,TCP] to the adversary node at 10.0.0.1 (who is using
SDNMap). We then let the adversary begin sending probes
into the network. The switch default action for an unknown
flow is to send it to the controller for inspection and flow rule
generation. On receipt of a new flow, the controller will ver-
ify the access control constraint of the communicating parties
and the flow control constraint of nodes along a potential flow
path. A secure flow rule that obeys the security policy will
then be generated.

Mitigating Lateral Movement: MLSNet ensures that a node
with this classification cannot receive packets from nodes
with a higher classification (e.g., from the node at 10.0.0.4
labeled Secret - [ARP,ICMP,IP,TCP,UDP]). Therefore, all of
the probes destined from the attacker toward a node of higher
level should be blocked at the controller, and any induced
responses (e.g., from ARP) should also be blocked from
flowing back toward the attacker, with no flow rules being
generated. We observed exactly this behavior after scanning
the network’s IP space. As shown in the SDNMap output in
the Appendix, the attacker sent out a series of probes enu-
merating the packet fields (e.g., IP addresses and protocols)
to identify active hosts and supported protocols. However, all
of the probes sent toward nodes of higher classification were
blocked by the controller for not satisfying the access con-
trol constraint. Here, SDNMap reported (highlighted in the
boxed text) that only the node with IP address 10.0.0.5 replied
(the other public host). Although present in the network, the
remaining hosts, 10.0.0.4 and 10.0.0.6, were not discovered.

Further, any induced responses over different protocols such
as UDP or ICMP were blocked at the controller for not satisfy-
ing the flow control constraint as well. Therefore, the attacker
discovered that there was a host at 10.0.0.5 that was reach-
able via TCP (highlighted in boxed text), but none of the other
hosts nor protocols supported by them, as the adversary was
limited to scanning public nodes over ARP, IP, or TCP. As a
result, the adversary was able to reconstruct flow rules for the
host at 10.0.0.5. Indeed, future work may investigate optimal
labeling and relabeling strategies that can respond to the cur-
rent network traffic profile in order to dynamically reinforce
least-privilege across label categories and further reduce the
threat surface.

Mitigating Packet Spoofing: For the same reasons the adver-
sary could not receive response messages to concretely identify
nodes of different security labels, MLSNet mitigates the threat
of packet spoofing with respect to data exfiltration. Adversaries
impersonating nodes of higher security labels and attempting
to exfiltrate data to lower-security (i.e., Public, or untrusted
nodes) must inevitably traverse a lower-security switch or
be destined for a lower-security endpoint. Thus, even if an
adversary found a way to identify those active nodes, unless
the adversary compromises every lower-security node along
a flow path, at least one of them will block the flow per

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

ACHLEITNER et al.: MLSNET: POLICY COMPLYING MULTILEVEL SECURITY FRAMEWORK FOR SOFTWARE DEFINED NETWORKING 741

the MLSNet policy, effectively preventing the exfiltration.
Moreover, MLSNet simply rejects the deployment of a flow
rule for an unrecognized (i.e., spoofed) source node.

Mitigating Eavesdropping: MLSNet also prevents eaves-
dropping on communication between nodes of higher-
classification by careful construction of flow rules. Since the
controller rejects flow rules that direct higher-level traffic
toward Public nodes from being generated, the attacker was
unable to eavesdrop any traffic passing between the Secret and
Confidential nodes at 10.0.0.4 and 10.0.0.6, including broad-
cast traffic from either node. As a result, MLSNet was able to
minimize the ability of the attacker to reconstruct flow rules,
which may have been the first phase of a potentially much
larger attack.

VII. RELATED WORK

A. Confidentiality in Networks

Historically, networks have enforced security policies (i.e.,
information flow) through firewall and routing configura-
tion. However, these mechanisms are often very coarse
and prone to ambiguity, errors, and require coordina-
tion across many devices [3], [33], [34]. Indeed, fail-
ures due to errors have enabled a variety of attacks to
be launched against real-world networks, including device
impersonation, man-in-the-middle, performance degradation
and denial-of-service [35], [36], [37], [38], among others.
Typically these attacks manifest from a small set of techniques:
packet spoofing, lateral movement, and eavesdropping, which
have been well-known problems since the 90s [39] and have
become increasingly important as more information is being
put online [40]. In fact, recent work has already demonstrated
the ability of an adversary to freely probe within the network
to recover sensitive information [9], [10], [11], [12], [13],
including active network hosts and even switch flow table rules
in software-defined networks [14].

Over time, there have been many defense methods proposed
against these techniques, including: source validation to
prevent or mitigate packet spoofing [18], [19], firewalling to
enforce access policies at network boundaries [3], encryption
to prevent unauthorized parties from intelligibly interpreting
sniffed data, among others. While each useful in a variety
of scenarios, they target specific attack techniques and only
partially address the problem of confidentiality—ensuring that
only authorized entities have access to some data. Further,
while we can accomplish many of the same security goals with
a rule-based approach (i.e., per-node, on-demand whitelist-
ing or blacklisting) the inherent problem extends beyond the
endpoints to entire route throughout the network (i.e., the
switches). Then, network administrators must configure and
manage what will quickly become a complex and conflicting
set of rules, as demonstrated already to be a problem with fire-
walls [3]. This motivates our work for developing a solution
that exploits multilevel security to provide provable guarantees
about who in the network may access what data.

B. Multilevel Security in Networks

Multilevel security allows a network administrator to spec-
ify an hierarchical access control policy of a set of subjects
on a set of objects. With labels (i.e., a level and categories)
given to each subject and object, the policy is enforced through
access and flow-control constraints. In fact, multilevel security
already plays a critical role in controlling access to information
for both military personnel and employees of commercial
businesses with different levels of clearance [5]. Common
use cases include controlling file access in an operating
system [6], object access in generic storage systems [41], table
access in a relational database [7], as well as a primitive for
securing information flow between variables in programming
languages [42].

The notion of multilevel security can also be applied to
computer networks, where the MLS policy dictates which
nodes are allowed to communicate, what type of traffic they
may exchange, and what paths the flows may take in the
network. This property precisely address the concerns about
confidentiality. We draw inspiration for our framework from
the seminal work by Lu and Sundareshan [8] and apply it
to SDN-enabled networks. In their work, they introduce a
model for multilevel security (MLS) in computer networks
by defining a Trusted Network Base (TNB) that is similar to a
Trusted Computing Base (TCB) in single-computer systems.
The proposed model defines a set of entities (e.g., terminals
or printers) and users of the network and relies on the imple-
mentation of a security policy by the network endpoints. This
approach becomes impractical when having to deploy it on
every node in the network, and we exploit the centralization
of software-defined networking (SDN) [43] to provide this
service transparently to the entire network.

C. Deploying and Verifying Network Policies

There is also a related body of work in leveraging SDNs
to deploy network policies that offer other desirable proper-
ties, including reachability, loop-free forwarding, and isolation
guarantees, among others. Kazemian et al. [44] introduced
NetPlumber, a verification tool that builds on header-space
analysis [45] to incrementally verify updates to network state.
Here, header-space analysis provides a formal model of packet
processing in the network (i.e., how packets are forwarded,
rewritten, encapsulated, etc.), allowing the verification engine
to check the current flow-rule configuration against target
invariants. This work differs from MLSNet in that it focuses
on validating a given set of invariants in response to events
that trigger network updates (i.e., new flow rule being installed
by the controller). MLSNet focuses on constructing a set of
rules that inherently adhere to the security policy (i.e., satisfy
the security invariants), and furthermore, focuses specifically
on access-control invariants. Although, the invariants (secu-
rity constraints) and flow rules of MLSNet can be plugged
into NetPlumber to verify network updates against both the
MLS policies and other types of network policies.

Other works introduce similar graph-based models of the
network and forwarding functionality to identify conflicting

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

742 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

actions among network policies generated by SDN appli-
cations [46], [47], [48] (e.g., different flow rules enforcing
conflicting actions against a host). They introduce abstrac-
tions for specifying policies over network endpoints, providing
a natural way to merge the policies into a conflict-free set.
As above, MLSNet differs in that it uses the established
guarantees of multilevel security to construct an inherently
conflict-free set of flow-rules for the switches at runtime.
Moreover, MLSNet extends the security invariants to switches
in addition to network endpoints. Although, the security invari-
ants of MLSNet can again be verified by these systems
alongside other types of network policies.

D. Trustworthiness of Nodes in Networked Environments

An important requirement to configure a network based
on a defined multilevel security policy is the determination
of trusted nodes in a network, and formulating a security
lattice based on different levels of trust. Recently published
papers [49], [50], [51] point out methods to determine trust-
worthiness of nodes in networked environments.

Jiang et al. [49] discuss the data collection process with
unmanned aerial vehicles (UAV) in a large-scale Internet of
Things deployment. A major problem in such systems are
compromised nodes which results in a declined network life-
time and delivery of unreliable and corrupted data. To address
this problem, the authors propose a mechanism to evaluate
the quality and trustworthiness of the collected data by UAVs
from a wireless sensor network (WSN).

Security issues of data collection in Smart Internet of Things
(SIoTs) networks are further discussed by Li et al. [50]. In
their paper, vehicles are considered as a data collection mech-
anism in SIoTs to deliver information from sensors to a data
center (DC). In the discussed scenario, malicious vehicles can
lead to data loss which has a negative impact on the secu-
rity of the data collection process. The aim of their proposed
work is to improve the security of the data collection process
by selecting trusted vehicles for the data collection process.

Similarly, Ren et al. [51] discuss the security challenges of
efficient data collection in a Peer-to-Peer (P2P) network. In
such scenarios, collecting data from nodes faces the challenge
of unknown trustworthiness of a data collector before a cer-
tain cost is paid to collect and verify the data. The proposed
solution considers a machine learning system that predicts the
trust value of a data reporter based on collected historical
information.

VIII. CONCLUSION

In this article, we propose MLSNet, a framework which
can efficiently enforce an MLS policy by generating secure
flow-rule configurations. Built upon access control and flow
control constraints, we develop models and heuristic algo-
rithms to compute policy compliant configurations according
to two goals: satisfying a strict flow policy and a soft policy.
For the deployment of a policy compliant network configu-
ration, we define principles for secure flow rule construction.
We then demonstrate that our framework can deploy network
configurations able to withstand recently identified attacks on

SDNs. We hope this framework will serve as a base for fur-
ther investigation into defenses which protect the network with
a broader scope than specific attacks and efficient mecha-
nisms for resolving policy conflicts in real-time (perhaps, using
advances such as P4 [52] to implement rich SDN features on
the switches).

APPENDIX

SDNMap output:

1: SDNMap/python main.py 10.0.0.0/29 TCP

h1-eth0 []

2: Sending ARP request to 10.0.0.0

3: · · ·
4: Sending ARP request to 10.0.0.7

5: 10.0.0.1 / 00:00:00:00:00:01 received

response from the following hosts:

6 : 10.0.0.5 / 00:00:00:00:00:05

7: -------------------

8: Use 10.0.0.5 / 00:00:00:00:00:05 for

probing

9: -- Determine enforced protocols --

10: ----- Check with TCP -----

11: Check if host at 10.0.0.5 -

00:00:00:00:00:05 is reachable with src

addresses 10.0.0.1 - 00:00:00:00:00:01 with

TCP on src port 64836 and dst port 36748

12 : Host is reachable via TCP!

13: --------------------

14: ----- Check with ICMP -----

15: Check if host at 10.0.0.5 -

00:00:00:00:00:05 is reachable with src

addresses 10.0.0.1 - 00:00:00:00:00:01 with

ICMP

16: --------------------

17: ----- Check with UDP -----

18: Check if host at 10.0.0.5 -

00:00:00:00:00:05 is reachable with src

addresses 10.0.0.1 - 00:00:00:00:00:01 with

UDP on src port 64836 and dst port 36748

19: --------------------

20 : Accepted protocols:

21: TCP

22: -- Determine which L2/L3 fields are

enforced using TCP --

23: ----- Check if layer 3 routing is used

24: Check if host at 10.0.0.5 -

00:00:00:00:00:05 is reachable with src

addresses 10.0.0.205 - 00:00:00:00:00:01 from

port 64836 to port 36748

25: Spoof ARP cache at 10.0.0.5 from

10.0.0.205 to 00:00:00:00:00:01

26: Check if host at 10.0.0.5 -

00:00:00:00:00:05 is reachable from 10.0.0.205

- 00:00:00:00:00:01 from port 64836 to port

36748

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

ACHLEITNER et al.: MLSNET: POLICY COMPLYING MULTILEVEL SECURITY FRAMEWORK FOR SOFTWARE DEFINED NETWORKING 743

27: --------------------

28: ----- Check if layer 2 routing is used

29: Check if host at 10.0.0.5 -

00:00:00:00:00:05 is reachable with src

addresses 10.0.0.1 - 00:00:00:25:12:b2 from

port 64836 to port 36748

30: Spoof ARP cache at 10.0.0.5 from 10.0.0.1

to 00:00:00:25:12:b2

31: Check if host at 10.0.0.5 -

00:00:00:00:00:05 is reachable from 10.0.0.1

- 00:00:00:00:00:01 from port 64836 to port

36748

32: Spoof ARP cache at 10.0.0.5 from 10.0.0.1

to 00:00:00:00:00:01

33: --------------------

34: · · ·
35 : ----- Reconstructed rules ------

36: match=type:tcp,dl_src:00:00:00:00:00:01,

dl_dst:00:00:00:00:00:05,

tp_src:64836,tp_dst:36748, nw_src:10.0.0.1,

nw_dst:10.0.0.5

actions=output:#OUT_PORT

37: match=type:tcp,dl_src:00:00:00:00:00:05,

dl_dst:00:00:00:00:00:01, tp_src:36748,

tp_dst:64836, nw_src:10.0.0.5,nw_dst:10.0.0.1

actions=output:#OUT_PORT

38: --------------------

ACKNOWLEDGMENT

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
Combat Capabilities Development Command Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cyber-
security,” J. Comput. Syst. Sci., vol. 80, no. 5, pp. 973–993, 2014.

[2] D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, no. 5, pp. 236–245, 1976.

[3] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“FIREMAN: A toolkit for firewall modeling and analysis,” in Proc. IEEE
Symp. Security Privacy (SP), Oakland, CA, USA, 2006, pp. 199–213.

[4] L. Spitzner, “Honeypots: Catching the insider threat,” in Proc. 19th
Annu. Comput. Security Appl. Conf. , Las Vegas, NV, USA, 2003,
pp. 170–179.

[5] O. S. Saydjari, “Multilevel security: Reprise,” IEEE Security Privacy,
vol. 2, no. 5, pp. 64–67, Sep./Oct. 2004.

[6] P. Loscocco, Security-Enhanced Linux, Linux 2.5 Kernel Summit,
San Jose, CA, USA, 2001.

[7] X. Qian and T. F. Lunt, “A semantic framework of the multilevel
secure relational model,” IEEE Trans. Knowl. Data Eng., vol. 9, no. 2,
pp. 292–301, Mar./Apr. 1997.

[8] W.-P. Lu and M. K. Sundareshan, “A model for multilevel secu-
rity in computer networks,” IEEE Trans. Softw. Eng., vol. 16, no. 6,
pp. 647–659, Jun. 1990.

[9] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibil-
ity in software-defined networks: New attacks and countermeasures,” in
Proc. 22nd Annu. Netw. Distrib. Syst. Security Symp. (NDSS), pp. 8–11,
2015.

[10] C. Yoon et al., “Flow wars: Systemizing the attack surface and defenses
in software-defined networks,” IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3514–3530, Dec. 2017.

[11] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks,” in Proc. Annu. Netw.
Distrib. Syst. Security Symp. (NDSS), pp. 8–11, 2015.

[12] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu, “A security enforcement kernel for OpenFlow networks,” in
Proc. 1st Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2012,
pp. 121–126.

[13] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: Building
robust firewalls for software-defined networks,” in Proc. 3rd Workshop
Hot Topics Softw. Defined Netw. (HotSDN), 2014, pp. 97–102.

[14] S. Achleitner, T. La Porta, T. Jaeger, and P. McDaniel, “Adversarial
network forensics in software defined networking,” in Proc. ACM Symp.
SDN Res., 2017, pp. 8–20.

[15] W. Dawoud, I. Takouna, and C. Meinel, “Infrastructure as a service
security: Challenges and solutions,” in Proc. 7th Int. Conf. Inf. Syst.
(INFOS), 2010, pp. 1–8.

[16] C. Tankard, “Advanced persistent threats and how to monitor and deter
them,” Netw. Security, vol. 2011, no. 8, pp. 16–19, 2011.

[17] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network:
Attacking an SDN with a compromised openflow switch,” in Proc.
Nordic Conf. Secure IT Syst., 2014, pp. 229–244.

[18] D. Senie and P. Ferguson, “Network ingress filtering: Defeating denial
of service attacks which employ IP source address spoofing,” IETF, RFC
2827, 1998.

[19] L. Savu, “Cloud computing: Deployment models, delivery models, risks
and research challenges,” in Proc. Int. Conf. Comput. Manag. (CAMAN),
Wuhan, China, 2011, pp. 1–4.

[20] S. Feghhi and D. J. Leith, “A Web traffic analysis attack using only
timing information,” IEEE Trans. Inf. Forensics Security, vol. 11,
pp. 1747–1759, 2016.

[21] OpenFlow Protocol. Accessed: Nov. 10, 2015. [Online]. Available:
https://www.opennetworking.org/sdn-resources/openflow

[22] D. E. Bell and L. J. LaPadula, “Secure computer system: Unified
exposition and Multics interpretation,” NTIS, Springfield, VA, USA,
Rep. ESD-TR-75-306, 1976.

[23] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations. Boston, MA, USA: Springer,
pp. 85–103, 1972.

[24] Gurobi. Accessed: Jun. 1, 2020. [Online]. Available: http://gurobi.com
[25] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-

ples,” J. Comput. Security, vol. 17, no. 5, pp. 517–548, 2009.
[26] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion sen-

sitive website fingerprinting defense,” in Proc. 13th Workshop Privacy
Electron. Soc., 2014, pp. 121–130.

[27] SDNmap Open Source Tool. Accessed: Jun. 1, 2020. [Online]. Available:
https://github.com/SDNMap

[28] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[29] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. Conf. Appl. Technol. Archit. Protocols Comput.
Commun., 2002, pp. 133–145.

[30] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteris-
tics of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., 2010, pp. 267–280.

[31] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,” in
Proc. Int. Conf. Passive Active Netw. Meas., 2012, pp. 85–95.

[32] Mininet—Realistic Virtual SDN Network Emulator. Accessed: Nov. 6,
2017. [Online]. Available: http://mininet.org/

[33] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving
policy misconfigurations in access-control systems,” ACM Trans. Inf.
Syst. Security, vol. 14, no. 1, p. 2, Jun. 2011. [Online]. Available:
https://doi.org/10.1145/1952982.1952984

[34] A. Wool, “A quantitative study of firewall configuration errors,”
Computer, vol. 37, no. 6, pp. 62–67, Jun. 2004.

[35] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2027–2051,
3rd Quart., 2016.

[36] O. Osanaiye, K.-K. R. Choo, and M. Dlodlo, “Distributed denial of
service (DDoS) resilience in cloud: Review and conceptual cloud DDoS
mitigation framework,” J. Netw. Comput. Appl., vol. 67, pp. 147–165,
May 2016.

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

744 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

[37] M. Yu, T. He, P. McDaniel, and Q. K. Burke, “Flow table security
in SDN: Adversarial reconnaissance and intelligent attacks,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Toronto, ON, Canada, 2020,
pp. 1519–1528.

[38] Q. Burke, P. McDaniel, T. L. Porta, M. Yu, and T. He, “Misreporting
attacks in software-defined networking,” in Proc. 16th EAI Int.
Conf. Security Privacy Commun. Netw. (EAI SecureComm), 2020,
pp. 1519–1528.

[39] B. Harris and R. Hunt, “TCP/IP security threats and attack methods,”
Comput. Commun., vol. 22, no. 10, pp. 885–897, 1999.

[40] F. B. Shaikh and S. Haider, “Security threats in cloud computing,” in
Proc. Int. Conf. Internet Technol. Secured Trans., Abu Dhabi, UAE,
2011, pp. 214–219.

[41] V. Varadharajan and S. Black, “A multilevel security model for a dis-
tributed object-oriented system,” in Proc. 6th Annu. Comput. Security
Appl. Conf., 1990, pp. 68–78.

[42] D. Volpano and G. Smith, “A type-based approach to program secu-
rity,” in Colloquium on Trees in Algebra and Programming. Heidelberg,
Germany: Springer, 1997, pp. 607–621.

[43] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined networking
(SDN): A reference architecture and open APIS,” in Proc. Int. Conf.
ICT Converg. (ICTC), Jeju Island, South Korea, 2012, pp. 360–361.

[44] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space anal-
ysis,” Presented as part of the 10th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2013, pp. 99–112.

[45] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” Presented as part of the 9th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2012, pp. 113–126.

[46] C. Prakash et al., “PGA: Using graphs to express and automatically
reconcile network policies,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 29–42, 2015.

[47] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, and D. Huang,
“Brew: A security policy analysis framework for distributed SDN-based
cloud environments,” IEEE Trans. Depend. Secure Comput., vol. 16,
no. 6, pp. 1011–1025, Nov./Dec. 2019.

[48] A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang, and
W. Wu, “Supporting diverse dynamic intent-based policies using janus,”
in Proc. 13th Int. Conf. Emerg. Netw. EXp. Technol., 2017, pp. 296–309.

[49] B. Jiang, G. Huang, T. Wang, J. Gui, and X. Zhu, “Trust based energy
efficient data collection with unmanned aerial vehicle in edge network,”
Trans. Emerg. Telecommun. Technol., to be published.

[50] T. Li, W. Liu, T. Wang, Z. Ming, X. Li, and M. Ma, “Trust data
collections via vehicles joint with unmanned aerial vehicles in the
smart Internet of Things,” Trans. Emerg. Telecommun. Technol., to be
published.

[51] Y. Ren, Z. Zeng, T. Wang, S. Zhang, and G. Zhi, “A trust-based min-
imum cost and quality aware data collection scheme in P2P network,”
Peer-to-Peer Netw. Appl., vol. 13, pp. 2300–2323, Mar. 2020.

[52] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

Stefan Achleitner received the B.S. and M.S.
degrees in computer science from Vienna University
of Technology, Austria, and the Ph.D. degree in com-
puter science and engineering from Pennsylvania
State University, University Park, PA, USA. He is
currently a Security Researcher with the Threat and
Application Research Group, Palo Alto Networks.
His research interests include, software defined
networking, network security, virtual machines,
Internet of Things, and machine learning.

Quinn Burke (Student Member, IEEE) received
the B.S. and M.S. degrees in computer sci-
ence from Pennsylvania State University with a
focus on computer security, where he is currently
pursuing the Ph.D. degree in computer science. His
research interests include network and systems secu-
rity, software-defined networking, and virtualization
technologies.

Patrick McDaniel (Fellow, IEEE) is the
William L. Weiss Professor of Information and
Communications Technology and the Director of
the Institute for Networking and Security Research
with the School of Electrical Engineering and
Computer Science, Pennsylvania State University.
Prior to joining Penn State in 2004, he was a Senior
Research Staff Member with AT&T Labs-Research.
His research focuses on a wide range of topics in
computer and network security and technical public
policy. He also served as the Program Manager

and the Lead Scientist for the Army Research Laboratory’s Cyber-Security
Collaborative Research Alliance from 2013 to 2018. He is also a Fellow of
ACM and AAAS and the Director of NSF Frontier Center for Trustworthy
Machine Learning.

Trent Jaeger (Member, IEEE) is a Professor with
the Computer Science and Engineering Department,
Pennsylvania State University. He has authored the
book “Operating Systems Security,” which exam-
ines the principles behind secure operating system
designs. He has made a variety of contributions to
the open-source security community, particularly to
the Linux operating system. His research interests
include systems and software security, on which
he has published over 150 journal and conference
papers. He serves on the Executive Committee of

the ACM Special Interest Group on Security, Audit, and Control, the
Steering Committee Chair for the Network and Distributed Systems Security
Symposium, and an Editorial Board Member for the Communications of the
ACM and IEEE Security and Privacy.

Thomas La Porta (Fellow, IEEE) received the
B.S.E.E. and M.S.E.E. degrees from the Cooper
Union, New York, NY, USA, and the Ph.D. degree
in electrical engineering from Columbia University,
New York. He is the Director of the School of
Electrical Engineering and Computer Science, Penn
State University, where he is an Evan Pugh Professor
and the William E. Leonhard Chair Professor with
the Computer Science and Engineering Department
and the Electrical Engineering Department. He
joined Penn State in 2002. He was the Founding

Director of the Institute of Networking and Security Research, Penn State.
Prior to joining Penn State, he was with Bell Laboratories for 17 years.
He was the Director of the Mobile Networking Research Department,
Bell Laboratories, Lucent Technologies, where he led various projects in
wireless and mobile networking. He received the Bell Labs Distinguished
Technical Staff Award, and an Eta Kappa Nu Outstanding Young Electrical
Engineer Award. He also won two Thomas Alva Edison Patent Awards.
He was the founding Editor-in-Chief of the IEEE TRANSACTIONS ON

MOBILE COMPUTING. He served as the Editor-in-Chief of IEEE Personal
Communications Magazine. He was the Director of Magazines for the IEEE
Communications Society and was on its Board of Governors for three years.
He is an Bell Labs Fellow.

Srikanth Krishnamurthy (Fellow, IEEE) received
the Ph.D. degree in electrical and computer engineer-
ing from the University of California at San Diego
in 1997. From 1998 to 2000, he was a Research
Staff Scientist with Information Sciences Laboratory,
HRL Laboratories, LLC, Malibu, CA, USA. He
is currently a Professor of Computer Science with
the University of California Riverside. His research
interests are in network, computer system, and ML
security, and computer and wireless networks. He is
the recipient of the NSF CAREER Award from ANI

in 2003. He was the Editor-in Chief for ACM MC2R from 2007 to 2009 and
is currently the Associate Editor-in-Chief for the IEEE TRANSACTIONS ON

MOBILE COMPUTING.

Authorized licensed use limited to: Penn State University. Downloaded on March 17,2021 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

