
LECTURE 9
Byzantine Failures and CAP Theorem



Byzantine Failures

¨ Arbitrary patterns of failures – not just crash 
failures.

¨ Specifically à inconsistent messages.
¤ Primary exhibiting Byzantine behavior à sending 

different messages to different replicas.
¤ Backup exhibiting Byzantine behavior à sending 

message inconsistent from the input from primary.



Byzantine agreement

¨ BA1: Every non-faulty backup process stores the 
same value.

¨ BA2:  If primary is non-faulty, then every non-faulty 
backup process stores exactly what the primary 
had sent.
¤ If primary is non-faulty BA1 à BA2



What is needed ?

¨ Under these assumptions, at least 3k + 1 members 
are needed to reach consensus if k members can 
fail.
¤ Our assumptions are there is a primary P and backups 

B1 B2 ….  Bn-1



Having 3k processes is not enough

¨ Let us assume k = 1 
¨ Consider the following:

¤ Case (a) primary fails; Case (b) back up fails



Having 3k cases is not enough

¨ In Case (a) primary sends T to one backup and F to 
one backup.  
¤ Each backup forwards what is received to the other.
¤ Thus, each has {T,F} –conclusion cannot be drawn.

¨ In Case (b), B1 flips the primary’s message and 
relays a wrong (F) message to B2.  B2 relays the 
correct message to B1. Again easy to see – no 
conclusion. 



Extension to general case

¨ For k > 1, use a simple reduction method.
¨ Group the processes into three disjoint sets each 

containing at most n/3 members.
¨ Simulate actions – each set Si represents all 

members of its group.
¤ Thus, all members of a group are faulty or not faulty.
¤ Easy to see that this is similar to the example with k=1.



Having 3k+1 processes is enough

¨ We will only show this for the case k = 1.
¨ A similar but more cumbersome analysis possible 

for k = 2.
¨ We will consider two cases : 

¤ Primary is faulty
¤ Backup is faulty



Consensus with 4 processes: Faulty 
primary
¨ Processes forward what they receive to others.
¨ In first round, P sends T to B1 and F to B2 and T to B3. 
¨ Each backup sends what they have to others.
¨ Easy to see that at the end of the second round, each 

backup has {T, T, F}.
¤ Thus, a consensus of T is reached.



Consensus with 4 processes: Faulty 
backup

¨ Non faulty primary sends T to all backups.
¨ Faulty B2 sends F, while non-faulty B1 and B3 send T.
¨ We see that the two non-faulty backups have {T,T,F}.



Asssumptions

¨ For crash failures (2k+1) processes to come to 
consensus in presence of k failures.

¨ However, the assumption is that the delay is 
bounded – message is received within some finite 
time.
¤ But what is this finite time ?

¨ If processes do not operate in a lock step mode i.e., 
they are asynchronous, then hard  to say what 
latency is incurred in receiving messages.



¨ In asynchronous model, 
distributed consensus 
impossible if even one 
process may fail

¨ Holds even for “weak” 
consensus (i.e., only some 
process needs to learn, 
not all)

¨ Holds even for only two 
states: 0 and 1
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FLP Impossibility Result



FLP Impossibility Result

¨ Intuition: Cannot distinguish failures from slowness
¤ May not hear from process that has deciding vote

¨ Implication:
¤ Choose safety or liveness

n Livenessà availability

¨ How to get both safety and liveness?
¤ Need failure detectors (partial synchrony)
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Recap: some terms

¨ Consistency: Every read receives the most recent 
write or an error

¨ Availability :  Every read receives a response (not 
error) but no guarantee it is most recent.

¨ Partition tolerance : System operates in spite of 
arbitrary number of message losses or delays 
between the replicas.



CAP Theorem

¨ Pick any two: Consistency (C), Availability (A), and 
Partition-Tolerance (P)
¤ In practice, choose between CP and AP
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What does this mean?

¨ When partition occurs:
¨ Cancel the operation 

¤ Decreases availability but ensures consistency

¨ Proceed with the operation
¤ Ensures availability at the cost of inconsistency



PACELC

¨ Extension of CAP to include 
the impact of latency.

¨ If partition,
¤ Choose availability vs. 

consistency
¨ Else,

¤ Choose latency vs. consistency

¨ Unifies two separate 
tradeoffs that we have 
talked about
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Why should you care?

¨ Can identify when system designers over-claim

¨ Explicitly reason about tradeoffs when designing 
systems

¨ Example: Should you choose AP or CP?
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Impact on Consistency

¨ When a replica receives a read or write, when can 
it respond without violating linearizability?
¤ If it is in a majority partition

¨ If we want any replica to always serve clients
¤ Can we provide any consistency guarantees?

¨ Example of such a RSM?
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Example Scenario

¨ Calendar application running on smartphones
¤ Each entry has time and set of participants

¨ Local copy of calendar on every phone
¤ No master copy

¨ Phone has only intermittent connectivity
¤ Cellular data expensive while roaming
¤ WiFi not available everywhere
¤ Bluetooth has very short range
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Format of Updates

¨ Goal: Automatic conflict resolution when replicas 
sync with each other

¨ What would work?
¤ “10AM meeting, 4901 BBB, EECS 498 staff”
¤ “1 hour meeting at 10AM if room and participants 

free, else 11AM, 4901 BBB, EECS 498 staff”
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¨ Node A asks for meeting M1 at 10 AM, else 11 AM
¨ Node B asks for meeting M2 at 10 AM, else 11 AM

¨ X syncs with A, then B
¨ Y syncs with B, then A

¨ X will put meeting M1 at 10:00
¨ Y will put meeting M1 at 11:00
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Example Execution

Replicas can’t apply updates in order received



Ordering of Updates

¨ All replicas must apply updates in same order

¨ How to achieve consistent ordering despite 
intermittent connectivity?

¨ Lamport clock!
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Ordering of Updates

¨ Recap of Lamport clocks:
¤ Every update associated with timestamp of the form 

(local timestamp T, originating node ID)
¤ a < b if a.T < b.T, or (a.T = b.T and a.ID < b.ID)

¨ Updates with timestamps in our example:
¤ 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
¤ 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM
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¨ 〈701, A〉: A asks for meeting M1 at 10 AM, else 
11 AM

¨ 〈700, B〉: Delete meeting M1
¤ B’s clock was slow

¨ Now, delete will be ordered before add
¨ How to prevent this?

¤ Lamport clocks preserve causality
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Another Example Execution



¨ 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
¨ 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

¨ Pre-sync database state:
¤ A has M1 at 10 AM
¤ B has M2 at 10 AM

¨ After A receives and applies update from B:
¤ A has M1 at 10AM and M2 at 11AM

¨ How can B apply update from A?
¤ B already has M2 at 10AM
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Example Execution



¨ B needs to “roll back” its state, and re-run ops in the 
correct order

¨ So, in the user interface, displayed calendar entries 
are tentative at first
¤ B’s user saw M2 at 10 AM, then it moved to 11 AM

¨ Takeaways:
¤ Need to maintain log of updates
¤ Sync updates between replicas not state 
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Solution: Roll back and replay



¨ B tells A: highest timestamp for every node
¤ e.g., “X 30, Y 40”
¤ In response, A sends all X's updates after 〈-,30,X〉, 

and all Y's updates after 〈-,40,Y〉
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How to sync, quickly?
A B

〈-,10, X〉 〈-,10, X〉
〈-,20, Y〉
〈-,30, X〉
〈-,40, X〉

〈-,20, Y〉
〈-,30, X〉
〈-,40, Y〉

Version vector

How to sync
without state

exchange
proportional to

size of log?



Consistency semantics

¨ Can a calendar entry ever be considered no longer 
tentative?

¨ Eventual consistency:
¤ If no new updates, all replicas eventually converge to 

same state
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¨ Implications of ordering updates using timestamp:
¤ Never know whether some write from the past may yet 

reach your node
¤ So all entries in log must be tentative forever
¤ All nodes must store entire log forever

¨ How to mark calendar entries as committed?
¨ How to garbage collect updates to prune the log?
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Committing Updates

¨ Update with timestamp (T, ID) is stable if higher 
timestamp update received from every node

¨ Problem?
¤ Disconnected replica prevents others from declaring updates 

stable

¨ Solution:
¤ Pick one of the replicas as primary
¤ Primary determines order of updates
¤ Desirable properties of primary?
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Committing Updates

¨ At any replica:
¤ Stable state
¤ Log of tentatively ordered updates (order based on 

Lamport clock timestamps)

¨ Upon sync with primary
¤ Receive updates in order
¤ Apply updates to stable state and prune log

¨ Any constraints in order chosen by primary?
¤ Must respect causality
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