LECTURE @

Byzantine Failures

Arbitrary patterns of failures — not just crash
failures.

Specifically =2 inconsistent messages.

Primary exhibiting Byzantine behavior = sending
different messages to different replicas.

Backup exhibiting Byzantine behavior = sending
message inconcgistant from the inniit from nrimqry,

P1) (P1)
& aH\b

/ \

ﬁ—b Gfﬂ—@

(b)

Byzantine agreement

BAT1: Every non-faulty backup process stores the
same value.
BA2: If primary is non-faulty, then every non-faulty
backup process stores exactly what the primary
had sent.

If primary is non-faulty BAT = BA2

What is needed ¢

Under these assumptions, at least 3k + 1 members
are needed to reach consensus if k members can
fail.

Our assumptions are there is a primary P and backups
B,B,.... B

n-1

Having 3k processes is not enough
R

1 Let us assume k = 1

1 Consider the following:
o Case (a) primary fails; Case (b) back up fails

@ O Faulty process @
’ \ /

) \ “ooo= W First message round /; R
’ \ ' \
T ', \ F —®» Second message round T / " T
) % ’ ’ \ ’
T \ /', - ‘\‘
4 |
) e s
- T

Having 3k cases is not enough

In Case (a) primary sends T to one backup and F to
one backup.
Each backup forwards what is received to the other.

Thus, each has {T,F} —conclusion cannot be drawn.

In Case (b), B1 flips the primary’s message and
relays a wrong (F) message to B2. B2 relays the
correct message to B1. Again easy to see — no
conclusion.

Extension to general case

For k > 1, use a simple reduction method.

Group the processes into three disjoint sets each
containing at most n/3 members.

Simulate actions — each set S; represents all
members of its group.
Thus, all members of a group are faulty or not faulty.

Easy to see that this is similar to the example with k=1.

Having 3k+1 processes is enough
R

1 We will only show this for the case k = 1.

o A similar but more cumbersome analysis possible
for k = 2.

7 We will consider two cases :
o Primary is faulty
1 Backup is faulty

Consensus with 4 processes: Faulty
primary

Processes forward what they receive to others.
In first round, P sends T to B1 and F to B2 and T to B3.
Each backup sends what they have to others.

Easy to see that at the end of the second round, each
backup has {T, T, F}.

Thus, a consensus of T is reached.

VN -
{T{T.F}} (B1) O Faulty process

»Firsl message round

—» Second message round

(FATTH (B2R

Consensus with 4 processes: Faulty

qukUE

1 Non faulty primary sends T to all backups.
71 Faulty B2 sends F, while non-faulty B1 and B3 send T.
I We see that the two non-faulty backups have {T,T,F}.

{T.{L.F}}

Asssumptions

For crash failures (2k+1) processes to come to
consensus in presence of k failures.

However, the assumption is that the delay is
bounded — message is received within some finite
time.

But what is this finite time ¢

If processes do not operate in a lock step mode i.e,,
they are asynchronous, then hard to say what
latency is incurred in receiving messages.

12

FLP Impossibility Result

In asynchronous model,
distributed consensus
impossible if even one
process may fail

Holds even for “weak”
consensus (i.e., only some
process needs to learn,
not all)

Holds even for only two
states: O and 1

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”
problem.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Systems-distributed
applications; distributed databases; network operating systems; C.4 [Performance of Systems]: Reliabil-
ity, Availability, and Serviceability; F.1.2 [Computation by Abstract Devices]: Modes of Computation—
parallelism; H.2.4 [Database Management): Systems-distributed systems; transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

FLP Impossibility Result

13

Intuition: Cannot distinguish failures from slowness

May not hear from process that has deciding vote

Implication: @
Choose safety or liveness @
Liveness =2 availability

Need failure detectors (partial synchrony)

How to get both safety and liveness?

Recap: some terms

Consistency: Every read receives the most recent
write or an error

Availability : Every read receives a response (not
error) but no guarantee it is most recent.

Partition tolerance : System operates in spite of
arbitrary number of message losses or delays
between the replicas.

CAP Theorem

15 |
11 Pick any two: Consistency (C), Availability (A), and
Partition-Tolerance (P)

o In practice, choose between CP and AP

Replica

Replica Replica

Replica Replica

What does this mean?

When partition occurs:
Cancel the operation
Decreases availability but ensures consistency

Proceed with the operation

Ensures availability at the cost of inconsistency

PACELC

71 I

1 Extension of CAP to include
the impact of latency.

o If partition,

o1 Choose availability vs.
consistency

0 Else,
o1 Choose latency vs. consistenc

o Unifies two separate
tradeoffs that we have
talked about

Why should you care?
o

11 Can identify when system designers over-claim

01 Explicitly reason about tradeoffs when designing
systems

-1 Example: Should you choose AP or CP?

Impact on Consistency
1

0 When a replica receives a read or write, when can
it respond without violating linearizability?

o If it is in a majority partition

o If we want any replica to always serve clients

1 Can we provide any consistency guarantees?

0 Example of such a RSM?

Example Scenario

20

Calendar application running on smartphones

Each entry has time and set of participants

Local copy of calendar on every phone

No master copy

Phone has only intermittent connectivity
Cellular data expensive while roaming
WiFi not available everywhere

Bluetooth has very short range

2]

Format of Updates

Goal: Automatic conflict resolution when replicas
sync with each other

What would work?
“TOAM meeting, 4901 BBB, EECS 498 staff”

“1 hour meeting at 10AM if room and participants
free, else 11TAM, 4901 BBB, EECS 498 staff”

22

Example Execution

Node A asks for meeting M1 at 10 AM, else 11 AM
Node B asks for meeting M2 at 10 AM, else 11 AM

X syncs with A, then B
Y syncs with B, then A

X will put meeting M1 at 10:00
Y will put meeting M1 at 11:00

Replicas can’t apply updates in order received

Ordering of Updates
253 I

01 All replicas must apply updates in same order

0 How to achieve consistent ordering despite
intermittent connectivity?

-1 Lamport clock!

Ordering of Updates

24

Recap of Lamport clocks:

Every update associated with timestamp of the form
(local timestamp T, originating node ID)

a<bif a.T <b.T, or (a.T = b.T and a.ID < b.ID)

Updates with timestamps in our example:
(701, A): A asks for meeting M1 at 10 AM, else 11 AM
(770, B): B asks for meeting M2 at 10 AM, else 11 AM

Another Example Execution

25

1 (701, A): A asks for meeting M1 at 10 AM, else
11T AM

= (700, B): Delete meeting M1

71 B’s clock was slow

1 Now, delete will be ordered before add

0 How to prevent this?

o Lamport clocks preserve causality

26

Example Execution

(701, A): A asks for meeting M1 at 10 AM, else 11 AM
(770, B): B asks for meeting M2 at 10 AM, else 11 AM

Pre-sync database state:
A has M1 at T0 AM
B has M2 at 10 AM

After A receives and applies update from B:
A has M1 at TOAM and M2 at TTAM

How can B apply update from A?
B already has M2 at 10AM

27

Solution: Roll back and replay

B needs to “roll back” its state, and re-run ops in the
correct order

So, in the user interface, displayed calendar entries
are tentative at first

B’s user saw M2 at 10 AM, then it moved to 11 AM

Takeaways:
Need to maintain log of updates

Sync updates between replicas not state

How to sync, quickly?

28

A B
How to sync (-,10, X) (-,10, X)
without state (-,20, Y) (-,20, Y)
h
N (-,30, X) (-,30, X)
proportional to
size of log? (-,40, X) (-40,Y)

B tells A: highest 'rimes’romR/for. every node
e.g., “X 30, Y 40” ersion vector

In response, A sends all X's updates after (-,30,X),
and all Y's updates after (-,40,Y)

Consistency semantics
2o s

0 Can a calendar entry ever be considered no longer
tentative?

11 Eventual consistency:

o If no new updates, all replicas eventually converge to
same state

Committing Updates
oy

01 Implications of ordering updates using timestamp:

o1 Never know whether some write from the past may yet
reach your node

o1 So all entries in log must be tentative forever

o1 All nodes must store entire log forever

1 How to mark calendar entries as committed?

0 How to garbage collect updates to prune the log?

31

Committing Updates

Update with timestamp (T, ID) is stable if higher
timestamp update received from every node

Problem?

Disconnected replica prevents others from declaring updates
stable

Solution:
Pick one of the replicas as primary
Primary determines order of updates

Desirable properties of primary?

Committing Updates
52

o At any replica:
o Stable state

o Log of tentatively ordered updates (order based on
Lamport clock timestamps)

- Upon sync with primary
o1 Receive updates in order

o Apply updates to stable state and prune log

0 Any constraints in order chosen by primary?

o Must respect causality

