LECTURE 7

Replication and why is it hard

Data needs to be replicated for reliability or to
improve performance

If a replica crashes, possible to continue to have access.
Performance improves by accessing nearer data stores

Aids scaling

However, a key challenge is ensuring the
consistency of data across replicas.

Hard to realize in large distributed systems.

Handling Failures

Logical clocks enable all replicas to execute updates
in same order

But, cannot handle failure of any replica!l

To deal with crash failures we saw:
Chandy-Lamport snapshot for coordinated checkpoint

Log sources of non-determinism between checkpoints

Types of failures

1 Crash failures

Can resume with previously saved state

0 Fail stop
All state is lost upon failure

Need to replicate state

Primary Backup Replication

Backup

Client Primary Backup

Backup

Primary Backup Replication

0 How to handle primary failure?

Promote one of the backups as the primary

0 How to handle backup failure?

Add another machine as a backup

Primary Backup Sync

When should primary sync up with backups?

What should be transferred when syncing?

Example: MapReduce Master

RegisterServer ()
Primary &)
Backups while (1) {
in sync recelve msg and parse addr
pick task to assign
When to
sync mark task as assigned
againg

respond with task assignment

Takeaways

Cannot tolerate primary failure after update to its
state is externally visible

Corollary: Okay for primary to be out of sync with
backup until change is externally visible

External consistency

Implications for when primary should sync with
backups?

Primary-Backup Sync

O EEE)

11

Reads vs. Updates

For operations that do not update state, primary
need not consult backups

When is this true?

If backup is externally consistent with primary

-2 If backup takes over as primary, it will generate
identical response as primary may have

12

What to transfer in sync?

1 Snapshot of primary’s state
Slow
When is this necessary?

Necessary when bootstrapping new backup

-1 Every operation
Why is this okay?

Leverage determinism of state machine

13

Service Development

Getting coordination right between primary and
backups is tricky

Easy to mess up

Must make replication transparent to developer

RSM with Logical Clocks

Application Application

Ordere dates

Serverl Server2

Replicated State Replicated State
Machine Machine

Updates Updates

15

Transparent Primary Backup

Application relies on library to keep primary and
backups in sync

Receive message from client

Sync with backups before sending response to client

Will this solution work?

Does not capture non-determinism in execution

Virtual Machines
16 L

Applications
/4

Process File system Virtual memory

Virtual
Operating System Machine

Virtual Machine Monitor

CPU Disk RAM

VMM-based Primary Backup

o1 Primary and backup execute on tWOb imary
virtual machines

Backup

VM VM
o5] [os |

- Primary logs inputs and outputs
- Backup applies inputs from log
- Primary waits for backup output

channe

e
o=
Zz
f: 4

\Shared Disk/

71 Primary-backup monitor each other
If primary fails, backup takes over Eﬁ

18

Log-based VM replication

VMM at primary logs external inputs and causes
of non-determinism

Example: Log results of non-deterministic instructions

e.g., timestamp counter read (RDTSC)

Random number generation?

19

Log-based VM replication

VMM at primary sends log entries to VMM at
backup over the logging channel

Backup hypervisor replays log entries
Stops backup VM at next input event or non-deterministic instruction
Delivers same input as primary

Delivers same result to non-deterministic instruction as primary

20

Virtual Machine 1/O

VM inputs

Incoming network packets

Disk reads

Keyboard and mouse events

Clock timer interrupt events

Results of non-deterministic instructions
VM outputs

Outgoing network packets

Disk writes

Why log outputs?

Example Scenario

Primary Backup

Take over as primary

Write input to log Read from log and

Apply input apply input
Produce output Timer interrupt fires
Fail! Produce output

Backup does not know timing of output relative to timer interrupt

Execution of interrupt handler may affect output

22

Optimizing Performance

71 Primary must buffer output until ACK from backup
Why?
Slow from client perspectivel!

u If replicas are not in close proximity.

0 How to optimize performance?

71 Pipeline sync with backup and execution at primary

VMM-based Replication

Primary Backup Replication

24

Promote one of the backups if primary fails

Replace any failed backup

When should primary sync with backups?
Before making state change externally visible
Primary and backups must be externally consistent

What to sync?
Entire state when bootstrapping new backup
Thereafter, all sources of non-determinism

RSM with Primary Backup

Application

Operating System

Serverl Server2

Virtual Machine Virtual Machine

Monitor Monitor

Hardware Hardware

Client perspective
251

0 What does a worker need to know in order to
register itself with replicated master?

1 Needs to know which machine is primary

27

Primary Backup Replication

Client

Backup

Backup

Backup

Client perspective
55

7 What does a worker need to know in order to
register itself with replicated master?

1 Needs to know which machine is primary

0 Can primary be hard coded into client code?

0 No, primary gets replaced when it fails

1 How does client discover current primary?

29

Primary Backup Replication

Client

— o e e e e e e e e e)

30

View service

Maintains current membership of primary-backup
service (called view)

View number, primary, backup

When does view service change view?
When primary or any backup fails

Periodically exchange heartbeat messages to
detect failures

What if view service is down or not reachable?

31

Transitioning between views

1 How to ensure new primary is up-to-date?
Only promote a previous backup
This is why view service needs to pick backups

0 How does view service know if a backup is up-to-
date?
o Two scenarios for ill-timed primary failure:

Primary applies operation but fails before syncing with
backup

Primary fails before new backup is initialized

32

Transitioning between views

View service broadcasts view change to all

Primary must ACK new view once backup is up-to-
date

Two implications:
Liveness detection timeout > State transfer time

Cannot change view if primary fails during sync

33

View service

1 View change has three steps:
View service announces new view
Primary syncs with new backup if there is one

Primary acknowledges new view

0 Stuck if primary fails in the midst of this process

34

Scalability of View service

11 Does every client need to contact view service
before any operation?

11 Clients can cache view across operations

7 When to invalidate cached view?

11 Client invalidates cache when no response or
negative response from primary

Split Brain

35

(2,51,52)

View service

Client

\51 —

(1,51, _)
(2,51,52)

(3,52, _)

(1,51,)
(2,51,52)

(2,51,52)
(3,52,)

36

Avoiding Split Brain

o Primary must forward all operations to backups

Goal: Get ACKs from backups that they too recognize
primary

0 Why can’t backups be mistaken about who is
primary?

Only a backup can be promoted as primary

37

View service

Valid sequence of views:

(1,S1,_) > (2,S1,52) > (3, S1, S3) > (4, S3, S4)
= (5,54,)

Examples of invalid transitions between views?
(1,S1,52) > (2, S3, S4)
(1,S1,52) > (2, _, S2)
(1,51,) > (2,52, S1)

Summary of view service

38

Monitors primary and backups to detect when to
change view

Can change only after primary has ACKed view

Primary ACKs only after syncing with backups

Clients cache view for scalability

To address split brain, primary must check with
backup before serving client

Replicating Bank Database

39

One copy in SF (primary), one in NY (backup)

“Pay 1%
% inte>r/est’?

40

Primary-Backup Sync

‘ Cl1
“Deposit
$100”

‘ C2

“‘Pay 1%
interest”

EI $1,000

$1,111

$1,000
e

>
$1,110

41

Ordering of Updates

o1 All updates must be applied in the same order at
all replicas

11 External view: Total ordering of writes

o Primary effectively serializes all writes

Order of events made known to replicas

42

Serving Reads

Can backups serve reads?
Assume no split brain

What if primary’s state is ahead of backup?
Updates to primary not yet externally visible

Effect of read equivalent to if primary fails at this point

What if backup’s state is ahead of primary?
Different backups may not be in sync

Primary may get replaced before it applies update

43

Reads: Primary vs. Backup

]

“‘Deposit
$100”

B

B2

C2

44

Desired Properties

All writes are totally ordered

Once read returns particular value, all later reads
should return that value or value of later write

‘Once a write completes, g\ll later reads should return

value of that write or value of later write

Reads relative to Writes

‘ C1
“‘Pay 1%
“‘Deposit
$100" \ interest”
v

\ \

45

B

C2

46

Consistency Spectrum

Read-after-

Eventual Causal Sequential Linearizability

write

Consistency

Ease of programming

11 Consistency: What are the properties of externally
visible effects?

47

Linearizability

Total ordering of writes

Read returns last completed write

Single copy semantics

Externally visible effects of writes and reads are
equivalent to if there existed a single copy

Users oblivious to replication

48

Why weaken consistency?

0 Shouldn’t we always strive for single copy
semantics?

Comes at the expense of lower performance

7 Latency vs. consistency tradeoff

Consistency Spectrum
A e

Read-after-

Eventual Causal Sequential Linearizability

write
>
Consistency

>
Ease of programming

>
Latency

Sequential Consistency

71 Results of any execution same as that when the
operations by all processes on the data store were

executed in some sequential order.

1 And ... the operations of each individual process
appear in this sequence in the order specified by its
program.

Example

P1: W(x)a B P1: W(x)a

P2: W(x)b P2: Wix)b

P3: R{x)b R(x)a P3: R(x)b R(x)a

P4: R(x)b R(x)a P4: R(x)a R{x)b
(a) (b)

(a) is sequentially consistent. All processes see the
same interleaving of the operations (x takes value b
before a)

(b) is not sequentially consistent. P3 sees x taking
on value b before a while P4 sees the opposite.

52

Causal Consistency

Order of causally related writes must be preserved
in values returned to reads

If W1 2> W2, then if a read sees effect of W2, it must
see effect of W1

Example: Facebook News Feed

Okay to not see all completed posts

But, if you see a comment, you must see the post on
which the comment is made

Main utility: Lazy sync between replicas

Example

P1: W(x)a W(x)c

P2. R(x)a W(x)b

P3: R(x)a R(x)c R(x)b
P4. R(x)a R(x)b R(x)c

The operations above do not result in sequential consistency
(see reads of P3 and P4)

But there is causal consistency. This is because the writes
W1 (x)c and W2(x)b are concurrent (there are no
dependencies and thus no causal relationship).

But note that W1 (x)a and W2(x)b are causally related
since R2(x)a may be the reason for W2(x)b.

Example

(a) is not causally

R —— consistent. R3(x)b cannot
P3: | ~ Rb_ R follow R3(x)a since the
P4; Rixja Rix)p the write of b to x is
@) dependent on P2
P1: W(x)a reading x’s value to be
P2: W(x)b S qa.
P3: R(x)b R(x)a
o Rixja Rix)o (b) however is causally
(b) consistent since W1(x) a

and W2(x) b are
concurrent.

Linearizability example

Every operation should appear to take effect
instantaneously at some moment before its start and
completion (sometime in the shaded areaq)

P Wi(x)a Wiy)a Rixjo
P2 W(y)b Wi(x)b R(y)a

Thus, the result is consistent regardless of ordering
of operations

Ordering of operations Result
x)a; Wa(y)b; Wi(y)a; Wa(x)b | Ry
) y)b; Wa(x)b; Wi (y)a
)b; Wi (x)a; Wi(y)a; Wa(x)b | Ry
))a; Wa(x)b; Wi(y)a | Ri(x

Linearizability with Locks
so

Lock service
v

JPie Replica 1
‘/,’A/'

Client |2 "| Replica 2

Prob|e;\A

Client failures!

Replica 3

57

Lease

Lock with timeout

If lease holder fails, not a problem because lease
will expire

How to pick lease timeout value?

Short timeout = Client needs to renew lease

Long timeout > Unnecessarily block operations

Discrepancy in Lease Validity
55

Lease service

. Replica 1

Client [| Replica 2
‘mn

lease server and client

Replica 3

differ about lease validity?

Discrepancy in Lease Validity
55

0 Message that grants lease may have high delay

0 Clock at lease holder and lease service may have
different skew

0 How to account for potential discrepancy?

Discrepancy in Lease Validity

60

Lease service

Client

Replica must check with
lease service to confirm
lease validity

Replica 1

Replica 2

Replica 3

