LECTURE 14

B pusenix
’ THE ADVANCED
COMPUTING SYSTEMS
ASSOCIATION

Designing Distributed Systems Using Approximate
Synchrony in Data Center Networks

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma,
and Arvind Krishnamurthy, University of Washington

https://www.usenix.org/conference/nsdil5/technical-sessions/presentation/ports

Premise

Many distributed systems are designed

independently from the underlying network.

Thus, they assume worst case situations
Completely asynchronous

Many distributed applications today are deployed
on data centers

Network predictable and reliable

Can we synergize the distributed system design with
the network to improve performance?

Key contributions

MOM: Mostly ordered multicast

Tries to redesign multicast so that notifications arrive at
recipients in order

Remember that multicasting is a key primitive in many
distributed systems (e.g., communications among replicas)

Gives almost total ordering.

Based on this — one can realize speculative Paxos

Commit before full consensus (as with Paxos or leader-
based Paxos)

Because of MOM - very few cases require
reconciliation or repair

Data center attributes

Predictable: Structured topologies =2 easier to
understand routes and latencies.

Reliable : Packet losses are rare.

Extensible

Use of technologies such as software-defined networking
(SDN) allows flexibility in routing and in-network processing
(using VMs or containers) of packets.

Why do we care? = Can help choose routes so as to
obtain ordered multicast.

Recall : Leader based Paxos

request | prepare prepareok : reply

Client

Replica
1

Replica
2

Replica
3

o1 Throughput suffers because of the load on the leader.

o If leader fails, a replica needs to take over as leader.

Network structure

A single administrative domain and an OpenFlow type SDN
controller

Allows implementation of customized forwarding rules.

Organized structure of multi-rooted trees of switches

Leaves are top-of-rack switches (to which all machines on the
rack connect to)

Top of rack switches connect to an intermediate tier of switches
called “aggregation tier”

These in turn connect to a “core tier” at the top level.
Control messages can be prioritized (both for transmissions
and avoiding drops)

So latencies and losses of coordination messages can be
drastically reduced.

Where are the replicas?

Google’s spanner and similar systems use one
replica group per shard.

Hundreds of thousands of shards per data center.

Replicas that belong to a group may be on
different racks but typically belong to the same
cluster

To simplify cluster management and scheduling.

Mostly-ordered Multicast Goal

We don’t want to go with a dedicated leader.

As discussed, it leads to bottlenecks and delays among
other things.

How to provide ordered commits (even if in some
“rare” cases, we need to fix things) ¢
Mostly-ordered multicasts!

To set the tone we first see what we mean by “totally
ordered multicast”

Totally ordered multicast

Clients communicate simultaneously with a group of
N receivers (here, replicas)

If process n. processes message m before m’, then
any other node n, that receives m’ must process m
before m’.
Ensuring this property holds during failures — is a
problem equivalent to that of consensus.
MOM considers a relaxed version - i.e., the above
requirement does not have to hold in every case.

Mostly-ordered multicast property

The requirement for total ordered multicast is
satisfied with high frequency

Occasionally the following ordering violations can
occur:
n. processes m after m’

n, does not process m at all (because it was lost)

While it can be implemented using a best-effort
network primitive, takes advantage of network
properties.

However, application code must handle ordering
violations due to failures.

Principles of MOM

Topology awareness = ensure that all multicast
messages traverse same number of links.

Eliminates reordering due to path dilation
High prioritization = Highest QoS class
Eliminate reordering due to queuing delays

Packet drops due to congestion

In network serialization = route through a single
root switch

Eliminate non-failure related reordering

Example

Clients C, and C, communicating with a multicast group N;, N,
and N;. The three receivers share a multicast I[P address.

This address is not shared by sub-nets.

Example continued

Message from the client sent to root switch S1 or S2.

The root switch makes 3 copies and sends it down
All the three copies traverse same number of links.
The flexible routing can be realized using SDN

Fault tolerance by routing around failure (if enough
redundant paths) or changing root if needed (see paper)

Other attributes

Even if one of the root switches is more congested
than the other, the prioritization comes to the rescue.

If S2 is more congested than S1, it is ok since both
prioritize the MOM messages.

But still some variations can occur. So this is handled
using in-network serialization i.e., use same top level
switch.

Acts as a serialization point — the order in which this

switch sees the messages is the order in which they are
sent.

MOM and consensus

How should MOM’s properties affect how consensus
is achieved ¢
What does it give us?

Approximate synchrony = strong ordering during the
common case, but this strong ordering property can be
violated during occasional failures.

How do we take advantage of this ¢

Speculative Paxos

Basics

Speculative Paxos is a state machine replication
protocol.

Common case :
Rely on MOM

Speculatively execute requests (before agreement is
reached).

Minimum latency (only two message delays)

High throughput =2 no need to communicate between
replicas on each request.

Reconciliation via rollback when there are inconsistent
operations.

What does it guarantee ¢

Linearizability if there are no more than f failures.

Operations appear in consistent sequential order.

Each operation sees the effect of the operation before
it

Client interface

e invoke(operation) — result

Replica interface

e speculativelyExecute(segno, operation)
— result
e rollback(from-seqno, to-seqno,
list<operations>)
e commit(seqgno)

Speculative execs

Replicas execute operations before agreement is
reached.

Upon receiving the speculative Paxos library makes
the speculative execution upcall to the application.

Attributes are the operation and a sequence number.

When there is a failed speculation a rollback is invoked
to undo the most recent operations and return to a
known state

Informs application about all operations/sequence numbers
to be rolled back.

Commit upcalls for those previous speculative
operations that are never going to be rolled back.

Failure model

Crash failures.

Remains correct under the same assumptions as Paxos
or Viewstamped replication

2f +1 replicas will provide safety as long there are no
more than f replica failures.

Liveness as long as messages are repeatedly sent and
eventually delivered before the recipients time out.
Same as Paxos

This requirement is necessary because of FLT theorem
(impossibility of consensus in an asynchronous system).

Protocols

Speculative Paxos consists of three protocols.

Normal execution : Speculative processing commits
requests efficiently.

Messages are ordered

Less than /2 replicas have failed

Synchronization : Verify that replicas have
speculatively executed the same requests in the same
order.

Reconciliation: Ensures progress when requests are
delivered out of order or when between f/2 and f
replicas have failed.

Replica states

NORMAL : Allow speculative processing of new
operations.

RECONCILIATION: The reconciliation protocol is
being applied (more later).

RECOVERY : Failed replica is reconstructing state.

RECONFIGURATION: Updates to replica
memberships.

Replica log

Log is a sequence of operations executed by the replica
Each has a sequence number.

State is either SPECULATIVE or COMMITTED
All COMMITTED operations precede SPECULATIVE operations.

Each log entry has a summary hash

A hash of the previous summary and current operation
Why ¢

Two replicas that agree on a summary for an entry n,
have the same ordering of operations up to that entry.

Standard checkpointing can help truncate logs

View service

System moves through a series of views
Each has a view number and leader

Leader can be selected using round robin ordering
(recall election)

Leader’s role is to mainly co-ordinate synchronization
and reconciliation.

Speculative Processing

Client requests an operation

Speculative Paxos library sends request to all replicas
client ID, operation, request identifier
Using the MOM primitive --so mostly operations are
ordered.

Replicas speculatively execute request and send
“SPECULATIVE-REPLY” messages to the clients.

Client checks to see if f+[//2] +1 (a superquorum)
responds and if they do, commit transaction.

The operation needs to be consistent across replicas in
terms of the current operation and a summary hash (which
ensures that the order upto this transaction) are identical

across replicas.

Failure or Success

If responses don’t match (i.e., there is no
superquorum) or if there aren’t sufficient responses

before a time out, the client initiates a
reconciliation.

Note if there is a success, the replicas don’t know
that the operation has committed

This is taken care of later in reconciliation

Even if there are failures, the operation is not rolled back.

Why not just a quorum ¢

This is because of speculative execution.

Let us say instead of a superquorum we only
needed quorum (f+1).
Let us say the client only got exactly f+1 responses.

Let the other f speculatively applied some other
transaction.

The client commits the transaction, but the replicas
have only done it speculatively.

So if even one fails, the recovery protocol cannot
distinguish the order.

How does superquorum help?

Now we can have only < (f/2) replicas apply some
other transaction.

So even if another (f/2) fail from those in the
superquorum we have (f+1) replicas applying the
operation correctly.

We can still tolerate f failures.

This helps establish correct order during
reconciliation.

Synchronization

Since during the speculative processing the replicas do not
know that a superquorum has committed to the operation,
they need to do so.

They do this via a leader initiated -- periodic
synchronization — say every t seconds.

A synchronization message has the current view number,
the highest sequence number in the log (including
speculative transactions) and the hash associated with the
summary log.

Leader commits if there are more than a superquorum of
replicas that agree on these.

Confirms to all replicas (learning in Paxos — so that everyone
can commit)

If no superquorum, go to reconciliation.

Divergence

Reconciliation is invoked whenever there is a
divergence across replicas

Sequence number of operations, or hash summary.

Every replica stops processing new client requests
and enters reconciliation phase.

They send reconciliation messages to each other
and to the leader.

The leader will now need to take up the complex
process of reconciling inconsistent replica logs.

Reconciliation messages

Contain the view “v” for which the reconciliation is
needed.

The view “v;” (prior) for which the status was
normal.

The logs of that replica

Merging of logs — step 1

The leader needs to get messages from “f”
replicas.

It considers the logs with the highest v, and retains
all the entries upto that point.

These entries are viewed as normal and thus need to
be maintained (previous reconciliations are respected).

Merging of logs — Steps 2, 3, 4

Selects the log with the most COMMITTED entries.

These operations are known to have succeeded, so they

are added to the combined log in COMMITTED state.
Starting with next sequence number, check if the
majority have the same summary hash for that
number.

If yes, add to log in SPECULATIVE state

Repeat for each sequence number

Gather other entries (sequence numbers), choose an
order add to log in speculative state.

Final step

Leader starts a new view and sends this log with
that new view number to all replicas.

When replicas receive, they install the new log
Roll back operations that are not in the new log
Execute operations in ascending order according to the
log.

Now the new state is set to normal and the replica

starts speculative processing of new requests.

See paper for discussion on ensuring progress
(liveness).

