
LECTURE 14 
Speculative Paxos 





Premise 

¨  Many distributed systems are designed 
independently from the underlying network. 

¨   Thus, they assume worst case situations 
¤   Completely asynchronous 

¨  Many distributed applications today are deployed 
on data centers  
¤   Network predictable and reliable 

¨  Can we synergize the distributed system design with 
the network to improve performance? 



Key contributions 

¨  MOM: Mostly ordered multicast 
¤   Tries to redesign multicast so that notifications arrive at 

recipients in order 
n   Remember that multicasting is a key primitive in many 

distributed systems (e.g., communications among replicas) 
¤ Gives almost total ordering. 

¨  Based on this – one can realize speculative Paxos 
¤   Commit before full consensus (as with Paxos or leader-

based Paxos) 
¤   Because of MOM – very few cases require 

reconciliation or repair 



Data center attributes 

¨  Predictable:  Structured topologies à easier to 
understand routes and latencies. 

¨   Reliable : Packet losses are rare. 
¨   Extensible 

¤   Use of technologies such as software-defined networking 
(SDN) allows flexibility in routing and in-network processing 
(using VMs or containers) of packets. 

¨  Why do we care?  à  Can help choose routes so as to 
obtain ordered multicast. 



Recall : Leader based Paxos 

¨  Throughput suffers because of the load on the leader. 
¨   If leader fails, a replica needs to take over as leader. 



Network structure 

¨  A single administrative domain and an OpenFlow type SDN 
controller 
¤   Allows implementation of customized forwarding rules. 

¨   Organized structure of multi-rooted trees of switches 
¤   Leaves are top-of-rack switches (to which all machines on the 

rack connect to) 
¤   Top of rack switches connect to an intermediate tier of switches 

called “aggregation tier” 
¤   These in turn connect to a “core tier” at the top level. 

¨   Control messages can be prioritized  (both for transmissions 
and avoiding drops) 
¤   So latencies and losses of coordination messages can be 

drastically reduced. 



Where are the replicas? 

¨  Google’s spanner and similar systems use one 
replica group per shard. 

¨   Hundreds of thousands of shards per data center. 
¨   Replicas that belong to a group may be on 

different racks but typically belong to the same 
cluster 
¤   To simplify cluster management and scheduling. 



Mostly-ordered Multicast Goal 

¨  We don’t want to go with a dedicated leader. 
¤   As discussed, it leads to bottlenecks and delays among 

other things. 

¨   How to provide ordered commits  (even if in some 
“rare” cases, we need to fix things) ? 

¨   Mostly-ordered multicasts! 
¤ To set the tone we first see what we mean by “totally 

ordered multicast” 



Totally ordered multicast 

¨  Clients communicate simultaneously with a group of 
N receivers  (here, replicas) 

¨   If process ni processes message m before m’, then 
any other node nj that receives m’ must process m 
before m’.  
¤   Ensuring this property holds during failures – is a 

problem equivalent to that of consensus. 

¨  MOM considers a relaxed version – i.e., the above 
requirement does not have to hold in every case. 



Mostly-ordered multicast property 

¨   The requirement for total ordered multicast is 
satisfied with high frequency 

¨   Occasionally the following ordering violations can 
occur: 
¤   nj processes m after m’ 
¤   nj does not process m at all (because it was lost) 

¨  While it can be implemented using a best-effort 
network primitive, takes advantage of network 
properties. 
¤   However, application code must handle ordering 

violations due to failures. 



Principles of MOM 

¨  Topology awareness à ensure that all multicast 
messages traverse same number of links. 
¤   Eliminates reordering due to path dilation 

¨  High prioritization à Highest QoS class 
¤   Eliminate reordering due to queuing delays 
¤   Packet drops due to congestion 

¨  In network serialization à route through a single 
root switch   
¤   Eliminate non-failure related reordering 



Example 

¨  Clients C1 and C2 communicating with a multicast group N1, N2 
and N3.  The three receivers share a multicast IP address. 
¤   This address is not shared by sub-nets. 

USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 45

a core tier at the top. Each ToR switch is connected to
multiple switches at the next level, thus providing desired
resilience in the face of link or switch failures. Racks
themselves are typically grouped into a cluster (about ten
to twenty racks) such that all connectivity within a cluster
is provided by just the bottom two levels of the network.

Within the data center, there may be many replicated
services: for example, Google’s Spanner and similar stor-
age systems use one replica group per shard, with hun-
dreds or thousands of shards in the data center. The repli-
cas in each group will be located in different racks (for
failure-independence) but may be located in the same
cluster to simplify cluster management and scheduling.
The service will receive requests from clients throughout
the data center.

Switch support for QoS. The controlled setting also
makes it possible to deploy services that can transmit cer-
tain types of messages (e.g., control messages) with higher
priority than the rest of the data center traffic. These pri-
orities are implemented by providing multiple hardware
or software output queues—one for each priority level.
When using strict priorities, the switch will always pull
from higher priority queues before lower priority queues.
The length and drop policy of each queue can be tuned to
drop lower priority traffic first and can also be tuned to
minimize latency jitter.

3 Mostly-Ordered Multicast
The consensus algorithms described in the previous sec-
tion rely heavily on the concept of ordering. Most Paxos
deployments dedicate a leader node to this purpose; ap-
proaches such as Fast Paxos [27] rely on requests to arrive
in order. We argue instead that the structured, highly-
engineered networks used in data centers can themselves
be used to order operations in the normal case. To that end,
this section explores different network-layer options for
providing a mostly-ordered multicast (MOM) mechanism.
We show that simple techniques can effectively provide
best-effort ordering in a data center.

3.1 Model
We consider multicast primitives that allow clients to com-
municate simultaneously with a group of receivers N.

In this category, the traditional totally-ordered multi-
cast provides the following property: if ni ∈ N processes
a multicast message m followed by another multicast mes-
sage m′, then any other node n j ∈ N that receives m′ must
process m before m′. Primitives like this are common
in group communication systems [3]. Ensuring that this
property holds even in the presence of failures is a prob-
lem equivalent to consensus, and would obviate the need
for application code to run protocols like Paxos at all.

Instead, we consider a relaxed version of this property,
which does not require it to hold in every case. A multicast
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Figure 2: Clients C1 and C2 communicating to a multicast group
comprising of N1, N2, and N3.

implementation is said to possess the mostly-ordered mul-
ticast property if the above ordering constraint is satisfied
with high frequency. This permits occasional ordering
violations: these occur if ni processes m followed by m′
and either (1) n j processes m after m′, or (2) n j does not
process m at all (because the message is lost).

This is an empirical property about the common-case
behavior, not a strict guarantee. As a result, MOMs can
be implemented as a best-effort network primitive. We
seek to take advantage of the properties of the data cen-
ter network previously described in order to implement
MOMs efficiently in the normal case. The property may
be violated in the event of transient network failures or
congestion, so application-level code must be able to han-
dle occasional ordering violations.

In this section, we first examine why existing multi-
cast mechanisms do not provide this property, and then
describe three techniques for implementing MOMs. Each
stems from the idea of equalizing path length between
multicast messages with a topology-aware multicast. The
second adds QoS techniques to equalize latency while
the third leverages in-network serialization to guarantee
correct ordering. In Section 3.4, we evaluate these pro-
tocols using both an implementation on an OpenFlow
switch testbed and a simulation of a datacenter-scale net-
work. We show that the first two techniques are effective
at providing MOMs with a reordering rate of ∼ 0.01–0.1%
and the third eliminates reorderings entirely except during
network failures.

3.2 Existing Multicast is Not Ordered
We first consider existing network-layer multicast mecha-
nisms to understand why ordering violations occur.

Using IP multicast, a client can send a single multi-
cast message to the target multicast address and have it
delivered to all of the nodes. Multicast-enabled switches
will, by default, flood multicast traffic to all the ports in
a broadcast domain. Unnecessary flooding costs can be
eliminated by using IGMP, which manages the member-
ship of a multicast group.

Using a network-level multicast mechanism, packets
from different senders may be received in conflicting or-



Example continued 

¨  Message from the client sent to root switch S1 or S2. 
¨   The root switch makes 3 copies and sends it down  

¤   All the three copies traverse same number of links. 
¤   The flexible routing can be realized using SDN 
¤   Fault tolerance by routing around failure (if enough 

redundant paths)  or changing root if needed  (see paper) 
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a core tier at the top. Each ToR switch is connected to
multiple switches at the next level, thus providing desired
resilience in the face of link or switch failures. Racks
themselves are typically grouped into a cluster (about ten
to twenty racks) such that all connectivity within a cluster
is provided by just the bottom two levels of the network.

Within the data center, there may be many replicated
services: for example, Google’s Spanner and similar stor-
age systems use one replica group per shard, with hun-
dreds or thousands of shards in the data center. The repli-
cas in each group will be located in different racks (for
failure-independence) but may be located in the same
cluster to simplify cluster management and scheduling.
The service will receive requests from clients throughout
the data center.

Switch support for QoS. The controlled setting also
makes it possible to deploy services that can transmit cer-
tain types of messages (e.g., control messages) with higher
priority than the rest of the data center traffic. These pri-
orities are implemented by providing multiple hardware
or software output queues—one for each priority level.
When using strict priorities, the switch will always pull
from higher priority queues before lower priority queues.
The length and drop policy of each queue can be tuned to
drop lower priority traffic first and can also be tuned to
minimize latency jitter.

3 Mostly-Ordered Multicast
The consensus algorithms described in the previous sec-
tion rely heavily on the concept of ordering. Most Paxos
deployments dedicate a leader node to this purpose; ap-
proaches such as Fast Paxos [27] rely on requests to arrive
in order. We argue instead that the structured, highly-
engineered networks used in data centers can themselves
be used to order operations in the normal case. To that end,
this section explores different network-layer options for
providing a mostly-ordered multicast (MOM) mechanism.
We show that simple techniques can effectively provide
best-effort ordering in a data center.

3.1 Model
We consider multicast primitives that allow clients to com-
municate simultaneously with a group of receivers N.

In this category, the traditional totally-ordered multi-
cast provides the following property: if ni ∈ N processes
a multicast message m followed by another multicast mes-
sage m′, then any other node n j ∈ N that receives m′ must
process m before m′. Primitives like this are common
in group communication systems [3]. Ensuring that this
property holds even in the presence of failures is a prob-
lem equivalent to consensus, and would obviate the need
for application code to run protocols like Paxos at all.

Instead, we consider a relaxed version of this property,
which does not require it to hold in every case. A multicast
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Figure 2: Clients C1 and C2 communicating to a multicast group
comprising of N1, N2, and N3.

implementation is said to possess the mostly-ordered mul-
ticast property if the above ordering constraint is satisfied
with high frequency. This permits occasional ordering
violations: these occur if ni processes m followed by m′
and either (1) n j processes m after m′, or (2) n j does not
process m at all (because the message is lost).

This is an empirical property about the common-case
behavior, not a strict guarantee. As a result, MOMs can
be implemented as a best-effort network primitive. We
seek to take advantage of the properties of the data cen-
ter network previously described in order to implement
MOMs efficiently in the normal case. The property may
be violated in the event of transient network failures or
congestion, so application-level code must be able to han-
dle occasional ordering violations.

In this section, we first examine why existing multi-
cast mechanisms do not provide this property, and then
describe three techniques for implementing MOMs. Each
stems from the idea of equalizing path length between
multicast messages with a topology-aware multicast. The
second adds QoS techniques to equalize latency while
the third leverages in-network serialization to guarantee
correct ordering. In Section 3.4, we evaluate these pro-
tocols using both an implementation on an OpenFlow
switch testbed and a simulation of a datacenter-scale net-
work. We show that the first two techniques are effective
at providing MOMs with a reordering rate of ∼ 0.01–0.1%
and the third eliminates reorderings entirely except during
network failures.

3.2 Existing Multicast is Not Ordered
We first consider existing network-layer multicast mecha-
nisms to understand why ordering violations occur.

Using IP multicast, a client can send a single multi-
cast message to the target multicast address and have it
delivered to all of the nodes. Multicast-enabled switches
will, by default, flood multicast traffic to all the ports in
a broadcast domain. Unnecessary flooding costs can be
eliminated by using IGMP, which manages the member-
ship of a multicast group.

Using a network-level multicast mechanism, packets
from different senders may be received in conflicting or-



Other attributes 

¨  Even if one of the root switches is more congested 
than the other, the prioritization comes to the rescue. 
¤   If S2 is more congested than S1,  it is ok since both 

prioritize the MOM messages. 
¨  But still some variations can occur.  So this is handled 

using in-network serialization i.e., use same top level 
switch. 
¤   Acts as a serialization point – the order in which this 

switch sees the messages is the order in which they are 
sent. 



MOM and consensus 

¨  How should MOM’s properties affect how consensus 
is achieved ? 

¨   What does it give us? 
¤   Approximate synchrony  à  strong ordering during the 

common case,  but this strong ordering property can be 
violated during occasional failures. 

¨  How do we take advantage of this ? 
¤    Speculative Paxos 



Basics 

¨  Speculative Paxos is a state machine replication 
protocol. 

¨   Common case :  
¤    Rely on MOM 
¤   Speculatively execute requests  (before agreement is 

reached). 
n    Minimum latency  (only two message delays) 
n   High throughput à no need to communicate between 

replicas on each request. 
¤ Reconciliation via rollback when there are inconsistent 

operations. 



What does it guarantee ? 

¨  Linearizability if there are no more than f failures.  
¨   Operations appear in consistent sequential order. 

¤   Each operation sees the effect of the operation before 
it. 
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(a) Reorder rates with varying network utilization; MOM sending rate
fixed at 50,000 per second.

(b) Reorder rates with varying MOM throughput; background traffic
fixed at 10% average utilization.

Figure 5: Simulated packet reorder rates, in a 160-switch, three-level fat-tree network

Figure 5(b), we vary the MOM sending rate and fix the
average utilization to 10%. Results are similar for other
utilization rates.

As expected, the standard multicast approach has a
relatively high rate of packet reorderings because packets
traverse paths of varying lengths. Simply being aware
of the topology reduces the rate of reorderings by an
order of magnitude, and employing QoS prioritization
mitigates the impact of congestion caused by other traffic.
The in-network serialization approach achieves perfect
ordering: as packets are routed through a single switch,
only congestion losses could cause ordering violations.

Latency. As we previously observed, MOM can in-
crease the path length of a multicast message to the
longest path from a sender to one of the receivers. As a
result, the time until a message arrives at the first receiver
increases. However, for more than 70% of messages, the
average latency over all receivers remains unchanged.
The latency skew, i.e., the difference between maximum
and minimum delivery time to all recipients for any given
message, is in all cases under 2.5 µs for the in-network
serialization approach.

4 Speculative Paxos
Our evaluation in the previous section shows that we can
engineer a data center network to provide MOMs. How
should this capability influence our design of distributed
systems? We argue that a data center network with MOMs
can be viewed as approximately synchronous: it provides
strong ordering properties in the common case, but they
may occasionally be violated during failures.

To take advantage of this model, we introduce Spec-
ulative Paxos, a new state machine replication protocol.
Speculative Paxos relies on MOMs to be ordered in the
common case. Each replica speculatively executes re-
quests based on this order, before agreement is reached.
This speculative approach allows the protocol to run with
the minimum possible latency (two message delays) and
provides high throughput by avoiding communication be-

Client interface
• invoke(operation)→ result

Replica interface
• speculativelyExecute(seqno, operation)

→ result
• rollback(from-seqno, to-seqno,

list<operations>)
• commit(seqno)

Figure 6: Speculative Paxos library API

tween replicas on each request. When occasional ordering
violations occur, it invokes a reconciliation protocol to
rollback inconsistent operations and agree on a new state.
Thus, Speculative Paxos does not rely on MOM for cor-
rectness, only for efficiency.

4.1 Model
Speculative Paxos provides state machine replication, fol-
lowing the model in Section 2.1. In particular, it guaran-
tees linearizability [16] provided that there are no more
than f failures: operations appear as though they were ex-
ecuted in a consistent sequential order, and each operation
sees the effect of operations that completed before it. The
API of the Speculative Paxos library is shown in Figure 6.

Speculative Paxos differs from traditional state ma-
chine replication protocols in that it executes operations
speculatively at the replicas, before agreement is reached
about the ordering of requests. When the replica re-
ceives a request, the Speculative Paxos library makes
a speculativelyExecute upcall to the application code,
providing it with the requested operation and an associ-
ated sequence number. In the event of a failed speculation,
the Speculative Paxos library may make a rollback up-
call, requesting that the application undo the most recent
operations and return to a previous state. To do so, it
provides the sequence number and operation of all the
commands to be rolled back. The Speculative Paxos li-
brary also periodically makes commit upcalls to indicate

7



Speculative execs 

¨  Replicas execute operations before agreement is 
reached. 

¨   Upon receiving  the speculative Paxos library makes 
the speculative execution upcall to the application.  
¤   Attributes are the operation and a sequence number. 

¨  When there is a failed speculation a rollback is invoked 
to undo the most recent operations and return to a 
known state 
¤   Informs application about all operations/sequence numbers 

to be rolled back. 
¨  Commit upcalls for those previous speculative 

operations that are never going to be rolled back. 



Failure model 

¨  Crash failures. 
¨   Remains correct under the same assumptions as Paxos 

or Viewstamped replication 
¤   2f +1  replicas will provide safety as long there are no 

more than f replica failures.  

¨  Liveness as long as messages are repeatedly sent and 
eventually delivered before the recipients time out. 
¤   Same as Paxos 
¤   This requirement is necessary because of FLT theorem 

(impossibility of consensus in an asynchronous system). 



Protocols 

¨  Speculative Paxos consists of three protocols. 
¨  Normal execution : Speculative processing commits 

requests efficiently. 
¤   Messages are ordered 
¤   Less than f/2 replicas have failed 

¨  Synchronization :  Verify that replicas have 
speculatively executed the same requests in the same 
order. 

¨  Reconciliation: Ensures progress when requests are 
delivered out of order or when between f/2 and f 
replicas have failed.  



Replica states 

¨   NORMAL : Allow speculative processing of new 
operations. 

¨   RECONCILIATION:  The reconciliation protocol is 
being applied (more later). 

¨   RECOVERY :  Failed replica is reconstructing state. 
¨   RECONFIGURATION:  Updates to replica 

memberships. 



Replica log 

¨  Log is a sequence of operations executed by the replica 
¤   Each has a sequence number. 
¤   State is either SPECULATIVE or COMMITTED 

n   All COMMITTED operations precede SPECULATIVE operations. 

¨  Each log entry has a summary hash 
¤   A hash of the previous summary and current operation 

n   Why ?  

Two replicas that agree on a summary for an entry n, 
have the same ordering of operations up to that entry. 
 
Standard checkpointing can help truncate logs  



View service 

¨  System moves through a series of views   
¤    Each has a view number and leader 
¤    Leader can be selected using round robin ordering 

(recall election) 
¤   Leader’s role is to mainly co-ordinate synchronization 

and reconciliation. 



Speculative Processing 

¨  Client requests an operation 
¨   Speculative Paxos library sends request to all replicas 

¤   client ID, operation, request identifier 
¤   Using the MOM primitive --so mostly operations are 

ordered. 
¨  Replicas speculatively execute request and send 

“SPECULATIVE-REPLY” messages to the clients. 
¨  Client checks to see if    (a superquorum) 

responds and if they do, commit transaction. 
¤   The operation needs to be consistent across replicas in 

terms of the current operation and a summary hash (which 
ensures that the order upto this transaction) are identical 
across replicas. 



Failure or Success  

¨  If responses don’t match  (i.e., there is no 
superquorum) or if there aren’t sufficient responses 
before a time out,  the client initiates a 
reconciliation. 

¨   Note if there is a success, the replicas don’t know 
that the operation has committed  
¤   This is taken care of later in reconciliation 

n   Even if there are failures, the operation is not rolled back. 



Why not just a quorum ? 

¨  This is because of speculative execution. 
¨  Let us say instead of a superquorum we only 

needed quorum (f+1).   
¨  Let us say the client only got exactly f+1 responses. 

¤   Let the other f speculatively applied some other 
transaction. 

¨  The client commits the transaction, but the replicas 
have only done it speculatively. 
¤   So if even one fails,  the recovery protocol cannot 

distinguish the order. 



How does superquorum help? 

¨  Now we can have only < (f/2) replicas apply some 
other transaction. 

¨   So even if another (f/2) fail from those in the 
superquorum we have (f+1) replicas applying the 
operation correctly. 
¤   We can still tolerate f failures. 

¨  This helps establish correct order during 
reconciliation. 



Synchronization 

¨  Since during the speculative processing the replicas do not 
know that a superquorum has committed to the operation, 
they need to do so. 

¨   They do this via a leader initiated -- periodic 
synchronization – say every t seconds. 

¨   A synchronization message has the current view number, 
the highest sequence number in the log (including 
speculative transactions) and the hash associated with the 
summary log. 

¨   Leader commits if there are more than a superquorum of 
replicas that agree on these. 
¤   Confirms to all replicas  (learning in Paxos – so that everyone 

can commit) 
n   If no superquorum,  go to reconciliation. 



Divergence 

¨  Reconciliation is invoked whenever there is a 
divergence across replicas 
¤   Sequence number of operations, or hash summary. 

¨  Every replica stops processing new client requests 
and enters reconciliation phase. 

¨   They send reconciliation messages to each other 
and to the leader. 

¨   The leader will now need to take up the complex 
process of reconciling inconsistent replica logs. 



Reconciliation messages 

¨  Contain the view “v” for which the reconciliation is 
needed. 

¨   The view “vl”  (prior) for which the status was 
normal. 

¨   The logs of that replica 



Merging of logs – step 1 

¨   The leader needs to get messages from “f” 
replicas. 

¨   It considers the logs with the highest vl and retains 
all the entries upto that point. 
¤   These entries are viewed as normal and thus need to 

be maintained (previous reconciliations are respected). 



Merging of logs – Steps 2, 3, 4 

¨   Selects the log with the most COMMITTED entries.  
¤ These operations are known to have succeeded, so they 

are added to the combined log in COMMITTED state. 
¨   Starting with next sequence number, check if the 

majority have the same summary hash for that 
number. 
¤   If yes, add to log in SPECULATIVE state 
¤   Repeat for each sequence number 

¨   Gather other entries (sequence numbers), choose an 
order add to log in speculative state. 



Final step 

¨  Leader starts a new view and sends this log with 
that new view number to all replicas. 

¨   When replicas receive, they install the new log 
¤   Roll back operations that are not in the new log 
¤   Execute operations in ascending order according to the 

log. 
¨  Now the new state is set to normal and the replica 

starts speculative processing of new requests. 
¤   See paper for discussion on ensuring progress 

(liveness). 


