
LECTURE 13 
Reliable Group Communications/Transactions 



Need for reliable group 
communications 

¨  All processes (replicas) should agree to the same 
transaction. 

¨   Reliable delivery of messages from a coordinator 
to replicas. 
¤   Easy way:  Send and wait for ACK (e.g., using TCP) but 

results in blocking at coordinator 
¤   ACK implosion:  All the receivers send ACKs 

overwhelming the sender. 



Reliable Multicast 

¨   Receivers keep track of sequence numbers of 
transmissions and only NACK missing messages. 

¨   A hierarchy is possible – a group of receivers with 
a coordinator each. 
¤   Coordinator performs reliable multicast to all 

receivers. 

¨  Key issue:  What happens when nodes fail ? 



Distributed Transactions 

¨  Partitioning of state necessary to scale 

¨  Partitioning results in the need for transactions 
¤ Atomically execute operations across shards 

¨  Examples: 
¤ Add meeting to calendars of two participants 
¤ Transfer money from one account to another 
¤ Looking up balance of two accounts 
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Concurrency + Serializability 

¨  Execution of transactions: 

¨  Externally visible effects: 
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Example of Serializability 

¨  Concurrent execution of transactions: 
¤ T1: Transfer $10 from Alice to Bob 
¤ T2: Read balance in Alice’s and Bob’s accounts 
¤  Initial balance of $100 in both accounts 

¨  Permissible outputs for T2: 
¤  (Alice: $100, Bob: $100) or (Alice: $90, Bob: $110) 

¨  Invalid outputs for T2: 
¤  (Alice: $90, Bob: $100) or (Alice: $100: Bob: $110) 
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Atomic multicast 

¨  Client contacts replica P for an update. 
¨   P multicasts the update to all other replicas. 
¨   If P crashes before multicast completes: 

¤   Some members may have received others may not! 

¨  Requirement:  Either all non-faulty members perform 
the update (equivalent to P crashing after) or none 
do (equivalent to P crashing before) 



Group views 

¨  Atomic multicasting of a message “M” is uniquely 
associated with a group G  (Group view) 
¤   Processes to which M is to be delivered. 

¨   Key question:  What happens if the group changes 
in between (a new process Q joins or leaves group)? 

¨   A “view change” takes place that announces this. 
¨   However, M needs to be either delivered to all 

processes in group G before the view change is 
executed. 



Virtual Synchrony 

¨  A message multicast to a group view G is delivered 
to each non-faulty process in G. 

¨   If the sender of the message crashes: 
¤   the message is either delivered to all the remaining 

processes; or, 
¤   ignored by all of them 

¨   If these properties are satisfied, the reliable 
multicast is said to be virtually synchronous. 



Example 

•  If virtual synchrony is satisfied, 
message not delivered to S2 and S4 
after S3 crashes. 



Categorization 

¨  Unordered 
¨  FIFO ordered 
¨  Causally ordered 

¨   Total ordered multicasts:  messages are delivered 
in same order to all members. 
¤   The commits are consistent across all members. 



Distributed commit 

¨  Distributed commit problem is having an operation 
performed by all members of a process group or 
none at all. 
¤   Note: reliable multicasting is only delivery of a 

message. 

¨  One phase commit:  Coordinator tells participants 
whether or not to locally perform the operation. 

¨  Drawback: If a candidate fails to perform the 
operation no way of telling the coordinator! 



Two phase commit protocol (2PC) 

¨  Cooridinator sends a VOTE-REQUEST to 
participants 

¨   Each participant, upon receipt, either sends  VOTE-
COMMIT or VOTE-ABORT. 

¨   Coordinator collects votes; if all commit, sends a 
GLOBAL-COMMIT; else, sends a GLOBAL-ABORT 

¨  Participants who voted for commit, waits and does 
what the coordinator finally says. 



Issues 

¨  Failures can cause issues with the basic 2PC 
protocol. 

¨  For example, a process may crash – and other 
processes may indefinitely wait for a message from 
that process. 

 



2PC -- FSMs 

¨  (a) The FSM for the coordinator 
¨  (b) The FSM for the participant. 
 



Exiting from blocking states 

¨  A participant may be blocked in the INIT state 
¤   Times out and issues VOTE-ABORT if no VOTE-REQUEST is 

received. 
¨  A coordinator maybe blocked in the WAIT state. 

¤   Times out and issues GLOBAL-ABORT if not all votes are 
collected within a certain time. 

¨  A participant maybe blocked in the READY state – waiting 
for the results of the global vote. 
¤   Now the participant cannot simply time out and abort. 
¤   Needs to find out what was actually sent by the coordinator. 
¤   Either block until coordinator recovers (delays) or 
¤   Contact another participant to check if a COMMIT or ABORT 

was received. 



Blocked Participant in READY 

¨  If Q is in INIT state – it means it did not receive 
even the VOTE-REQUEST – thus, P should abort. 

¨  If Q is in the READY state also it has the same issue 
as P – so contact another participant. 
¤   If all participants are in READY, no choice but to wait 

for the coordinator to recover. 
 



Crashes 

¨   State information stored into persistent storage for 
recovery upon crashes. 

¨  When participant crashes in READY, does not know 
whether to abort or commit upon recovery 
¤   In INIT, COMMIT or ABORT states this problem doesn’t 

arise. 
¤   Needs to contact other participants 

¨  Coordinator needs to record  
¤ WAIT state – retransmit VOTE-REQUEST upon recovery. 
¤ Decision (COMMIT or ABORT) – which is retransmitted upon 

recovery. 



Achieving Serializability 

¨  When is concurrent execution of transactions safe? 
¤ Data read/written is disjoint 

¨  When must two transactions execute in order? 
¤  Intersection in data read/written 

¨  Solution for serializability: 
¤ Fine-grained locks 
¤ Transaction coordinator first acquires locks for all data 
¤ Execute transaction and release locks 
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Two Phase Locking 
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•  Transaction aborted since P2 did not commit to 
lock 



Two Phase Locking 
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Can we reduce latency for read-only transactions? 

Return data in first round if lock not held 



Optimizing Read-Only Txns 

¨  Concurrent execution of transactions: 
¤ T1: Transfer $10 from Alice to Bob 
¤ T2: Read balance in Alice’s and Bob’s accounts 
¤  Initial balance of $100 in both accounts 

¨  Problematic sequence of concurrent execution? 
¤ TC2 reads Alice’s account balance as $100 
¤ TC1 executes 2PL to acquire locks on both accounts, 

transfer $10, and release locks 
¤ TC2 reads Bob’s account balance as $110 
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Lock-free Read-Only Txns 
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Fault Tolerance of 2PL 
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Fault Tolerance of 2PL 
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Okay to commit after timeout? 



Fault Tolerance of 2PL 
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Fault Tolerance of 2PL 
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When can we garbage collect transaction log? 



Garbage Collection 

¨  Lock acquisition in node log: 
¤ Node receives commit from TC and writes to its log 

¨  Commit operation in TC log: 
¤ After all nodes say transaction committed 

¨  Commit operation in node log: 
¤ Upon applying operation to local state 
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Fault Tolerance 
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Transaction cannot succeed if any partition unavailable 


