
LECTURE 13
Reliable Group Communications/Transactions

Need for reliable group
communications

¨  All processes (replicas) should agree to the same
transaction.

¨  Reliable delivery of messages from a coordinator
to replicas.
¤  Easy way: Send and wait for ACK (e.g., using TCP) but

results in blocking at coordinator
¤  ACK implosion: All the receivers send ACKs

overwhelming the sender.

Reliable Multicast

¨  Receivers keep track of sequence numbers of
transmissions and only NACK missing messages.

¨  A hierarchy is possible – a group of receivers with
a coordinator each.
¤  Coordinator performs reliable multicast to all

receivers.

¨  Key issue: What happens when nodes fail ?

Distributed Transactions

¨  Partitioning of state necessary to scale

¨  Partitioning results in the need for transactions
¤ Atomically execute operations across shards

¨  Examples:
¤ Add meeting to calendars of two participants
¤ Transfer money from one account to another
¤ Looking up balance of two accounts

4

Concurrency + Serializability

¨  Execution of transactions:

¨  Externally visible effects:

5

T2

T3

T1

T2

T1

T3

Example of Serializability

¨  Concurrent execution of transactions:
¤ T1: Transfer $10 from Alice to Bob
¤ T2: Read balance in Alice’s and Bob’s accounts
¤  Initial balance of $100 in both accounts

¨  Permissible outputs for T2:
¤  (Alice: $100, Bob: $100) or (Alice: $90, Bob: $110)

¨  Invalid outputs for T2:
¤  (Alice: $90, Bob: $100) or (Alice: $100: Bob: $110)

6

Atomic multicast

¨  Client contacts replica P for an update.
¨  P multicasts the update to all other replicas.
¨  If P crashes before multicast completes:

¤  Some members may have received others may not!

¨  Requirement: Either all non-faulty members perform
the update (equivalent to P crashing after) or none
do (equivalent to P crashing before)

Group views

¨  Atomic multicasting of a message “M” is uniquely
associated with a group G (Group view)
¤  Processes to which M is to be delivered.

¨  Key question: What happens if the group changes
in between (a new process Q joins or leaves group)?

¨  A “view change” takes place that announces this.
¨  However, M needs to be either delivered to all

processes in group G before the view change is
executed.

Virtual Synchrony

¨  A message multicast to a group view G is delivered
to each non-faulty process in G.

¨  If the sender of the message crashes:
¤  the message is either delivered to all the remaining

processes; or,
¤  ignored by all of them

¨  If these properties are satisfied, the reliable
multicast is said to be virtually synchronous.

Example

•  If virtual synchrony is satisfied,
message not delivered to S2 and S4
after S3 crashes.

Categorization

¨  Unordered
¨  FIFO ordered
¨  Causally ordered

¨  Total ordered multicasts: messages are delivered
in same order to all members.
¤  The commits are consistent across all members.

Distributed commit

¨  Distributed commit problem is having an operation
performed by all members of a process group or
none at all.
¤  Note: reliable multicasting is only delivery of a

message.

¨  One phase commit: Coordinator tells participants
whether or not to locally perform the operation.

¨  Drawback: If a candidate fails to perform the
operation no way of telling the coordinator!

Two phase commit protocol (2PC)

¨  Cooridinator sends a VOTE-REQUEST to
participants

¨  Each participant, upon receipt, either sends VOTE-
COMMIT or VOTE-ABORT.

¨  Coordinator collects votes; if all commit, sends a
GLOBAL-COMMIT; else, sends a GLOBAL-ABORT

¨  Participants who voted for commit, waits and does
what the coordinator finally says.

Issues

¨  Failures can cause issues with the basic 2PC
protocol.

¨  For example, a process may crash – and other
processes may indefinitely wait for a message from
that process.

2PC -- FSMs

¨  (a) The FSM for the coordinator
¨  (b) The FSM for the participant.

Exiting from blocking states

¨  A participant may be blocked in the INIT state
¤  Times out and issues VOTE-ABORT if no VOTE-REQUEST is

received.
¨  A coordinator maybe blocked in the WAIT state.

¤  Times out and issues GLOBAL-ABORT if not all votes are
collected within a certain time.

¨  A participant maybe blocked in the READY state – waiting
for the results of the global vote.
¤  Now the participant cannot simply time out and abort.
¤  Needs to find out what was actually sent by the coordinator.
¤  Either block until coordinator recovers (delays) or
¤  Contact another participant to check if a COMMIT or ABORT

was received.

Blocked Participant in READY

¨  If Q is in INIT state – it means it did not receive
even the VOTE-REQUEST – thus, P should abort.

¨  If Q is in the READY state also it has the same issue
as P – so contact another participant.
¤  If all participants are in READY, no choice but to wait

for the coordinator to recover.

Crashes

¨  State information stored into persistent storage for
recovery upon crashes.

¨  When participant crashes in READY, does not know
whether to abort or commit upon recovery
¤  In INIT, COMMIT or ABORT states this problem doesn’t

arise.
¤  Needs to contact other participants

¨  Coordinator needs to record
¤ WAIT state – retransmit VOTE-REQUEST upon recovery.
¤ Decision (COMMIT or ABORT) – which is retransmitted upon

recovery.

Achieving Serializability

¨  When is concurrent execution of transactions safe?
¤ Data read/written is disjoint

¨  When must two transactions execute in order?
¤  Intersection in data read/written

¨  Solution for serializability:
¤ Fine-grained locks
¤ Transaction coordinator first acquires locks for all data
¤ Execute transaction and release locks

19

Two Phase Locking
20

TC

P1

P2

P3

Lock Abort

•  Transaction aborted since P2 did not commit to
lock

Two Phase Locking
21

TC

P1

P2

P3

Lock Commit

Can we reduce latency for read-only transactions?

Return data in first round if lock not held

Optimizing Read-Only Txns

¨  Concurrent execution of transactions:
¤ T1: Transfer $10 from Alice to Bob
¤ T2: Read balance in Alice’s and Bob’s accounts
¤  Initial balance of $100 in both accounts

¨  Problematic sequence of concurrent execution?
¤ TC2 reads Alice’s account balance as $100
¤ TC1 executes 2PL to acquire locks on both accounts,

transfer $10, and release locks
¤ TC2 reads Bob’s account balance as $110

22

Lock-free Read-Only Txns
23

TC1

P1

P2

TC2

Read

Commit
Lock

Fault Tolerance of 2PL
24

TC1

P1

P2

TC2

Lock Commit

Lock Commit

Fault Tolerance of 2PL
25

TC

P1

P2

P3

Lock Commit

Okay to commit after timeout?

Fault Tolerance of 2PL
26

TC

P1

P2

P3

Lock Abort

Fault Tolerance of 2PL
27

TC

P1

P2

P3

Lock Commit

When can we garbage collect transaction log?

Garbage Collection

¨  Lock acquisition in node log:
¤ Node receives commit from TC and writes to its log

¨  Commit operation in TC log:
¤ After all nodes say transaction committed

¨  Commit operation in node log:
¤ Upon applying operation to local state

28

Fault Tolerance
29

TC

P1

P2

P3

Lock Abort

Transaction cannot succeed if any partition unavailable

