LECTURE 12

Naming

The use of a DHT could be used for name resolution.

Finding the path to a desired object

While this works in certain contexts (e.g., peer to
peer file sharing), it is not used en masse.

Distributed systems use structured names

Easy for humans to read

Name spaces

Names organized into name spaces

Structured as a labeled, directed graph

Leaves have no outgoing edges and generally store
information (e.g., the address to a file)
Directory nodes have a number of outgoing edges

stores a table which is represented as a node identifier,
edge label (so as to enable the graph traversal)

Example

Data stored in n1 no

n2: "elke" home Keys

n3: "max" "Ikeys"

e Sieen uL L “lhome/steen/keys"

elke/” . \:teen
O Leaf node
nd keys
Direclory node
procmail mbox

"/home/steen/mbox”

* The node nO has only outgoing edges — the root
* The naming graph is a directed acyclic graph -- no cycles

Path names

Each path in a naming graph — referred to by a
sequence of labels

no:[n1,n4, mbox] or n0/n1/n4/mbox

If the first node is the root, it is an absolute path
name; else a relative path name.

Name resolution

How do we look up a name ¢
This is referred to as name resolution.
Consider a path name N:[label,, label,, ... label]

The resolution here starts at node N

That node looks up label, in its directory table, and
returns the identifier of the node associated with that

label.

Resolution then continues at that node.

Typically at least need the root.

Aliasing and symbolic links

Alias : an alternate name for the same entity
Below both /keys and /home/steen/keys refer to the same
entity.

When resolving an absolute path name leading to a node
(here nb), the resolution returns the path stored at né.

It then continues with resolving that new path name.

Data stored in n1 n0

/n2: "elke" J—_——’_’:’_)me/_,-/ \.\‘\(eys
n3: "max" ~ \"'\5,\
N4 "steen | n1 \n3) “/keys
elkeA ax \teen
y h 4

N 7
'\rl?/ |\q3 n4 Data stored in n6

3
.procmai ﬂbo{ \‘kw

'/- -> (‘ -\l l/ 6 ' " "r) t {k ’ "
9) \nB) "home/steen/keys

Naming in a distributed system

The concept of a foreign name space
Each part of the system has its own name space
Foreign to the other naming services.
Name resolution can be used to merge the spaces
in a transparent way.
One can mount the foreign name space

The directory node (e.g., root) is called a mounting
point and is attached to the name space at the ““home”™
name server.

What is necessary ¢

To mount a foreign name space, a distributed
system requires at least the following:
The name of an access protocol (e.g., nfs or Network
File System)
URL nfs:/ /flits.cs.vu.nl /home /steen

The name of the server

The name of the mounting point in the foreign name
space.

Latter two specified above.

Mounting remote name spaces

Name server Name server for foreign name space
\ Machine A \ Machine B

remote Yeys

YU ("nfs:/Alits.cs.vu.nl//home/steen” |

v

/ Network
Reference to foreign name space

71 Root directory has a subdirectory remote

o1 Includes mount points for various foreign name spaces including a URL
nfs: / /flits.cs.vu.nl /home /steen

How does this work?

Consider a remote file system that is mounted using
the approach described.

The mounted remote file system allows a client
machine to execute commands like they are done
locally.

For example, cd /remote /vu and then running ls.

Implementing a name space

A hierarchical structure

At the top a global layer
Very stable — organizations or groups of organizations

Next layer — administrational layer

Also stable but less than global — groups of entities
belonging to same organization or administrative unit.

Managerial layer

Individuals manage these typically and they change
regularly.

The DNS name space example

Global gov” mil org “net
layer com™ ed Ay i
us -
/ jp \ n' 7‘-} \\‘
! \
' ,"
oracle | yale acm / \eee , ac / \CO EUVB/ ,\,\-\vu
' h y v
| : VL
gt e S s ! ~ P4
Adminis- eng /cs\eng jack/ Jill keio nec 1 _cs
trational N
’ \
layer | / \ - sl : ft;y WWW
al linda \ H
\‘ ’l
pc24 N -l
_____________ . F'""""':_'..'_ SLoZ=T T
robot ! " ,-" pub T
1 ’ .
E_-_____________-_____________-_______-______: ”I \\\
f
Mana / globule v
. - ' ’
gerial [!
layer Zone \ ;

\\i ndex.htm

Comparison between name servers
S

Issue Global Administrational | Managerial
Geographical scale Worldwide Organization Department
Number of nodes Few Many Vast numbers
Responsiveness to lookups | Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None
Client-side caching Yes Yes Sometimes

Name resolution in a distributed sytem

Typically when a client wants to resolve a name, it
has access to a local name resolver.

This is responsible for ensuring that the name
resolution process is carried out.

Let us take an example:

Two ways in which this can be resolved
lterative name resolution

Recursive name resolution

ftp://ftp.cs.vu.nl/pub/globe/index.html

lterative name resolution

—

Client's
name
resolver

1. [nl,vu,cs,fip]

[nl,vu,cs.ftp]T i#[nl.vu.os.ftp]

> - Root
2. #[nl], [vu,cs, ftp] LSS SOfves \“
< 3. [vu,cs,ftp] » Nameserver | [
4. #[wu], [cs,ftp] Mnode | // :
vu
5. [cs,Mp] »| Name server §
6 #lcs), 1] wnode | o
....... CSl
7. [ftp] p Name server
< 8. #[ftp] cs node
Nodes are /
managed by

the same server

11 Iteratively go through the hierarchical structure of name servers until
the service is obtained.

11 The last step of contacting the ftp server and retrieving the file is
carried out by the client process.

Recursive name resolution
e

1. [nl,vu,cs,ftp]
- > Root
8. #[nl.vu.cs.fip] name server)2. [vu,cs,ftp]
7. #[vu,cs,ftp Name server

)
Client's nl node 3. [cs,tp]
name
resolver 6. #[cs, fip] Name server

vu node)4. Iftp]
5. #[ftp) (Name server

cs node

[nl,vu,cs.ftp]T i#[nl,vu,cs,ftp]
1 EAch server tries to contact the resolved name server In the
chain by itself.

o However this can add significant load on some of the higher tier
name servers (e.g., global).

What is returned ¢
-

Server Should Looks up Passes to Receives Returns
for node resolve child and caches |to requester
cs [ftp] #[ftp] — — #[ftp]
vu [cs, ftp] #[cs] [ftp] #{ftp] #[cs]
#[cs, ftp]
nl [vu,cs, ftp] [#[vu] [cs, ftp] #cs] #[vu]
#[cs, ftp] #[vu, cs]
#[vu, cs, ftp]
root [nl,vu, cs, ftp] |#[nl] [vu,cs, ftp] |#[vu] #[nl]
#[vu, cs] #[nl, vu]
#[vu, cs, ftp] [#[nl, vu, cs]
#[nl, vu, cs, ftp]

Caching

Note that the higher layer entities can cache the
results so that one does not need to go and resolve

the names each time.

n fact, resolved information about higher layers
(layers that do not change often) can be cached at
the clients

This information does not change much.

Reduction in communication costs with

recursion
I

0 If the client (say in LA) is far from the server (say
in NL), then iterative name resolution consumes
more communication cost.

Recursive name resolution

Name server
nl node
R2
Client Name server
ien vu node
Name server D R3
Iterative name resolution > cs node

Long-distance communication

