
LECTURE 11
DHTs and Amazon Dynamo

Scaling up

¨ Assumption so far: All replicas have entire state
¤ Example: Every replica has value for every key

¨ What we need instead:
¤ Partition state
¤ Map partitions to servers

2

Partitioning state

¨ Modulo hashing
¤ Apply hash function to key
¤ Compute modulo to # of servers (N)
¤ Store (key, value) pair at hash(key) mod N

¨ Example:
¤ Store student’s transcripts across 4 servers
¤ Hash function = (Year of birth) mod 4
¤ Hash function = (Date of birth) mod 4

¨ Problem: Skew in load across servers

3

Problem for modulo hashing:
Changing number of servers

Server

Object serial number

h(x) = x + 1 (mod 4)

7 10 11 27 29 36 38 40

4

3

2

1

0
5

Keys remapped to new nodes à Need to
transfer values

4

Add one machine: h(x) = x + 1 (mod 5)

Consistent Hashing

¨ Represent hash space as a circle

¨ Partition keys across servers
¤ Assign every server a random ID
¤ Hash server ID
¤ Server responsible for keys between

predecessor and itself

¨ How to map a key to a server?
¤ Hash key and execute read/write at

successor

5

0

4

8

12

Shard

S2

S1

S4

S3

Adding/Removing Nodes

¨ Minimizes migration of state upon change in set of
servers
¤ Server addition: New server splits successor’s shard
¤ Server removal: Successor takes over shard

6

0

4

8

12

S2

S1

S4

S3

0

4

8

12

S2

S1

S4

S3

0

4

8

12
S1

S4

S3

S5S5

¨ Each server gets multiple (say v) random IDs
¤ Each ID corresponds to a virtual node

¨ If N servers with v virtual nodes per server, each
virtual node owns 1/(vN)th of hash space

¨ Larger v à better load balancing
¤ Vary v across servers to account for heterogeneity

Virtual nodes
7

¨ What happens upon server failure?
¤ v successors take over
¤ Each now stores (v+1)/v×1/Nth of hash space

Virtual nodes
8

0

4

8

12

14
S2.2

S1.2

S2.1

S1.1

S1.3

Using Consistent Hashing

Client

Front-end

Server

Server

Server

9

Front-end

How does client map keys to servers?

Front-ends must agree on set of active servers

Distributed Hash Table

¨ Scalable lookup of node responsible for any key
¤ Scale to thousands (or even millions) of nodes
¤ No one node knows all nodes in the system

¨ Example usage:
¤ Trackerless BitTorrent
¤ Key = File content hash
¤ Value = IP addresses of nodes that have file content

10

Successor pointers

¨ If you don’t have value for key, forward to succ.

11

N32

N90

N105
N10

N60

N120

K80

K80

K80

O(N) Lookup

Downside of
approach?

Efficient lookups

¨ What’s required to enable O(1) lookups?
¤ Every node must know all other nodes

¨ Need to convert linear search to binary search
¨ Idea: Maintain log(N) pointers to other nodes

¤ Called finger table
¤ Pointer to node ½-way across hash space
¤ Pointer to node ¼-way across hash space
¤ …

12

Finger tables

¨ i’th entry at node n
points to successor of
hash(n)+2^i
¤ # of entries = # of

bits in hash value

¨ Binary lookup tree
rooted at every node
¤ Threaded through

others’ finger tables

13

N80

½¼

1/8

1/16
1/32
1/64

Finger tables
14

Node n

Succ of
hash(n)

Succ of
hash(n)+2

Succ of
hash(n)+22

Succ of
hash(n)+(max hash)/2

How to recursively use finger tables to locate node for key k?

15

Lookup with finger table

Lookup(key k, node n)
look in local finger table for

highest f s.t. hash(f) < hash(k)
if f exists

call Lookup(k, f) // next hop
else

return n’s successor // done

Modulo
arithmetic

16

Lookups take O(log N) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Example

Resolving key 26
from node 1 and
key 12 from node
28 using DHTs in
Chord (using finger
tables)

¨ For a million nodes, it’s 20 hops

¨ If each hop takes 50 ms, lookups take a second

¨ If each hop has 10% chance of failure, it’s a couple
of timeouts

¨ So log(N) is better than O(N) but not great

18

Is log(N) lookup fast or slow?

Handling churn in nodes

¨ Need to update finger tables upon addition or
removal of nodes

¨ Hard to preserve consistency in the face of these
changes

19

Amazon Dynamo
20

¨ Added to “Hall of Fame” at SOSP’17
¨ Rumored to be underpinning of Amazon S3’s

architecture

Dynamo settings

¨ Setting:
¤ Tens of millions of customers
¤ Data spread across tens of thousands of servers

¨ Example use case: Store shopping carts
¨ Goals:

¤ High availability
¤ Low latency

n Consistency takes a hit

21

Consistent Hashing in Dynamo

¨ Recall: Consistent hashing maps value for key to
successor in hash space

¨ Replicate value for every key at N nodes
¤ N clockwise successors of key

¨ Execution of writes
¤ Write received by coordinator (successor of key)
¤ Coordinator forwards to successors

22

Replication in Dynamo
23

N32

N90

N105
N10

N60

N120

K21

Using Consistent Hashing

Client

Front-end

Server

Server

Server

24

Front-end

Consistent Hashing in Dynamo

Client

Server

Server

Server

Server

25

Server

What would it take to make this work?

1-hop DHT

Gossip

¨ Once per second, each server contacts a randomly
chosen other server

¨ Servers exchange their lists of known servers
¤ Including virtual node IDs

26

Sloppy quorums

¨ N replicas for every key
¤ Higher durability with greater N

¨ Serving reads and writes:
¤ Coordinator forwards request to first N-1 reachable

successors
¤ Waits for response from R or W to replicas

¨ How to maximize availability/minimize latency?
¤ Low R and/or low W

¨ How to ensure read sees last committed write?
¤ R+W > N

27

Latency/availability over consistency
28

Client1 Client2

k: x k: x k: x

Put(k, y)

k: y

Get(k)

N = 3, W = 1, R = 1

A B C

Consistency over latency/availability
29

Client1 Client2

k: x k: x

Put(k, y)

k: y

Get(k)

k: y

How to tell which of R copies read is latest version?
N = 3, W = 2, R = 2

A B C

Vector clocks

¨ Store a vector clock with each key-value pair
¨ What we have discussed previously:

¤ Vector with # of components = # of servers
¤ Not scalable

¨ Dynamo’s adaptation of vector clocks:
¤ List of (coordinator node, counter) pairs
¤ Example: [(A, 1), (B, 3), …]

30

Vector clocks
31

Client1 Client2

k: x k: x

Put(k, x)

N = 3, W = 2, R = 2

A
B

C

Put(k, y)

([A, 1]) ([A, 1])

k: y k: y

([A, 1], (B, 1))([A, 1], (B, 1))

¨ Consider following scenario:
¤ Client1 executes PUT(k, v1)
¤ Client2 executes GET(k) and gets v1
¤ Client2 executes PUT(k, v2)

¨ How can vector clocks help in recognizing that okay
to garbage collect v1?

¨ When responding to a GET, Dynamo returns the
vector clock for value returned

¨ Client includes vector clock in subsequent PUT

32

Vector clocks in Dynamo

33

Automatic conflict resolution

v1 [(A,1)]

v2 [(A,1), (B,1)]

put handled by node B
written to B and C

put handled by node A
written to A and C

v2 > v1, so Dynamo automatically drops v1 at C

34

App-specific conflict resolution

v1 [(A,1)]

v3 [(A,1), (C,1)]

put handled
by node C

put handled
by node A

put handled
by node B

v2 [(A,1), (B,1)]

v4 [(A,2), (B,1), (C,1)]

Client reads v2, v3; writes
with [(A,1), (B,1), (C,1)]

v2 || v3, so client must
perform reconciliation

Dynamo’s client interface

¨ Client interface:
¤ Get(key) à value
¤ Put(key, value)

¨ Get(key) à List of <value, context> pairs
¤ Returns one value or multiple conflicting values
¤ Context describes version(s) of value(s)

¨ Put(key, value, context)
¤ Context indicates which versions this version supersedes

or merges

35

¨ Many nodes may process Puts to same key
¤ Version vectors may grow arbitrarily long

¨ Dynamo’s clock truncation scheme
¤ Dynamo stores time of modification with each version vector

entry
¤ When version vector > 10 nodes long, Dynamo drops node

that least recently processed key

¨ Problems with truncation?
¤ False concurrency

36

Trimming version vectors

37

Impact of clock truncation

v1 [(A,1)]

v2 [(A,1), (B,1)]

put handled
by node B

put handled
by node A

