LECTURE 11

Scaling up
2

01 Assumption so far: All replicas have entire state

o1 Example: Every replica has value for every key

1 What we need instead:
o1 Partition state

o1 Map partitions to servers

Partitioning state

Modulo hashing
Apply hash function to key
Compute modulo to # of servers (N)

Store (key, value) pair at hash(key) mod N

Example:

Store student’s transcripts across 4 servers
Hash function = (Year of birth) mod 4
Hash function = (Date of birth) mod 4

Problem: Skew in load across servers

Problem for modulo hashing:
Changing number of servers

h(x) =x+ 1 (mod 4)
Add one machine: h(x) =x + 1 (mod 5)

Keys remapped to new nodes = Need to
transfer values

5 7 10 11 27 29 36 38 40
Object serial number

Consistent Hashing

Represent hash space as a circle

Partition keys across servers

Assign every server a random ID
Hash server ID

Server responsible for keys between
predecessor and itself

How to map a key to a server?

Hash key and execute read /write at
successor

0 S,
12 4
S,
S3
N —
8 4

Adding /Removing Nodes

8 4 8 4 8 S

71 Minimizes migration of state upon change in set of
servers

o1 Server addition: New server splits successor’s shard

1 Server removal: Successor takes over shard

Virtual nodes

Each server gets multiple (say v) random IDs

Each ID corresponds to a virtual node

If N servers with v virtual nodes per server, each
virtual node owns 1/(vN)™" of hash space

Larger v =2 better load balancing

Vary v across servers to account for heterogeneity

Virtual nodes

0 What happens upon server failure?
1 v successors take over

o1 Each now stores (v+1)/vX1/Nt of hash space

Using Consistent Hashing

How does client map keys to servers?

Server
/ Front-end

Client Server
\ Front-end

Server

Front-ends must agree on set of active servers

10

Distributed Hash Table

Scalable lookup of node responsible for any key

Scale to thousands (or even millions) of nodes

No one node knows all nodes in the system

Example usage:
Trackerless BitTorrent
Key = File content hash

Value = IP addresses of nodes that have file content

Successor pointers

Downside of
approach?

K80

N120

/

N105

N90

—_—

N

71 If you don’t have value for key, forward to succ.

N10

\

N32

/

NGO

K80

O(N) Lookup

K80

Efficient lookups

12

What's required to enable O(1) lookups?

Every node must know all other nodes

Need to convert linear search to binary search

ldea: Maintain log(N) pointers to other nodes
Called finger table

Pointer to node Y2-way across hash space

Pointer to node V4-way across hash space

Finger tables

i'th entry at node n
points to successor of " Y,
hash(n)+2Ai

of entries = # of

bits in hash value
1/8

Binary lookup tree 1716
rooted at every node

1/64
Threaded through
others’ finger tables

Finger tables

14

Node n

4

Succ of Succ of Succ of Succ of
hash(n) hash(n)+2 hash(n)+22 hash(n)+(max hash) /2

NN /N /IN

How to recursively use finger tables to locate node for key k¢

Lookup with finger table

15

Lookup(key k, node n) odul
look 1n local finger table for arithmetic
highest f s.t.|hash(f) < hash(k)
if £ exists
call Lookup(k, f) // next hop
else

return n’s successor //done

Lookups take O(log N) hops

N5

N110 N0 K19
N20
N99

N32 | Lookup(K19)

N80

N60

Example

Finger table

Actual node

T Resolving key 26

K] from node 1 and

|
\ ol
\ H ‘:-
\ ra
\
1 -: B
& ino|—=
Naw

O | SO MO =

e A key 12 from node
|l \ . .
. 28 using DHTs in
\\ é

» Chord (using finger
s tables)

Resolve kK = 26
from node 1

~ ”
N z
\ /
|
N 3 (GO ND |-
N —|—
ooimzz

N & (G2 M| =

- 1114
R 2 14
. 42; 318
’ / 4 120
1 y 13; 5 128
3 |28 17 7—16—15; 118
4 28 | e
514 1120 3 18
2 120 4 [28
328 511
4
5

18

Is log(N) lookup fast or slow?

For a million nodes, it’s 20 hops
If each hop takes 50 ms, lookups take a second

If each hop has 10% chance of failure, it’s a couple
of timeouts

So log(N) is better than O(N) but not great

Handling churn in nodes
o

1 Need to update finger tables upon addition or
removal of nodes

-1 Hard to preserve consistency in the face of these
changes

Amazon Dynamo

20

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

One of the lessons our organization has learned from operating

ABST CT . . . Amazon’s platform is that the reliability and scalability of a
Reliability at massive scale is one of the biggest challenges we
system is dependent on how its application state is managed.

face . . a.zon.co.r‘n, OI}E.: Of thg 1argest ?-CO) el:?.e op.er;a:tlons 1n Amazon uses a highly decentralized, loosely coupled, service

Added to “Hall of Fame” at SOSP’17

Rumored to be underpinning of Amazon S3’s
architecture

21

Dynamo settings

Setting:
Tens of millions of customers

Data spread across tens of thousands of servers

Example use case: Store shopping carts

Goals:
High availability
Low latency
Consistency takes a hit

Consistent Hashing in Dynamo

22

Recall: Consistent hashing maps value for key to
successor in hash space

Replicate value for every key at N nodes

N clockwise successors of key

Execution of writes

Write received by coordinator (successor of key)

Coordinator forwards to successors

23

Replication in Dynamo

N120

N105

N90

N~

N10

N32

NGO

K21

Using Consistent Hashing

Server

Server

/v Front-end
Client \

Front-end

Server

Consistent Hashing in Dynamo

25

What would it take to make this work?

Server

Server

Client

—
~

Server

/

Server ~*

Server

1-hop DHT

Gossip
26

1 Once per second, each server contacts a randomly
chosen other server

11 Servers exchange their lists of known servers

o Including virtual node IDs

Sloppy quorums
27

7 N replicas for every key
o1 Higher durability with greater N
0 Serving reads and writes:

o1 Coordinator forwards request to first N-1 reachable
suCcessors

o1 Waits for response from R or W to replicas
1 How to maximize availability /minimize latency?
o Low R and/or low W

1 How to ensure read sees last committed write?
o R+W >N

28

Latency /availability over consistency

Put(k, y)

N=3W=1R=1

Get(k)

Client]

Client2

(<)

Consistency over latency /availability

N=3,W=2,R=2

How to tell which of R copies read is latest version?

Client] Client2

Vector clocks

30

Store a vector clock with each key-value pair

What we have discussed previously:
Vector with # of components = # of servers

Not scalable

Dynamo’s adaptation of vector clocks:

List of (coordinator node, counter) pairs
Example: [(A, 1), (B, 3), ...]

Vector clocks
a

N=3W=2R=2
([A, 1]) ([A, 1DA[B,1])) ([A, 1], (B, 1))

Client] Client2

32

Vector clocks in Dynamo

Consider following scenario:
Client1 executes PUT(k, v1)
Client2 executes GET(k) and gets v1
Client2 executes PUT(k, v2)

How can vector clocks help in recognizing that okay
to garbage collect v1¢

When responding to a GET, Dynamo returns the
vector clock for value returned

Client includes vector clock in subsequent PUT

Automatic conflict resolution

put handled by node A
written to A and C

v
vl [(A,1)]

put handled by node B
written to B and C

v2 [(A,1), (B,1)]

v2 > v1, so Dynamo automatically drops v1 at C

App-specific conflict resolution

put handled
by node A

vl [(A,1)]

put handled put handled
by node B by node C

2 [(A,1), (B,1)] v3 [(A,D), (C,1)]

Client reads v2, v3; writes v2 | | v3, so dlient must
with [(A,1), (B,1), (C,1)] perform recondiliation

v4 [(A,2), (B,1), (C,1)]

Dynamo’s client interface

ss |
0 Client interface:
O Get(key) =2 value
O Put(key, value)

- Get(key) =2 List of <value, context> pairs
1 Returns one value or multiple conflicting values
1 Context describes version(s) of value(s)

01 Put(key, value, context)

o1 Context indicates which versions this version supersedes
or merges

Trimming version vectors
e

7 Many nodes may process Puts to same key

o1 Version vectors may grow arbitrarily long

0 Dynamo’s clock truncation scheme

o1 Dynamo stores time of modification with each version vector
entry

1 When version vector > 10 nodes long, Dynamo drops node
that least recently processed key

0 Problems with truncation?

O False concurrency

Impact of clock truncation

put handled
by node A

v
vl [(A,1)]

put handled
by node B

v2 [tAsh)s (B,1)]

