
LECTURE 10
Chubby and Zookeeper

Implementing RSMs

¨  Logical clock based ordering of requests
¤ Cannot serve requests if any one replica is down

¨  Primary-backup replication
¤ Replace primary/backup upon failure
¤ Relies on always available view service

¨  Paxos-based replicated service
¤ Available as long as majority in same partition

2

Case Studies (in brief)

¨  Chubby (OSDI 2006)

¨  ZooKeeper (USENIX ATC 2010)

3

Chubby

¨  Internal service within Google
¨  Highly available coordination service

4

Chubby

¨  Internal service within Google
¨  Highly available coordination service

¨  Two purposes:
¤ Lock service
¤ File system (for small files)

5

Example: GFS Chunkmaster

 x = Open(“/ls/gfs-cell8/chunkmaster")

 if (TryAcquire(x) == success) {
 // I'm the chunkmaster, tell everyone
 SetContents(x, my-address)

 } else {
 // I'm not the master, find out who is
 chunkmaster = GetContents(x)
 }

6

Why this interface?

¨  Why not a library that implements Paxos?

¨  Developers do not know how to use Paxos
¤ They at least think they know how to use locks!

¨  Need to export result of coordination outside of
system
¤ Example: Clients need to discover GFS master

7

Chubby Design

Replicated service
using Paxos to

implement
 fault-tolerant log

8

Chubby procedure

¨  Client sends request to nearest replica.
¨  Replica returns Chunkmaster’s address
¨  Client directs requests to the Chunkmaster until it

says it is no longer playing that role.
¨  Writes propagated to replicas using consensus
¨  Reads handled without consensus (Safe)

Chubby in Action
10

?

Modify file foo

Read file foo

Reads in Paxos-based RSM
11

Read file foo

Read file foo

For every key, every replica stores (value, version)
Return latest version out of majority of replicas

V1

V2

V2

V3

V1

Why do different replicas have different versions?
Gap between Accept and Learn

Reads in Paxos-based RSM

¨  How to ensure linearizability?
¤ A read must see the effect of all accepted writes

¨  Get read accepted to one of the slots in replicated
log

¨  Every replica executes command in a slot only after
executing commands in all prior slots

12

RSM with Paxos
13

Slots in log

Reads in Paxos-based RSM

¨  How to ensure linearizability?
¤ A read sees the effect of all accepted writes

¨  Get read accepted to one of the slots in replicated
log

¨  Problem: Poor performance at scale

14

Reads/Writes in Chubby

¨  One of the 5 replicas chosen as the master

¨  Clients submit all reads and writes to master

¨  How to handle master failure?
¤ Another replica must propose itself as master
¤ New master must first “catch up”

¨  Master is performance bottleneck

15

Client sessions

¨  A client requests a new session by contacting the
master of a Chubby “cell”

¨  It ends the session when it terminates or if it has
been idle (no open handles or no calls for a minute).

¨  Lease à session needs to be renewed before lease
expires.
¤  Master can move it forward but not backward.

Event subscriptions

¨  Clients may subscribe to a range of events (e.g., file
contents modified or master failure).

¨  Such events are delivered asynchronously via an
up-call from the Chubby library.
¤  Delivered after the event has taken place

Scaling Chubby

¨  Clients cache data they read
¨  Reading from local cache violates linearizability

¤ How to fix this?
¨  Master invalidates cached copies upon update

¤  Modification blocked until invalidations are sent
n  Note that caches not updated (only invalidated) – this may be

unnecessary.
¤  Reads proceed as usual (much more frequent than writes)

¨  Master must store knowledge of client caches
¨  What if master fails?

18

Grace period for leases

¨  Grace period after lease expires
¤  If keepalive received within grace period, state updated

¨  If grace period expires, the client assumes session has expired (Chubby cell
inaccessible)
¤  Call returns with an error

¨  Failed master discards state about sessions, handles and locks.

Scaling Chubby with Proxies
20

Chubby

Proxy

Proxy

Handling client failures

¨  What if a client acquires a lock and fails?

¨  Client library exchanges keep-alives with master
¨  Lock revoked upon client failure
¨  Problem?

¤ Network partition not client failure

¨  Chubby associates lock acquisitions with sequence
numbers
¤ Can distinguish operations from previous lock holders

21

Discrepancy in Lock Validity

Client1 Replica 2

Replica 1

Replica 3

Lock service

22

Check with lock service
to confirm lock validity

Client2

ZooKeeper

¨  Open source coordination service

¨  Addresses need for polling in Chubby
¤ Example: If you cannot acquire lock, need to retry

¨  Goal in ZooKeeper: Wait-free coordination

23

ZooKeeper: Watch mechanism

¨  Clients can register to “watch” a file
¤  Watches are one-time triggers associated with a session

(unregistered once triggered or when session closes)
¤  ZooKeeper notifies client when file is updated (trigger)

¨  Example:
¤  Try to acquire a lock by creating a file with an ephemeral flag
¤  If file already exists, watch for updates
¤  Upon watch notification, try to re-acquire lock

¨  Problem?
¤  Herd effect

n  Many clients which get notification may vie for the lock

24

ZooKeeper: Hierarchy
25

ZooKeeper: Sequencer
26

lock-1 lock-2 lock-3

Zookeper:Sequencer

¨  The SEQUENTIAL flag orders the client’s attempt to
acquire lock with respect to others.

¨  If the znode created is lowest, get lock; else, wait
for deletion of immediately prior znode.

¨  Herd effect avoided by waking up only one
process when lock is released or a lock request is
abandoned.

¨  Releasing lock: delete the proper znode.

Chubby vs. ZooKeeper

¨  Difference between invalidation and watch?

¨  Invalidation:
¤ Only library receives notification to update cache

¨  Watch:
¤ Application receives notification
¤ Only app knows what it needs to do

28

