
2010 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Towards a SPDY’ier Mobile Web?
Jeffrey Erman, Vijay Gopalakrishnan, Member, IEEE, Rittwik Jana, Member, IEEE, and

Kadangode K. Ramakrishnan, Fellow, IEEE

Abstract—Despite its widespread adoption and popularity, the
Hypertext Transfer Protocol (HTTP) suffers from fundamental
performance limitations. SPDY, a recently proposed alternative
to HTTP, tries to address many of the limitations of HTTP (e.g.,
multiple connections, setup latency). In this paper, we perform a
detailed measurement study to understand the benefits of using
SPDY over cellular networks. Through careful measurements
conducted over 4 months, we provide a detailed analysis of the
performance of HTTP and SPDY, how they interact with the
various layers, and their implications on Web design. Our results
show that unlike in wired and 802.11 networks, SPDY does not
clearly outperform HTTP over cellular networks. We identify
negative interactions between the protocols used for Web access
(HTTP/SPDY over TCP) and cellular radio resource management
as the underlying cause. Overall performance suffers when devices
go through a cellular radio state promotion after an idle period,
and the consequent increase in latency. This impacts SPDY more
because of the use of a single TCP connection. We conclude that
a viable solution has to account for these unique cross-layer
dependencies to achieve improved Web performance over cellular
networks.
Index Terms—Cellular networks, mobile Web performance,

SPDY, wireless protocol.

I. INTRODUCTION

A S THE speed and availability of cellular networks grow,
they are rapidly becoming the access network of choice.

Web access remains one of the most important uses of the mo-
bile Internet. It is therefore critical that the performance of the
cellular network be tuned optimally for mobile Web access.
The Hypertext Transfer Protocol (HTTP) is the key building

block of the Web. Its simplicity and widespread support has cat-
apulted it into being adopted as the nearly “universal” applica-
tion protocol, such that it is being considered the narrow waist
of the future Internet [1]. Yet, despite its success, HTTP suffers
from fundamental limitations, many of which arise from the use
of TCP as its transport layer protocol. It is well established that
TCP works best if a session is long-lived and/or exchanges a lot
of data. This is because TCP gradually ramps up load and takes
time to adjust to the available network capacity. Since HTTP
connections are typically short and exchange small objects, TCP

Manuscript received November 25, 2014; revised April 26, 2015 and June
24, 2015; accepted June 27, 2015; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor S. Fahmy. Date of publication October 26, 2015; date of
current version December 15, 2015.
J. Erman, V. Gopalakrishnan, and R. Jana are with AT&T Labs—Re-

search, Bedminster, NJ 07921 USA (e-mail: erman@research.att.com;
gvijay@research.att.com; rjana@research.att.com).
K. K. Ramakrishnan is with the University of California, Riverside, River-

side, CA 92521 USA (e-mail: kk@cs.ucr.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2462737

does not have sufficient time to utilize the full network capacity.
This is particularly exacerbated in cellular networks where high
latencies (hundreds of milliseconds are not unheard of [2]) and
packet loss in the radio access network is common. These fac-
tors are widely known to impair TCP performance.
SPDY [3], a recently proposed protocol, aims to address

many of the inefficiencies with HTTP. SPDY uses fewer TCP
connections by opening one connection per domain. Multiple
data streams are multiplexed over this single TCP connection
for efficiency. SPDY supports multiple outstanding requests
from the client over a single connection. SPDY servers transfer
higher-priority resources faster than low-priority resources.
Finally, by using header compression, SPDY reduces the
amount of redundant header information each time a new page
is requested. Experiments show that SPDY reduces page load
time by as much as 64% on wired networks and estimate as
much as 23% improvement on cellular networks [4] (based on
an emulation using Dummynet).
In this paper, we perform a detailed and systematic mea-

surement study on production cellular networks to understand
the real-world benefits of SPDY. We deployed a SPDY proxy
that functions as an intermediary between the mobile devices
and Web servers and ran detailed field measurements using 20
popular Web pages. These were performed across a 4-month
span to account for the variability in the cellular network. Each
of the measurements was instrumented and set up to account
for, and minimize, factors that could bias the results (e.g., cel-
lular handoffs). We use a proxy for several reasons: First, cel-
lular operators, especially in the US, make use of proxies for
Web traffic [5], [6]. This has been motivated by their desire to
adapt and optimize content to be delivered to mobile devices.
With a similar motivation, content providers are also deploying
SPDY-based proxies [7], [8]. While it is yet to be seen which
of these (or both) will be the ultimate long-term solution, we
believe the use of a proxy in our measurements reflects the cur-
rent technology direction. Second, SPDY ismost effective when
there are multiple requests over the single TCP connection, es-
pecially over the high-latency cellular link. Without a proxy, the
client would have to establish new TCP connections to multiple
servers (due to domain sharding) and thereby limit the bene-
fits of SPDY. Finally, since only about 0.9% Web sites support
SPDY [9], it was hard to get detailed insights without a proxy.
The main observation from our experiments is that, unlike in

wired and 802.11 WiFi networks, SPDY does not outperform
HTTP. Most importantly, we see that the interaction between
TCP and the cellular network has the most impact on perfor-
mance. Specifically, TCP implementations do not account for
the long promotion delays encountered when a cellular radio's
state transitions from idle to active after an idle period. As a

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ERMAN et al.: TOWARDS A SPDY’IER MOBILE WEB? 2011

Fig. 1. This example shows how the different objects on a Web page are downloaded when using HTTP (with just persistent connections and with both persistent
connections and pipelining) and SPDY. (a) Example Web page. (b) HTTP persistent connection. (c) HTTP with Pipelining. (d) SPDY.

result, the TCP round-trip time (RTT) estimate and thus the
timeout value is incorrect (significantly underestimated) after
an idle period, triggering spurious retransmissions and hence
lower throughput. The TCP connection and the cellular radio
connection for the end-device become idle because of users'
Web browsing patterns (with a “think time” between pages [10])
and how Web sites exchange data. Since SPDY uses a single
long-lived TCP connection in the presence of a proxy, timeouts
impact page load times significantly. HTTP is less affected by
this because of its use of parallel connections (isolates impact to
a subset of active connections) and because the connections are
short-lived (isolates impact going across Web sites). While we
could similarly open separate SPDY connections for each do-
main, that would not allow reuse of TCP connections and hence
diminishes the benefit of moving from HTTP to SPDY. Hence,
we believe that a viable solution has to account for these unique
cross-layer dependencies to achieve improved performance of
both HTTP and SPDY over a cellular network.
The main contributions of this paper include the following.
• We conduct a systematic and detailed study over more than
4 months on the performance of HTTP and SPDY. We
show that SPDY and HTTP perform similarly over cellular
networks, and that using one TCP connection with SPDY
makes it susceptible to negative interactions between TCP
and the cellular network.

• We show that the interaction between the cellular network
and TCP needs optimization. In particular, we show that
cellular radio state promotion delays cause spurious TCP
timeouts, causing severe performance degradation.

• We show that Web site design, where data is requested
asynchronously and with gaps, can trigger cellular state
changes resulting in TCP timeouts.We also show that there
exist dependencies in Web pages today that prevent the
browser from fully utilizing SPDY's capabilities.

II. BACKGROUND
We present a brief background on how HTTP and SPDY pro-

tocols work in this section. We use the example in Fig. 1 to aid
our description.

A. HTTP Protocol
The HTTP is a stateless, application-layer protocol for

transmitting Web documents. It uses TCP as its underlying

transport protocol. Fig. 1(a) shows an example Web page that
consists of the main HTML page and four objects referred
in that page. When requesting the document, a browser goes
through the typical TCP 3-Way handshake as depicted in
Fig. 1(b) and (c). Upon receiving the main document, the
browser parses the document and identifies the next set of
objects needed for displaying the page. In this example, there
are four more objects that need to be downloaded.
With the original versions of HTTP, a single object was down-

loaded per connection. HTTP ver. 1.1 introduced the notion
of persistent connections that have the ability to reuse estab-
lished TCP connections for subsequent requests and the con-
cept of pipelining. With persistence, objects are requested se-
quentially over a connection as shown in Fig. 1(b). Objects
are not requested until the previous response has completed.
However, this introduces the problem of head-of-line (HOL)
blocking where subsequent requests get significantly delayed in
waiting for the current response to come back. Browsers attempt
to minimize the impact of HOL blocking by opening multiple
concurrent connections to each domain (most browsers today
use six parallel connections) with a limit on the number of ac-
tive connections across all domains.
With pipelining, multiple HTTP requests can be sent to a

server together without waiting for the corresponding responses
as shown in Fig. 1(c). The client then waits for the responses
to arrive in the order in which they were requested. Pipelining
can improve page load times dramatically. However, since the
server is required to send its responses in the same order that
the requests were received, HOL blocking can still occur with
pipelining. Some mobile browsers have only recently started
supporting pipelining.

B. SPDY Protocol

Even though HTTP is widely adopted and used today, it suf-
fers from several shortcomings (e.g., sequential requests, HOL
blocking, short-lived connections, lack of server initiated data
exchange, etc.) that impact Web performance, especially on the
cellular network.
SPDY [3] is a recently proposed application-layer protocol

for transporting content over the Web with the objective of min-
imizing latency. The protocol works by opening one TCP con-
nection per domain (or just one connection if going via a proxy).



2012 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Fig. 2. RRC state machines for 3G UMTS and LTE networks.

SPDY then allows for unlimited concurrent streams over this
single TCP connection. Because requests are interleaved on a
single connection, the efficiency of TCP is much higher: Fewer
network connections need to be made, and fewer, but more
densely packed, packets are issued.
SPDY implements request priorities to get around one object

request choking up the connection. This is described in Fig. 1(d).
After downloading the main page, and identifying the objects on
the page, the client requests all four objects in quick succession,
but marks objects 3 and 4 to be of higher priority. As a result,
server transfers these objects first thereby preventing the con-
nection from being congested with noncritical resources (ob-
jects 2 and 5) when high-priority requests are pending. SPDY
also allows for multiple responses to be transferred as part of
the same packet [e.g., objects 2 and 5 in Fig. 1(d)] can fit in a
single response packet can be served altogether. Finally, SPDY
compresses request and response HTTP headers and Server-ini-
tiated data exchange. All of these optimizations have shown to
yield up to 64% reduction in page load times with SPDY [3].

C. Cellular State Machines

The radio state of every device in a cellular network follows
a well-defined state machine. This state machine, defined by
3GPP [11] and controlled by the radio network controller (in
3G) or the base station (in LTE), determines when a device can
send or receive data. While the specifics differ between 3G and
LTE, the main purpose is similar: The occupancy in these states
controls the number of devices that can access the radio network
at a given time. It enables the network to conserve and share
available radio resources among the devices. It also allows for
saving the device battery when the device does not have data to
send or receive.
3G State Machine: The 3G state machine, as shown in

Fig. 2, typically consists of three states: , Forward access
channel , and Dedicated channel . When the
device has no data to send or receive, it stays in the
state. The device does not have radio resource allocated to it
in . When it wants to send or receive data, it has to be
promoted to the mode, where the device is allocated
dedicated transport channels in both the downlink and uplink
directions. The delay for this promotion is typically s. In
the , the device does not have a dedicated channel, but
can transmit at a low rate. This is sufficient for applications with
small amounts or intermittent data. A device can transition be-
tween and based on data transmission activity.

Fig. 3. Our test setup. We used laptops equipped with 3G/LTE dongles and
hosted a SPDY and HTTP proxy on the same server in a public cloud.

For example, if a device is inactive for s, it is demoted from
to . It is further demoted to if there is

no data exchange for another s. Note that state transition
timer values vary across networks and implementations.
LTE State Machine: LTE employs a slightly modi-

fied state machine with two primary states: and
. If the device is in and sends or

receives a packet (regardless of size), a state promotion from
to occurs in about 400 ms. LTE

makes use of three substates within . Once
promoted, the device enters Continuous Reception state where
it uses considerable power (about 1000 mW) but can send and
receive data at high bandwidth. If there is a period of inactivity
(e.g., for 100 ms), the device enters the short Discontinuous
Reception state . If data arrives, the radio re-
turns to the Continuous Reception state in ms. If not, the
device enters the long Discontinuous Reception
state. In the state, the device prepares to switch
to the state, but is still using high power and waiting
for data. If data does arrive within s, the radio returns
to the Continuous Reception state; otherwise it switches to the
low-power state. Thus, compared to 3G,
LTE has significantly shorter promotion delays.

III. EXPERIMENTAL SETUP
We conducted detailed experiments comparing the perfor-

mance of HTTP and SPDY on the 3G network of a commercial
US cellular provider over a 4-month period.
Fig. 3 provides an overview of our test setup. Clients in our

setup connect over the cellular network using HTTP or SPDY to
proxies that support that corresponding protocol. These proxies
then use persistent HTTP to connect to the differentWeb servers
and fetch requested objects.We run a SPDY and an HTTP proxy
on the same machine for a fair comparison. We use a proxy



ERMAN et al.: TOWARDS A SPDY’IER MOBILE WEB? 2013

as an intermediary for several reasons: 1) We necessarily could
not compare SPDY and HTTP directly. There are relatively few
Web sites that support SPDY. When a server and client can ne-
gotiate SPDY, they always default to using SPDY and cannot be
forced to use HTTP. Thus, when comparing HTTP and SPDY,
we would be evaluating connections to different servers that
could affect our results (depending on their load, number of
objects served, etc). 2) Most cellular operators in the US al-
ready use HTTP proxies to improveWeb performance. Running
a SPDY proxy would allow operators to support SPDY over
the cellular network even if the Web sites do not.1 3) Most im-
portantly, without a proxy, the client would establish new TCP
connections to SPDY servers in different domains and not reuse
existing connections unless the request is to the same domain.
This diminishes the intended benefit of SPDY and negates the
need to move from HTTP to SPDY.
Test Devices: We use laptops running Windows 7 and

equipped with 3G (UMTS) USB cards as our client devices.
We ran experiments with multiple laptops simultaneously
accessing the test Web sites to study the effect of multiple
users loading the network. There are several reasons we use a
laptop for our experiments. First, tablets and cellular-equipped
laptops are on the rise. These devices request the regular Web
pages unlike smartphones. Second, and more importantly, we
wanted to eliminate the effects of a slow processor as that
could affect our results. For example, studies [13] have shown
that HTML, Javascript, and CSS processing and rendering can
delay the request of required objects and significantly affect the
overall page load time. Finally, it has been observed [14] that
having a slow processor increases the number of zero window
advertisements, which significantly affects throughput.
Test Client: We used a default installation of the Google

Chrome browser (ver. 23.0) as the test client, as it supported
traversing a SPDY proxy. Depending on the experiment, we ex-
plicitly configured Chrome to use either the HTTP or the SPDY
proxy. When using an HTTP proxy, Chrome opens up to 6 par-
allel TCP connections to the proxy per domain, with amaximum
of 32 active TCP connections across all domains. With SPDY,
Chrome opens one SSL-encrypted TCP connection and reuses
this connection to fetchWeb objects. The connection is kept per-
sistent and requests for different Web sites reuse the connection.
Test Location: Cellular experiments are sensitive to a lot of

factors, such as signal strength, location of the device in a cell,
the cell tower's backhaul capacity, load on the cell tower, etc. For
example, a device at a cell edge may frequently get handed off
between towers, thereby contributing to added delays. To mit-
igate such effects, we identified a cell tower that had sufficient
backhaul capacity and had minimal interference from other cell
sites. For most of our experiments, we chose a physical location
with an unobstructed view of the tower and received a strong
signal (between 47 and 52 dBm). We configured the 3G
modem to remain connected to that base station at that sector
on a particular channel frequency and used a diagnostic tool to
monitor the channel on that sector.

1While the end-end encryption in SPDY makes the use of transparent
proxies impossible, one could still deploy forward proxies, just as some content
providers are doing [7], [8]. HTTP/2, however, does not mandate encryption
[12].

TABLE I
CHARACTERISTICS OF THE DIFFERENT WEB SITES USED AS PART OF OUR
EXPERIMENTS. SINCE THE CONTENT OF WEB SITES CHANGES OVER TIME,

THE NUMBERS FOR EACH METRIC ARE AVERAGED ACROSS RUNS

Proxies Used: We used a virtual machine running Linux in
a compute cloud on the east coast of US to host our proxies.
At the time of our experiments, there were no proxy imple-
mentations that supported both HTTP and SPDY. Hence, we
chose implementations that are purported to be widely used
and the most competent implementations for the corresponding
protocols. We used Squid (ver. 3.1) [15] as our HTTP proxy.
Squid supports persistent connections to both the client and
the server. However, it only supports a rudimentary form of
pipelining. For this reason, we did not run experiments of HTTP
with pipelining turned on. Our comparisons are restricted to
HTTP with multiple persistent connections. For SPDY, we used
a SPDY server built by Google and made available as part of
the Chromium source tree. This server was used in the com-
parison [3] of SPDY and HTTP and has since had extensions
built in to support proxying. We ran to capture net-
work-level packet traces and kernel module to cap-
ture TCP congestion window values from the proxy to the mo-
bile device.
Web Pages Requested: We identified the top Web sites vis-

ited by mobile users to run our tests (in the top Alexa sites). Of
these, we eliminated Web sites that are primarily landing pages
(e.g., login pages) and picked the remaining 20 most requested
pages. These 20 Web pages have a good mix of news Web sites,
online shopping and auction sites, photo and video sharing, as
well as professionally developed Web sites of large corpora-
tions. We preferred the “full” site instead of the mobile ver-
sions, keeping in mind the increasing proliferation of tablets and
large screen smartphones. These Web sites contain anywhere
from 5 to 323 objects, including the home page. The objects in
these sites were spread across 3–84 domains. Each Web site had
HTML pages, Javascript objects, CSS and images. We list rele-
vant details of these Web sites in Table I.
Test Execution: We used a custom client that talks to Chrome

via the remote debugging interface and got Chrome to load the



2014 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Fig. 4. Page load time for different Web sites with HTTP and SPDY over a 3G
network. The figure shows there is very little performance difference between
HTTP and SPDY when using 3G.

test Web pages. We generated a random order in which to visit
the 20 Web sites and used that same order across all experi-
ments. Each Web site was requested 60 s apart. The page may
take much shorter time to load; in that case, the system would
be idle until the 60-s window elapsed. We chose 60 s both to
allow for Web pages to load completely and to reflect a nom-
inal think time that users take between requests. We clear the
browser cache before requesting each page.
We used page load time as the main metric to monitor perfor-

mance.Page load time isdefinedas the time it takes thebrowser to
download and process all the objects associatedwith aWebpage.
Most browsers fire a Javascript event when the page
is loaded.The remote debugging interfaceprovidedus the time to
download the different objects in a Web page. We alternated our
test runsbetweenHTTPandSPDYtoensure that temporal factors
do not affect our results. We ran each experiment multiple times
during the typically quiet periods (e.g., 12AM–6AM) tomitigate
effects of other users using thebase station.

IV. EXPERIMENTAL RESULTS
We first compare the performance of SPDY and HTTP using

data collected from a week's worth of experiments. Since there
was a lot of variability in the page load times, we use a box plot
to present the results in Fig. 4. The -axis shows the different
Web sites we tested; the -axis is the page load time in millisec-
onds. For eachWeb site, the (red) box on the left shows the page
load times for HTTP, while the (blue) box on the right shows the
times forSPDY.Theboxplot gives the standardmetrics: the 25th
percentile, the 75th percentile, and the black notch in the box is
the median value. The top and bottom of the whiskers show the
maximum and minimum values, respectively. Finally, the circle
in theseboxesshowsthemeanpage loadtimeacrossall theruns.
The results from Fig. 4, interestingly, do not show a con-

vincing winner between HTTP and SPDY. For some sites, the
page load time with SPDY is lower (e.g., 3, 7), while for others,
HTTP performs better (e.g., 1, 4). However, for a large number
of sites there is not a significant difference.2 This is in sharp

2Using tracing tools, we found that the browser would occasionally stall when
processing a Javascript file on this site. These stalls happened more often with
HTTP, thereby increasing page load times. We saw this behavior with WiFi as
well.

Fig. 5. Average page load time with HTTP and SPDYY over an
802.11g/Broadband network. The whiskers represent 95% confidence interval.
The figure shows that SPDY significantly outperforms HTTP in this setting.

contrast to existing results on SPDY, where it has been shown
to have between 27%–60% improvement [3]. Importantly, pre-
vious results have shown an average of 23% reduction over em-
ulated cellular networks [4].
Performance Over 802.11 Wireless Networks: As a first step

in explaining the result in Fig. 4, we wanted to ensure that the
result was not an artifact of our test setup or the proxies used.
Hence, we ran the same experiments using the same setup, but
over an 802.11g wireless network connected to the Internet via a
typical residential broadband connection (15Mb/s down/2Mb/s
up).
Fig. 5 shows the average page load times and the 95% confi-

dence intervals. Like previous results [3], this result also shows
that SPDY performs better than HTTP consistently with page
load time improvements ranging from 4% forWeb site 4 to 56%
for Web site 9 (ignoring Web site 2). Since the only difference
between the two tests is the access network, we conclude that
our results in Fig. 4 are a consequence of how the protocols op-
erate over the cellular network.

V. UNDERSTANDING THE CROSS-LAYER INTERACTIONS

We look at the different components of the application and
the protocols that can affect performance. In the process, we
observe that there are significant interdependencies between the
different layers (from browser behavior andWeb page design, to
TCP protocol implementations, to the intricacies of the cellular
network) that affect overall performance.

A. Object Download Times

The first result we study is the breakdown of the page load
time. Recall that, by default, the page load time is the time it
takes the browser to process and download all the objects re-
quired for theWeb page. Hence, we look into the average down-
load time of objects on a given page.We split the download time
of the object into four steps: 1) the initialization step that in-
cludes the time from when the browser realizes that it requires
the object to when it actually requests the object; 2) the send
step that includes the time to actually send the request over the
network; 3) the wait time that is the time between sending the



ERMAN et al.: TOWARDS A SPDY’IER MOBILE WEB? 2015

Fig. 6. Contribution of intermediate steps to average download times of ob-
jects over 3G. SPDY offers significant gains in terms of connection initiation
overhead, but long wait times negate those gains.

request until the first byte of response; and finally 4) the receive
time that is the time to receive the object.
We plot the average time for these steps for the different Web

sites in Fig. 6. First, we see that the trends for average object
download time are quite similar to that of page load times (in
Fig. 4). This is not surprising since page load time is dependent
on the object download times. Next, we see that the send time is
negligible for both HTTP and SPDY, indicating that the request
is sent very quickly. Almost all HTTP requests fit in one TCP
packet. Similarly, almost all SPDY requests also fit in a single
TCP packet, even when the browser bundles multiple SPDY
requests in one packet. Third, we see that receive times with
HTTP and SPDY are similar, with SPDY resulting in slightly
better average receive times.We see that the initialization time is
much higher with HTTP because the browser has to either open
a new TCP connection to download the object (and adds the
delay of a TCP handshake), or wait until it can reuse an existing
connection.
SPDY incurs very little initialization time because the con-

nection is preestablished. On the other hand, it incurs a signifi-
cant wait time. Importantly, this wait time is significantly higher
than the initialization time for HTTP. This negates any advan-
tages SPDY gains by reusing connections and avoiding connec-
tion setup. The wait times for SPDY are much greater because
multiple requests are sent together or in close succession to the
proxy. This increases delay as the proxy catches up in serving
the requests to the client. Fig. 8 discussed in Section V-B shows
this behavior.

B. Web Page Design and Object Requests
We now look at when different objects for a Web site are

requested by the browser. One of the performance enhance-
ments SPDY allows is for all objects to be requested in parallel
without waiting for the response of outstanding objects. In con-
trast, HTTP has only one outstanding request per TCP connec-
tion unless pipelining is enabled.
We plot the request time (i.e., the time the browser sends out

a request) for both HTTP and SPDY for four Web sites (due
to space considerations) in Fig. 7. Two of these are news Web
sites and two contain a number of photos and videos. SPDY,

Fig. 7. Object request patterns for HTTP and SPDY for different Web sites.
HTTP tends to request objects later than SPDY, but usually catches up due to
object interdependencies slowing down SPDY.

unlike what was expected, does not actually request all the ob-
jects at the same time. Instead for three of the four Web sites,
SPDY requests objects in steps. Even for the oneWeb site where
all the objects are requested in quick succession, we observe
a delay between the first request and the subsequent requests.
HTTP, on the other hand, requests objects continuously over
time. The number of objects it downloads in parallel depends
on the number of TCP connections the browser opens to each
domain and across all domains.
We attribute this sequence of object requests to Web page de-

sign and how the browsers process them to identify constituent
objects. Javascript and CSS files introduce interdependencies
by requesting other objects. Table I highlights that Web sites
make heavy use of JavaScript or CSS and contain anywhere
from 2 to 73 different scripts and stylesheets. The browser does
not identify all objects until these files are downloaded and pro-
cessed. Moreover, browsers process some of these files (e.g.,
Javascripts) sequentially as these can change the layout of the
page. This results in further delays. The overall impact on page
load time depends on the number of such files in a Web page
and the interdependencies in them.
To validate our assertion that SPDY is not requesting all the

objects at once because of these interdependencies and also to
understand better the higher wait time of objects, we built two
test Web pages that consist of only a main HTML page and im-
ages that we placed on a test server (see Fig. 3). There were a
total of 50 objects that needed to be downloaded as part of the
Web page. We controlled the effect of domains by testing the
two extremes: in one Web page, all the objects came from dif-
ferent domains, while in the second extreme all the objects came
from the same domain. Fig. 8 shows the results of these two
tests. Since there are no interdependencies in the Web page, we
see that the browser almost immediately identifies all the objects
that need to be downloaded after downloading the main HTML
page (shown using red dots). SPDY then requests all the images
on the page in quick succession (shown in green dots) in both
cases. HTTP on the other hand, is affected by these extremes.
When all objects are on different domains, the browser opens
one connection to each domain up to a maximum number of
connection (32 in the case of Chrome). When all the objects are



2016 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Fig. 8. Object request and download with HTTP and SPDY with test Web
pages. Since these pages have no dependencies, SPDY requests all the objects
right away, whereas HTTP is dependent on the number of TCP connections.

on the same domain, browsers limit the number of concurrent
connections (6 in the case of Chrome) but reuse the connections.
Note that while the requests for SPDY are sent out earlier

(green dots) than HTTP, SPDY has much more significant delay
until the first byte of data is sent back to the client (start of blue
horizontal line).Moreover, we also observe especially in the dif-
ferent domain case, that if multiple objects are downloaded in
parallel the time to receive the objects (length of blue line) is in-
creased.We find in this experiment that removing all the interde-
pendencies for SPDY does not significantly improve the perfor-
mance. In our tests, HTTP had an average page load time of 5.29
and 6.80 s with single versus multiple domains, respectively.
Conversely, SPDY averages 7.22 and 8.38 s with single or mul-
tiple domain tests. Consequently, prioritization alone does not
address SPDY's performance in cellular networks.

C. Eliminating Server-Proxy Link Bottleneck
Figs. 7 and 8 show that while today's Web pages do not take

full advantage of SPDY's capabilities, that is not a reason for
the lack of performance improvements with SPDY in cellular
networks. So as the next step, we focus on the proxy and see if
the proxy-server link is a bottleneck.
In Fig. 9, we plot the sequence of steps at the proxy for a

random Web site from one randomly chosen sample execution
with SPDY. The figure shows the objects in the order of requests
by the client. There are three regions in the plot for each object.
The black region shows the time between when the object was
requested at the proxy to when the proxy receives the first byte
of response from the Web server. The next region, shown in
cyan, represents the time it takes the proxy to download the
object from the Web server, starting from the first byte that it
receives. Finally, the red region represents the time it takes the
proxy to transfer the object back to the client. It is clear from
Fig. 9 that the link between the Web server and proxy is not the
bottleneck. We see that in most cases, the time between when
the proxy receives the request from the client to when it has the
first byte of data from the Web server is very short (average of
14 ms with a max of 46 ms). The time to download the data, at
an average of 4 ms, is also quite short. Despite having the data,
however, we observe that the proxy is unable to send the data

Fig. 9. This plot shows the time to first byte (black area) at the SPDY proxy,
time to download the object from the Web server (cyan area) and the time to
transfer the object to the client (red area). We see that the proxy quickly down-
loads the requested object from the Web server, but has to queue it locally for
some time before it is able to transfer it to the client.

Fig. 10. Average data transferred from proxy to device every second. HTTP
seems to transfer more data to the client, sometimes by as much as 100%.

quickly to the client device. There is a significant delay between
when the data was downloaded to the proxy to when it begins
to send the data to the client.
We make an interesting observation here: With HTTP, the

client does not request objects and queue them until the pending
objects are downloaded. If individual object downloads take a
while, the overall download process is also affected. SPDY, in-
stead, requests all the objects in quick succession. While this
is beneficial when there is sufficient capacity on the proxy-to-
client link, SPDY does not benefit when that link is a bottle-
neck. Instead, it essentially moves queuing from the client to
the proxy.

D. Throughput Between Client and Proxy
The previous result showed that the proxy was not able to

transfer objects to the client quickly, resulting in long wait times
for SPDY. Here, we study the average throughput achieved by
SPDY and HTTP during the course of our experiments. Since
each Web site is requested exactly 1 min apart, in Fig. 10 we
align the start times of each experiment, bin the data transferred
by SPDY and HTTP each second, and compute the average
across all the runs.



ERMAN et al.: TOWARDS A SPDY’IER MOBILE WEB? 2017

Fig. 11. Number of unacknowledged bytes for a random run with HTTP and SPDY.

The figure shows the average amount of data that was trans-
ferred during that second. The vertical lines seen every minute
indicate the time when a Web page was requested. We see from
the graph that HTTP, on average, achieves higher data transfers
than SPDY. The difference sometimes is as high as 100%. This
is a surprising result because, in theory, the network capacity
between the client and the proxy is the same in both cases. The
only difference is that HTTP uses multiple connections, each
of which shares the available bandwidth, while with SPDY the
single connection uses the entire capacity. Hence, we would ex-
pect the throughput to be similar, yet they are not. Since net-
work utilization is determined by how TCP adapts to available
capacity, we shift our attention to how TCP behaves in the cel-
lular network.

E. Understanding TCP Performance

To understand the cause for the lower average throughput
with SPDY, we look at how TCP performs with SPDY and with
HTTP. We start by looking at the outstanding bytes in flight be-
tween the proxy and the client device with HTTP and SPDY.
The number of bytes in flight is defined as the number of bytes
the proxy has sent to the client that are awaiting acknowledg-
ment. We plot the data from one random run of the experiment
in Fig. 11.
Fig. 11 shows that there are instances where HTTP has more

unacknowledged bytes, and other instances where SPDY wins.
When we looked at the correlation between page load times
and the number of unacknowledged bytes, we found that when-
ever the outstanding bytes is higher, it results in lower page
load times. To illustrate this, we zoom into four Web sites (1,
7, 13, and 20) from the same run and plot them in the lower
half of Fig. 11. For the first two Web sites, HTTP has more un-
acknowledged data, and hence the page load times were lower
(by more than 1 s), whereas for 13 and 20, SPDY has more out-
standing data and hence lower page load times (faster by 10 and
2 s, respectively). We see that the trend applied for the rest of
the Web sites and other runs. In addition, we see in Web sites 1
and 20 that the growth in outstanding bytes (i.e., the growth of
throughput) is quite slow for SPDY. We have already estab-
lished in Fig. 9 that the proxy is not starved for data. Hence,

Fig. 12. , , and outstanding data for one run of SPDY. The
figure also shows times at which there are retransmissions.

the factors limiting the amount of data transferred could ei-
ther be the sender's congestion window or the receiver's receive
window.
Congestion Window Growth: We processed the packet cap-

ture data and extracted the receive window advertised
by the client. From the packet capture data, it was pretty clear
that was not the bottleneck for these experimental runs.
So instead we focused on the proxy's congestion window and
its behavior. To get the congestion window, we needed to tap
into the Linux kernel and ran a kernel module that
reports the congestion window and slow-start threshold

for each TCP connection.
Fig. 12 shows the congestion window, , the

amount of outstanding data, and the occurrence of retransmis-
sions during the course of one random run with SPDY. First,
we see that in all cases, the provides the ceiling on the
outstanding data, indicating that it is the limiting factor in the
amount of data transferred. Next, we see that both the and
the fluctuate throughout the run. Under ideal condi-
tions, we would expect them to initially grow and then stabilize
to a reasonable value. Finally, we see many retransmissions
(blue circles) throughout the duration of the run (in our plot,
the fatter the circle, the greater the number of retransmissions.)



2018 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Fig. 13. , , and outstanding data for three consecutive Web
sites.

To gain a better understanding, we zoom into the interval be-
tween 40 and 190 s in Fig. 13. This represents the period when
the client issues requests to Web sites 2–4. The vertical dashed
line represents time instances where there are retransmissions.
From Fig. 13, step (1), when accessing Web site 2 at time 60,
we see that both the and are small. This is a re-
sult of multiple retransmissions happening in the time interval
0–60 s (refer Fig. 12). In step (2), from 60 to 70 s, both the
and grow as data is transferred. Since the is
higher than the , TCP stays in congestion avoidance
and does not grow as rapidly as it would in “slow-start.” The
pattern of growth during the congestion avoidance phase is also
particular to TCP-Cubic (because it first probes and then has an
exponential growth).
After about 70 s, in step (3), there is not any data to

transfer and the connection goes idle until about 85 s. This
is the key moment for performance loss: At step (4), when
the proxy tries to send data, multiple effects are triggered.
First, since the connection has been idle, a TCP parameter

is triggered. Intuitively, this
parameter captures that fact that network bandwidth could
have changed during the idle period, and hence it makes sense
to discard all the estimates of the available bandwidth. As a
result of this parameter, TCP reduces the to the default
initial value of 10. Note that the and retransmission
timeout (RTO) values are left unmodified; as a result, the
connection goes through slow start until grows beyond
the .
As described in Section II, the cellular radio transitions be-

tween idle and active states to conserve energy and share the
radio resources. Devices transfer the most data when they are in
the active (or DCH) state. They transition to idle after a small
period of inactivity. When going from idle to active, the state
machine imposes a promotion delay, which is typically around
2 s [16]. This promotion delay results in a period in which TCP
does not receive any acknowledgments either. Since TCP's RTO
value is not reset after an idle period, and this RTO value is much
smaller than the promotion delay, it results in a TCP timeout and
subsequent retransmissions (refer Fig. 12). As a consequence,

is reduced, and the is set to a value based on
the (the specific values depend on the flavor of TCP).

TCP then enters slow start, and and grow back
quickly to their previous values (again this depends on the ver-
sion of TCP, and in this case depends on the behavior of TCP-
Cubic). As a result of an idle and subsequent retransmission,
a similar process repeats itself twice, at 90 and 120 s with the

and . Interestingly, at 110 s, we do not see re-
transmissions even though there was an idle period.We attribute
this to the fact that the RTO value is large enough due to pre-
vious timeouts to accommodate the increased round-trip time
after the idle time.
When Web site 3 is requested in step (5) at time 120, the

and grow as data is transferred [step (6)]. The
Web site also transfers small amounts of data at around 130 s
in step (7), after a short idle period. That causes TCP to reduce
its to 10. However the idle period is short enough that
the cellular network does not go idle. As a result, there are no
retransmissions, and the stays at 65 segments. The

remains at 10 as no data were transferred after that time.
When Web site 4 is requested in step (8) at 180 s, however,
the falls dramatically because there is a retransmis-
sion (TCP as well as the cellular network become idle). More-
over, there are multiple retransmissions as the RTT estimates no
longer hold.
Understanding Retransmissions: One of the reasons for both

SPDY and HTTP's performance issues is the occurrence of TCP
retransmissions. Retransmissions result in the collapse of TCP
congestion window, which in turn hurts throughput. We analyze
the occurrence of retransmissions and its cause in this section.
There are on average 117.3 retransmissions for HTTP and

67.3 for SPDY.We observed in this section that most of the TCP
retransmissions were spurious due to an overly tight RTO value.
Upon close inspection of one HTTP run, we found all (442) re-
transmissions were in fact spurious. On a per-connection basis,
HTTP has fewer retransmissions (2.9) since there are 42.6 con-
current TCP connections open on average. Thus, the 67.3 re-
transmits for SPDY results in much lower throughput. We also
note from our traces that the retransmissions are bursty in na-
ture and typically affect a few (usually one) TCP connections.
Fig. 14 shows that even though HTTP has a higher number of
retransmissions, when one connection's throughput is compro-
mised, other TCP connections continue to perform unaffected.
Since HTTP uses a “late binding” of requests to connections
(by allowing only one outstanding request per connection), it is
able to avoid affected connections and maintain utilization of
the path between the proxy and the end-device. On the other
hand, since SPDY opens only one TCP connection, all these re-
transmissions affect its throughput.

F. Validating the Impact of Cellular State Machine
In this experiment, we analyze the performance improvement

gained by the device staying in the DCH state. Since there is a
delay between each Web site request, we run a continual ping
process that transfers a small amount of data every few seconds.
We choose a payload that is small enough to not interfere with
our experiments, but large enough that the state machine keeps
the device in DCH mode.
Fig. 15 shows the CDF of the page load times for the different

Web sites across the different runs. Unsurprisingly, the result



ERMAN et al.: TOWARDS A SPDY’IER MOBILE WEB? 2019

Fig. 14. Retransmission with HTTP and SPDY. We see that there are bursts of
retransmissions affecting a single TCP connection. Since SPDY uses only one
TCP connection, its throughput is impacted when there are retransmissions.

Fig. 15. Validating the impact of cellular RRC state machine. When the radio
is continuously active, SPDY performs better than HTTP because it does not
incur retransmissions.

shows that having the cellular network in DCH mode through
continuous background ping messages significantly improves
the page load time of both HTTP and SPDY. For example, more
than 80% of the instances load in less than 8 s when the device
sends continual ping messages, but only between 40% (SPDY)
and 45% (HTTP) complete loading without the ping messages.
Moreover, SPDY performs better than HTTP for about 60% of
the instances with the ping messages. We also looked into the
number of retransmissions with and without ping messages; not
surprisingly, we observed that the number of retransmissions
reduced by for HTTP and for SPDY indicating
that TCP RTT estimation is no longer impacted by the cellular
state machine. While this result is promising, it is not practical
to keep the device in DCH state as it wastes cellular resources
and drains device battery. Hence, mechanisms need to be built
into TCP that account for the cellular state machine.

G. Does the Problem Disappear With LTE?
We analyze the performance of HTTP and SPDY over LTE

in this section. LTE adopts an improved RRC state machine
with a significantly smaller promotion delay. On the other hand,
LTE also has lower round-trip times compared to 3G, which has
the corresponding effect of having much smaller RTO values.

Fig. 16. Page load time of HTTP and SPDY over LTE. We see here that SPDY
performs marginally better than HTTP.

We perform the same experiments using the same setup as in
the previous 3G experiments, but connect to an LTE network
with LTE USB laptop cards. Fig. 16 shows the box plot of page
load times for HTTP and SPDY over LTE. As expected, we see
that both HTTP and SPDY have considerably smaller page load
times compared to 3G. We also see that HTTP performs just
as well as SPDY, if not better, for the initial few pages. How-
ever, SPDY's performance is better than HTTP after the initial
set of Web pages. We attribute this to the fact that LTE's RRC
state machine addresses many of the limitations present in the
3G state machine, thereby allowing TCP's congestion window
to grow to larger values and thus allowing SPDY to transfer
data more quickly. We also looked at the retransmission data
for HTTP and SPDY—the number of retransmissions reduced
significantly with an average of 8.9 and 7.52 retransmissions
per experiment with HTTP and SPDY (as opposed to 117 and
63 with 3G), respectively.
While the modified state machine of LTE results in better per-

formance, we also wanted to see if it eliminated the issue of re-
transmission as a result of the state promotion delay. We focus
on a short duration of a particular, randomly selected, run with
SPDY in Fig. 17. The figure shows the congestion window of
the TCP connection (in red), the amount of data in flight (in
cyan), and the times when there are retransmissions (in black).
The thicker retransmission lines indicate multiple retransmis-
sions. We see from the figure that retransmissions occur after
an idle period in LTE also. For example, at around 600 s, the
proxy tries to send data to the device after an idle period; time-
outs occur after the transmission of data, leading to retransmis-
sions; and the congestion window collapses. This result leads us
to believe that the problem persists even with LTE, albeit less
frequently than with 3G.

H. Effect of Other Users and Load
In addition to experiments described above, we also per-

formed experiments to understand the impact of multiple users
in a congested cell. The experiments were conducted with four
laptops simultaneously accessing the test Web pages (with each
laptop starting in a staggered manner, 10 s after another). We
also added congestion to the cell by having four other laptops
continuously download data in the background. We verified the



2020 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Fig. 17. SPDY's congestion window and retransmissions over LTE. We see
that SPDY still incurs retransmissions albeit significantly lower than with 3G.

Fig. 18. Page load time over 3G with multiple users and background load.

effect of congestion by observing that the throughput of these
four “background load” laptops go down proportionally to the
data downloaded by the test laptops.
We show the results of this experiment in Fig. 18. Similar to

the previous single-user experiments, there is very little differ-
ence between the page load times using HTTP and SPDY. Note
that the absolute values are different from the single user exper-
iments; we attribute it to the fact that the measurement was done
at a different time period (day and time). We also conducted the
same experiment with multiple users, but no background load.
While we do not report the results here due to lack of space, we
observed those trends to be similar. These results lead us to be-
lieve that the fundamental problem remains even with multiple
users, under load in a congested cell.

I. Summary and Discussion
We see from these results how the interaction between the

different layers affects performance. First, we see Web sites
sending and/or requesting data periodically (ads, tracking
cookies, Web analytics, page refreshes, etc.). We also observe
that a key factor affecting performance is the independent
reaction of the transport protocol (i.e., TCP) and the cellular
network to inferred network conditions.
TCP implementations reset their statistics after an idle

period as the network capacity might have changed. That in it-
self would not be a problem in wired networks as the will

grow back up quickly. However, in conjunction with the cel-
lular network's idle-to-active promotion delay, it results in un-
intended consequences. Spurious retransmissions occurring due
to the promotion delay cause the to fall to the
value. As a result, when TCP tries to recover, it goes through
slow start for a short duration, and then switches to conges-
tion avoidance, even for small number of segments. From a
TCP standpoint, this defeats the design intent where short trans-
fers that do not have the potential of causing congestion (and
loss) should be able to rapidly acquire bandwidth, thus reducing
transfer time. This difficulty of transport protocols “shutting
down” after an idle period at just the time when applications
wake up and seek to transfer data (and therefore requiring higher
throughput) is not new and has been observed before [17]. How-
ever, the process is further exacerbated in cellular networks with
the existence of a large promotion delay. These interactions thus
degrade performance, including causing multiple (spurious) re-
transmissions that have significant undesirable impacts on the
individual TCP connection behavior.
Our results also point to a limitation in TCP implementations.

Existing implementations retain information about the latency
profile (i.e., RTT estimates) after an idle period. With the cel-
lular state machine, however, the latency profile changes after
an idle period. Since the estimates are inaccurate, it results in
spurious retransmissions. We notice that LTE, despite having an
improved state machine, is still susceptible to retransmissions
after an idle period. When we keep the device in active mode
continuously, we transform the cellular network to behave more
like a traditional wired (and also a WiFi) network in terms of la-
tency profile. Consequently, we see results similar to the ones
seen over wired networks.

VI. POTENTIAL IMPROVEMENTS

Having identified the interactions between TCP and the cel-
lular network as the root cause of the problem, in this section,
we propose steps that can minimize their impact.

A. Using Multiple TCP Connections

The observation that using a single TCP connection causes
SPDY to suffer because of retransmissions suggests a need to
explore the use of multiple TCP connections. We explore this
option by having the browser use 20 SPDY connections to a
single proxy process listening on 20 different ports.3 However,
the use of multiple TCP connections did not help in improving
the page load times for SPDY. This is primarily because, with
SPDY, requests are issued to each connection up front. As a re-
sult, if a connection encounters retransmissions, pending objects
requested on that connection are delayed. What is required is
a late binding of the response to an “available” TCP connec-
tion (meaning that it has an open congestion window and can
transmit data packets from the proxy to the client at that instant)
and avoiding a connection that is currently suffering from the
effects of spurious timeouts and retransmissions. Such a late
binding would allow the response to come back on any avail-
able TCP connection, even if the request was sent out on a dif-

3We make use of a proxy auto config (PAC) file that dynamically maps the
proxy address and one of the 20 ports to each object requested.



ERMAN et al.: TOWARDS A SPDY’IER MOBILE WEB? 2021

ferent connection. This takes advantage of SPDY's capability
to send the requests out in a “burst,” and allows the responses
to be delivered to the client as they arrive back, avoiding any
“head-of-the-line blocking.”

B. TCP Implementation Optimizations
1) Resetting RTT Estimate After Idle: There is a fundamental

need to decay the estimate of the available capacity of a TCP
connection once it goes idle. The typical choice made today
by implementations is to just reset to the initial value.
The RTT estimate, however, is left untouched by implementa-
tions. The RTT estimate drives the RTO value and hence con-
trols when a packet is retransmitted. Not resetting the RTT es-
timate may be acceptable in networks that have mostly “stable”
latency characteristics (e.g., a wired orWiFi network), but as we
see in our observations with the cellular network, this leads to
substantially degraded performance. The cellular network has
vastly varying RTT values. In particular, the idle to active tran-
sition (promotion) can take a few seconds. Since the previous
RTT estimate derived when the cellular connection was active
may have been of the order of tens or hundreds of milliseconds,
there is a high probability of a spurious timeout and retrans-
mission of packets after the idle period. Thus, the interaction of
TCP with the RRC state machine of the cellular network has
to be properly factored in to achieve the best performance. Our
recommended approach is to reset the RTT estimate as well, to
the initial default value (of multiple seconds). This causes the
RTO value to be larger than the promotion delay for the 3G cel-
lular network, thus avoiding spurious timeouts and unnecessary
retransmissions. This, in turn, allows the to grow rapidly,
ultimately reducing page load times.
2) Benefit of Slow Start After Idle?: One approach we

also considered was whether avoiding “slow start after idle”
would improve performance. We disabled slow start by setting

to 0 and studied the improve-
ment in page load time. Fig. 19 plots the relative difference
between the average page load time of the different Web sites
with and without slow start. A negative value on the -axis
indicates that disabling slow start after idle is beneficial, while a
positive value indicates that performing slow start is beneficial.
We see that the benefits vary across different Web sites. Our
packet traces indicate that the amount of outstanding data (and
hence throughput) is quite similar in both the cases. The number
of retransmitted packets seem similar under good conditions,
but disabling the parameter runs the risk of having lots of
retransmissions under congestion or poor channel conditions
since the value is inaccurate after an idle period. In some
instances, grows so large with the parameter disabled,
that the receive window becomes the bottleneck and negates
the benefit of a large congestion window at the sender.
3) Impact of TCP Variants: We replaced TCP Cubic with

TCP Reno to see if modifying the TCP variant has any posi-
tive impact on performance. We find in Table II that there is
little to distinguish between Reno and Cubic for both HTTP
and SPDY over 3G. We see that the average page load time
across all the runs of all pages is better with Cubic. Average
throughput is quite similar with Reno and Cubic, with SPDY
achieving the highest value with Cubic. While this seemingly

Fig. 19. Difference in page load times with and without TCP “slow start after
idle.” Disabling slow start after idle does not seem to improve page load time.

TABLE II
COMPARISON OF HTTP AND SPDY TO DIFFERENT TCP VARIANTS (RENO AND
CUBIC). THE SPECIFIC VARIANT OF TCP DOES NOT HELP DIFFERENTIATE

SPDY FROM HTTP

contradicts the result in Fig. 10, note that this result is the av-
erage across all times (ignoring idle times), while the result in
Fig. 10 considers the average at that 1-s instant. Indeed, the
maximum throughput result confirms this: HTTP with Cubic
achieves a higher throughput than SPDY with Cubic. SPDY
with Reno does not grow the congestion window as much as
SPDY with Cubic. This probably results in SPDY with Reno
having the worst page load time across the combinations.
4) Cache TCP Statistics?: The Linux implementation of

TCP caches statistics such as the slow start threshold and
round-trip times by default and reuses them when a new con-
nection is established. If the previous connection had statistics
that are not currently accurate, then the new connection is
negatively impacted. Note that since SPDY uses only one
connection, the only time these statistics come into play is
when the connection is established. It can potentially impact
HTTP, however, because HTTP opens a number of connections
over the course of the experiments. We conducted experiments
where we disabled caching. Interestingly, we find from our
results that both HTTP and SPDY experience reduced page
load times. For example, for 50% of the runs, the improvement
was about 35%. However, there was very little to distinguish
between HTTP and SPDY.

VII. RELATED WORK

There have been several efforts that are related to our work.
These can be classified broadly into work on SPDY, work on
radio resource management, and work on TCP optimizations.
SPDY: Researchers at Google originally showed the per-

formance bottlenecks associated with Web delivery due to



2022 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

the use of HTTP. They pinpointed the limitations of TCP as
the root-cause of these bottlenecks and proposed SPDY as an
approach to overcome the bottlenecks [3]. However, many of
their results were based on wired network performance. More
recently, Welsh et al. [4] used dummynet to emulate cellular
network-like characteristics to show that SPDY improves
mobile Web performance by as much as 23%. However, as we
show in this paper, the real-world results with SPDY are not as
optimistic and that there are important cross-layer interactions
that are not captured in such emulated settings. Finally, inde-
pendent of our work, Wang et al. [18] study the impacts of using
SPDY across different dimensions. Like our paper, they also
conclude that SPDY does not definitively outperform HTTP
and that the outcome depends on multiple factors. They also
show that object interdependencies in Web pages restrict the
capabilities that SPDY offers. Unlike our paper, however, they
do not focus on the mobile Web performance or on trying to
understand the cross-layer aspects that affect the performance
of these protocols.
Radio Resource Management: The use of cellular state

machines has prompted several attempts to improve general
application performance over cellular networks (e.g., [16] and
[19]). Specifically, TOP and TailTheft study efficient ways
of utilizing radio resources by optimizing timers for state
promotions and demotions. However, despite the knowledge
about state machines, their impact on TCP performance has not
yet been well understood. Erman et al. [20] study the use of
caching at different levels (e.g., nodeB, RNC) of a 3G cellular
network to reduce download latency of popular Web content.
Aucinas et al. [21] study the impact of mobile applications that
provide continuous online presence. They find that these apps
are “chatty” in nature. Such chatty communication would miti-
gate the promotion delay problem (like we show in Fig. 15), but
as the study shows, such apps introduce other problems (like
draining device battery and unnecessarily consuming precious
radio resources).
TCP Optimizations: With regards to TCP, several pro-

posals have tried to tune TCP parameters to improve its
performance [22] and address issues like HOL blocking and
multihoming. Recently, Google proposed in an IETF RFC
3390 [23] to increase the TCP initial congestion window to 10
segments to show how Web applications will benefit from such
a policy. As a rebuttal, Gettys [24] demonstrated that changing
the initial TCP congestion window can indeed be very harmful
to other real-time applications that share the broadband link
and attributed this problem to one of ”buffer bloat.” As a result.
Gettys proposed the use of HTTP pipelining to provide im-
proved TCP congestion behavior. Ramjee et al. [25] recognize
how challenging it can be to optimize TCP performance over
3G networks exhibiting significant delay and rate variations.
They use an ACK regulator to manage the release of ACKs
to the TCP source so as to prevent undesired buffer overflow.
Our work inspects in detail how SPDY and HTTP behave due
to TCP over cellular networks. In this paper, we investigate
in detail how congestion window growth affects download
performance for HTTP and SPDY in cellular networks. In
particular, we demonstrate how idle-to-active transition at
different protocol layers results in unintended performance

degradations. We show that a spurious timeout is caused by the
fact that TCP stays with its original estimate for the RTT despite
a promotion delay when transitioning from idle to active states.
The RTO estimate derived over multiple round trips during the
active period of a TCP connection is not only invalid during
this promotion period, and results in significant performance
impact. Note that the problem of spurious retransmissions due
to a variable-delay channel is well known, and solutions have
been implemented to mitigate its effects (e.g., F-RTO [26]).
However, studies [27], [28] show that spurious timeouts do
not drastically impact TCP performance in practice. Moreover,
they seem to be infrequent events in UMTS networks with the
ratio between spurious timeouts and other congestion recovery
events experienced by TCP flows being low [28]. This could
be because delay variations become critical whenever they are
on the order of seconds [29]. The problem identified in this
paper falls in this realm. Here, the timeout occurs because of a
long, but predictable, cellular state promotion delay. Hence, we
suggest using conservative ways to manage the RTO estimate
whenever the device transitions from idle to active.

VIII. CONCLUSION
Mobile Web performance is one of the most important mea-

sures of users' satisfaction with their cellular data service. We
systematically study two of the most prominentWeb access pro-
tocols used today, HTTP and SPDY, through fieldmeasurements
on a production cellular network. In cellular networks, there are
interactions across protocol layers that limit the performance of
both SPDY as well as HTTP. As a result, in contrast to existing
studies on wired and WiFi networks, there is no clear perfor-
mance improvement with SPDY in cellular networks. In partic-
ular, we show that TCP performance is significantly impacted
when a connection comes out of idle state. Given the high pro-
motion delay when a cellular end-device goes from idle to ac-
tive, retaining TCP's RTT estimate across this transition results
in spurious timeouts and corresponding retransmissions. This
particularly punishes SPDY, which depends on the single TCP
connection. This connection is hit with the spurious retransmis-
sions, and hence all the cascading effects of TCP's congestion
control mechanisms like lowering , etc. This ultimately re-
duces throughput and increases page load times. We propose
a holistic approach to considering all the TCP implementation
features and parameters to improve mobile Web performance
and thereby fully exploit SPDY's advertised capabilities.

REFERENCES
[1] L. Popa, A. Ghodsi, and I. Stoica, “HTTP as the narrow waist of the

future Internet,” in Proc. Hotnets-IX, 2010, pp. 6:1–6:6.
[2] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic fore-

casts achieve high throughput and low delay over cellular networks,”
in Proc. USENIX NSDI, Apr. 2013, pp. 459–472.

[3] Google, “SPDY: An experimental protocol for a faster Web,” [Online].
Available: http://www.chromium.org/spdy/spdy-whitepaper

[4] M. Welsh, B. Greenstein, and M. Piatek, “SPDY performance on
mobile networks,” Apr. 2012 [Online]. Available: https://developers.
google.com/speed/articles/spdy-for-mobile

[5] F. Zarinni, A. Chakraborty, V. Sekar, S. R. Das, and P. Gill, “A first
look at performance in mobile virtual network operators,” in Proc.
ACM IMC, 2014, pp. 165–172.

[6] X. Xu et al., “Investigating transparent Web proxies in cellular net-
works,” in Proc. PAM, 2015, pp. 262–276.



ERMAN et al.: TOWARDS A SPDY’IER MOBILE WEB? 2023

[7] Google, “Chrome data compression proxy,” [Online]. Available:
https://developer.chrome.com/multidevice/data-compression

[8] V. Agababov et al., “Flywheel: Google's data compression proxy for
the mobile Web,” in Proc. USENIX NSDI, 2015, pp. 367–380.

[9] “Web technology surveys,” Jun. 2013 [Online]. Available:
http://w3techs.com/technologies/details/ce-spdy/all/all

[10] S. U. Khaunte and J. O. Limb, “Statistical characterization of a World
Wide Web browsing session Georgia Institute of Technology, Tech.
Rep., 1997.

[11] 3GPP, “3GPP TS 36.331: Radio Resource Control (RRC),” 2014 [On-
line]. Available: http://www.3gpp.org/ftp/Specs/html-info/36331.htm

[12] “Hypertext Transfer Protocol version 2 (HTTP/2),” 2015 [Online].
Available: https://http2.github.io/faq/

[13] X. S.Wang, A. Balasubramanian, A. Krishnamurthy, and D.Wetherall,
“Demystifying page load performance with WProf,” in Proc. USENIX
NSDI, Apr. 2013, pp. 473–486.

[14] S. Sanadhya and R. Sivakumar, “Adaptive flow control for TCP on
mobile phones,” in Proc. IEEE INFOCOM, 2011, pp. 2912–2920.

[15] “Squid caching proxy,” [Online]. Available: http://www.squid-
cache.org

[16] F. Qian et al., “TOP: Tail optimization protocol for cellular radio re-
source allocation,” in Proc. IEEE ICNP, 2010, pp. 285–294.

[17] L. Kalampoukas, A. Varma, K. K. Ramakrishnan, and K. Fendick, “An-
other examination of the use-it-or-lose-it function on TCP traffic,” pre-
sented at the ATM Forum/96–0230 TM Working Group, 1996.

[18] X. S.Wang, A. Balasubramanian, A. Krishnamurthy, and D.Wetherall,
“How speedy is SPDY?,” in Proc. USENIX NSDI, Apr. 2014, pp.
387–399.

[19] H. Liu, Y. Zhang, and Y. Zhou, “Tailtheft: Leveraging the wasted time
for saving energy in cellular communications,” in Proc. MobiArch,
2011, pp. 31–36.

[20] J. Erman et al., “To cache or not to cache: The 3G case,” IEEE Internet
Comput., vol. 15, no. 2, pp. 27–34, Mar.–Apr. 2011.

[21] A. Aucinas et al., “Staying online while mobile: The hidden costs,” in
Proc. ACM CoNEXT, 2013, pp. 315–320.

[22] J. Stone and R. Stewart, “Stream Control Transmission Pro-
tocol (SCTP) checksum change,” Sep. 2002 [Online]. Available:
http://tools.ietf.org/html/rfc3309.html

[23] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing TCP's ini-
tial window,” Feb. 2013 [Online]. Available: http://tools.ietf.org/html/
draft-ietf-tcpm-initcwnd-08.html

[24] J. Gettys, “IW10 considered harmful,” Aug. 2011 [Online]. Available:
http://tools.ietf.org/html/draft-gettys-iw10-considered-harmful-00.
html

[25] M. C. Chan and R. Ramjee, “TCP/IP performance over 3G wireless
links with rate and delay variation,” in Proc. ACM MobiCom, Atlanta,
GA, USA, 2002, pp. 71–82.

[26] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: An enhanced
recovery algorithm for TCP retransmission timeouts,” Comput.
Commun. Rev., vol. 33, no. 2, pp. 51–63, Apr. 2003.

[27] M. Allman and J. Griner, “TCP behavior in networks with dynamic
propagation delay,” in Proc. IEEE GLOBECOM, 2000, vol. 2, pp.
1103–1108.

[28] F. Vacirca, T. Ziegler, and E. Hasenleithner, “An algorithm to detect
TCP spurious timeouts and its application to operational UMTS/GPRS
networks,” Comput. Netw., vol. 50, no. 16, pp. 2981–3001, 2006.

[29] M. Scharf, M. Necker, and B. Gloss, “The sensitivity of TCP to
sudden delay variations in mobile networks,” Networking, vol. 3042,
pp. 76–87, 2004.

Jeffrey Erman received the B.S. degree from the
University of Regina, Regina, SK, Canada, in 2005,
and the M.S. degree from the University of Calgary,
Calgary, AB, Canada, in 2007, both in computer
science.
He is a Principal Inventive Scientist with AT&T

Labs—Research, Bedminster, NJ, USA. His research
focuses are in IP traffic measurement, network traffic
classification, cross-layer protocol analysis, network
management, and performance analysis.

VijayGopalakrishnan (M'09) received theM.S. and
Ph.D. degrees in computer science from the Univer-
sity of Maryland, College Park, MD, USA, in 2003
and 2006, respectively.
He has been with AT&T since 2006 and has

worked on innovative solutions in the space of net-
work management, content delivery, and the mobile
Web. He is currently a Director with the Network
and Service Quality Management Center, AT&T
Labs—Research, Bedminster, NJ, USA, leading a
team of researchers focused on systems challenges

in the architecture, protocols and management of networks.

Rittwik Jana (M'02) received the Bachelor of En-
gineering in Electrical and Electronics degree from
the University of Adelaide, Adelaide, Australia, in
1994, and the Ph.D. degree in telecommunications
engineering from the Australian National University,
Canberra, Australia, in 1999.
He is a Lead Inventive Scientist with AT&T

Labs—Research, Bedminster, NJ, USA. His research
interests span Internet technologies, networked
video streaming, cellular networks and systems, and
intelligent service composition using VNFs.

Kadangode K. Ramakrishnan (S'76–A'83–M'03–
SM'04–F'05) received the M.S. degree in automation
from the Indian Institute of Science, Bangalore,
India, in 1978, and the M.S. and Ph.D. degrees in
computer science from the University of Mary-
land, College Park, MD, USA, in 1981 and 1983,
respectively.
He is a Professor with the Computer Science and

Engineering Department of the University of Cali-
fornia, Riverside, CA, USA. From 1994 until 2013,
he was with AT&T, most recently a Distinguished

Member of Technical Staff with AT&T Labs—Research, Florham Park, NJ,
USA. Prior to 1994, he was a Technical Director and Consulting Engineer in
Networking with Digital Equipment Corporation, Littleton,MA,USA. Between
2000 and 2002, he was with TeraOptic Networks, Inc., Sunnyvale, CA, USA,
as Founder and Vice President. He has published more than 200 papers and has
145 patents issued in his name.
Dr. Ramakrishnan is also an AT&T Fellow, recognized in 2006 for his work

on congestion control, traffic management and VPN services, and for funda-
mental contributions on communication networks with a lasting impact on
AT&T and the industry. He has been on the editorial board of several journals
and has served as the TPC Chair and General Chair for several networking
conferences. He received an AT&T Technology Medal in 2013 for his work on
mobile video delivery strategy and optimization. His work on the “DECbit”
congestion avoidance protocol received the ACM SIGCOMM Test of Time
Paper Award in 2006.


