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ABSTRACT
New standards such as WebXR enable cross-platform VR experi-

ences, relying on the ubiquity of the modern web browser. However,

upon measuring performance of WebXR scenes, we found users

can suffer from high latency while waiting for all 3D objects appear

in their field-of-view. This is because storage and fetching of 3D

objects in WebXR (and its underlying WebGL libraries) are agnostic

to the user’s orientation and location, leading to latency issues.

Specifically, fetching of texture files in arbitrary order results in

3D objects waiting on their texture dependencies, and the storage

of all objects’ geometry data in one large file blocks individual ob-

jects from rendering even if their texture dependencies are satisfied.

To address these issues, we propose a systematic prioritization of

which 3D objects and their dependencies should be fetched first,

based on the user’s position and orientation in the VR scene. To im-

prove efficiency, the geometry data belonging to each 3D object are

optimally grouped together to minimize the average latency. Our

experiments with various WebXR scenes under different network

conditions show that our scheme can significantly reduce the time

to all 3D objects appearing in the user’s field-of-view, by up to 50%,

compared the default WebXR behavior.
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1 INTRODUCTION
New standards such as WebXR [W3C 2021] enable cross-platform

augmented and virtual reality (AR/VR) experiences by processing

and displaying content through web browsers. This enables devel-

opers to write a single WebXR experience and have it work across

multiple AR/VR devices, such as Oculus Quest and HTC Vive. Un-

der the hood, WebXR works by calling WebGL Javascript libraries
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(a) Default WebXR.

(b) Our approach, VIA.

Figure 1: By default,WebXR downloads the objects and their
dependencies in arbitrary order (a), while VIA prioritizes
downloading objects within the user’s FoV so they can ap-
pear sooner (b).

and retrieving the relevant assets from a remote web server. Once

an object has all its dependent assets (geometry and texture data),

the object is rendered on the VR display. WebXR is supported by

most modern web browsers including Chrome and Edge and is

standardized by the W3C.

Motivated by the current support and active development of

WebXR, we experimented with various WebXR sample scenes, and

observed significant performance issues in terms of latency. Users

loading a WebXR scene had to wait up to 9.86 seconds under a 69

Mbps connection until all objects were fully visible in the user’s

field-of-view (FoV), hurting user experience. The reason for these

high latencies is that WebXR is agnostic to the user’s current FoV,

and retrieves dependencies in an arbitrary order determined simply

by how they are listed in a metadata file. In the worst case, objects

that are behind a user might be downloaded and rendered first,

while objects that are directly in front of the usermight be download

and rendered last, leaving the user to view a blank screen in the

meantime. Based on these observations, in this work we propose

reducing the load times ofWebXR scenes, by optimizing how objects

are stored and retrieved from a server, as illustrated in Fig. 1.

However, this is not a straightforward problem to solve for the

following reasons. Firstly, it is not clear in what order objects should

be retrieved, as some objects are entirely contained within the FoV,
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while other objects may span the entire FoV, or even be out of the

FoV entirely. Secondly, the geometry data associated with WebXR

objects is stored in very coarse-grained format (one large binary

file), preventing fine-grained resource requests. To address the first

challenge, we propose a new scoring function that prioritizes which

objects to download, based on whether objects are potentially vis-

ible and their orientation from the center of the FoV. To address

the second challenge, we propose grouping geometry data together

into logically-meaningful chunks that minimize the average down-

load time of any object in a scene. Implementing these techniques

requires only changes to the server-side code, and works with

un-modified clients and browsers.

This project is related to research in viewport optimization for

web pages [Butkiewicz et al. 2015; Netravali et al. 2016] and 360
◦

videos [Corbillon et al. 2017; Guan et al. 2019; Qian et al. 2018;

Zhou et al. 2018] but differs in several major respects. Firstly, web

page optimizations that prioritize resources “above the fold” rely

on the DOM tree, which does not contain information about We-

bXR objects and their dependencies; furthermore, the implemen-

tation is very different as WebXR involves working with WebGL

and Javascript, rather than mainly HTML/Javascript/CSS. Secondly,

360
◦
video optimizations prioritize 2D tiles in the user’s FoV from

a single user location, whereas our solution prioritizes 3D objects

and their dependencies, for any user location and orientation.

To the best of our knowledge, this is the first work to combine

page load reduction time reduction techniques with VR applica-

tions, improving the user experience for browser-based VR. We

call our system VIA, short for VIsibility-Aware Web-based VR. The

contributions of this paper can be summarized as:

• We showcase the latency issues of web-based VR by measuring

the page load times of several WebXR sample scenes, and find

that inefficient object download ordering is the root cause of the

observed high latencies. For example, the time until all content

is rendered in the user’s FoV for a Shack scene (details in §7.1) is

41.26 seconds under a 10Mbps connection. However, the objects

in the FoV consumed only 64% of the total objects requested,

indicating there are opportunities for significant savings.

• Wepropose a scoringmethod to determinewhich objects should

receive priority downloads. The score is a combination of visibil-

ity and orientation from the center of the user’s FoV. Given these

scores, the WebGL metadata, geometry data, and and Javascript

code are minimally modified to request the objects and their

dependencies in the appropriate order. To enable fine-grained

retrieval of object dependencies, we group relevant geometry

data together on the server, enabling efficient download any

combination of objects.

• To implement the above techniques, we develop a parser to

determine WebXR dependencies. We experiment with various

WebXR scenes under different network conditions. Our results

show that our method reduces page load times by up to 50.3%,

compared to the default WebXR implementation. Furthermore,

our method works for different user FoVs and is robust to mis-

estimation of the user FoV.

Next, we discuss related work (§2), a brief background onWebXR

(§3), and the motivating measurements for our work (§4). Our

problem setup and solutions are presented in §5, experimental

results in §7, and conclusions in §8. The technical report and open-

source code are provided on a website [Slocum and Huang 2021].

2 RELATEDWORK
360◦ videos: Multiple papers study how to efficiently download

pixels within the FoV for 360
◦
videos (e.g., [Corbillon et al. 2017;

Guan et al. 2019; Qian et al. 2018; Zhou et al. 2018]). However,

360
◦
videos are different from the true 3D scenes we consider in

this work, as 360
◦
videos only consist of 2D video data, and the

decision are which tiles to request, unlike the objects, images, data

buffers, and their dependencies that we have to consider in WebXR.

Furthermore, typically 360
◦
video scenes can only be viewed from a

single position, whereas our method works for any initial viewing

positions and orientations.

Other VR FoV optimizations: FlashBack [Boos et al. 2016] pre-

renders 3D scenes to reduce latency in a thin-client design, whereas

this work follows the WebXR architecture where the client browser

performs rendering. Vivo [Han et al. 2020] optimizes fetching of

point cloud data based on visibility, whereas WebXR 3D objects we

consider in this work are typically stored as meshes plus textures

and normal maps that cover the meshes. WebXR objects thus re-

quire different splitting techniques to enable visibility awareness.

[Hu et al. 2017] has a similar approach of prioritising the download

of parts of a scene, using a different scoring heuristic and a more

coarse-grained object grouping. Our approach works with the re-

cent WebXR standard, is tested on more than one indoor scene,

and uses the standard HTTP client-server architecture rather than

relying on P2P torrents. Other space partitioning structures such

as k-d trees [Assarsson and Moller 2000] could produce alternative

object orderings than VIA’s scoring method; however, we believe

these gains would be incremental, as the majority of the latency

savings come simply doing some form of intelligent ordering.

Page load time: Klotski [Butkiewicz et al. 2015] and Polaris [Ne-

travali et al. 2016], among others, perform dependency analysis for

webpages in order re-order content delivery for faster rendering

“above the fold”, but cannot parse WebXR metadata for the unique

dependency structure of 3D models. Their proxy-based implemen-

tation could be adapted for use in VIA, rather than the server-based

mechanisms we propose. Tools such as Lighthouse [goo 2021] can

record various metrics related to page load time, but cannot ac-

curately capture when all 3D objects are visible in WebXR in our

experience (discussed in Section 7.1), and do not provide WebXR-

specific suggestions for page load time reduction.

3D scenes and models: Previous work has been done to optimise

page load times for streaming specific types of 3D models using the

glTF [Schilling et al. 2016]; however, our solution is more general

as it applies to arbitrary scenes and not just cities. 3D Tiles [Cesium

2017] has similar goals and methods as this project, but requires

converting 3D data to the 3D Tiles file format and using a cus-

tom Cesium viewer. VIA can be considered a more “lightweight”

version of 3D Tiles that works directly with WebXR. Multiple au-

thors [Lavoué et al. 2013; Limper et al. 2013] suggest 3d graphic

data compression and streaming standards, reducing the amount of

bytes sent over the wire while requiring the browser to decompress
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Figure 2: WebXR retrieves metadata, objects, and their data
buffer and image dependencies from a remote server in or-
der to render a 3D scene.

the data before rendering, whichmay be complementary in addition

to VIA. Several works consider 3D object streaming by modifying

the underlying content, such as using “geometry images” [Hu et al.

2008] or texture/mesh compression [Forgione et al. 2018; Hristova

et al. 2020], which are complementary to this work, which focuses

on the order in which to fetch those objects.

3 BACKGROUND
We first provide a brief background onWebXR.WebXR is an API for

web-based AR/VR that enables cross-platform support for different

hardware. It is the successor to WebVR, with contributors including

Google and Mozilla, and the latest W3C working draft was pub-

lished in July 2020 [W3C 2021]. WebXR operates as shown in Fig. 2.

On the client, a WebXR scene is loaded like a regular webpage, and

includes Javascript control code that handles frame updates, ren-

dering, input devices, etc. with the help with WebGL libraries. The

Javascript code first loads a metadata file (.glTF) that provides infor-

mation on what objects are present in the scene, their locations and

orientations, and their dependencies. These dependencies include

the data buffers and image URIs to be rendered, which are stored

on a remote server. In this paper, we call the geometry data and

its associated information (e.g., texture mappings, vertex positions,

etc.) as a “data buffer” (corresponding to a bufferView and its corre-

sponding accessor in the glTF standard). Once the Javascript has

retrieved the objects and their dependencies, they can be rendered

on the display. On the server, the data buffers for multiple objects

are stored by default in one large (.bin) binary file, and the texture

data are stored as individual image files (typically .png or .jpg).

4 MOTIVATION: HIGH LATENCY IN
DEFAULTWEBXR

In this section, we highlight the problems with the default loading

process of WebXR scenes and its root causes, based on our measure-

ments and analysis. We conducted experiments with the default

WebXR implementation in Google Chrome, viewing several sample

scenes and recording the latency until all the objects within the

FoV appeared on the screen (further details in Section 7). Our main

observations are that startup latency is 44.26 seconds on average

on a 10 Mbps connection, and the root causes of this latency are (a)

the initial view-agnostic object fetching order and (b) the coarse-

grained storage of data buffers on the server, as further described

below.

High latency: We first show that the time to first correct frame

(i.e., when all the objects appear in the FoV) which we hereafter

refer to as the latency, is high. Fig. 3a shows the average latency

for each test case, under a 10 Mbps or 3G connection. The latency

is up to 51 seconds for 10 Mbps and 350 seconds for 3G. Similar

multi-second load times have also been observed in 4G and 5G

networks [Nam et al. 2019]. Next, we unpack the root causes of

these high latencies.

User-agnostic object fetching order: We observed that when a

WebXR scene is loaded, all the object dependencies are downloaded

according to an arbitrary fixed order (based on the order they

are listed in the .glTF metadata). This causes problems because

the download order is agnostic to the user’s FoV. For example, as

shown in the network request trace in Fig. 3b, the texture files

belonging to objects behind the user (e.g., roof tiles) are fetched
earlier, while the texture files belonging to objects in front of the

user (e.g., satellite dish) are fetched later. This delays the rendering

of objects in front of the user. Such observations motivated our

object scoring strategy, which determines what objects to prioritize

in the user’s FoV and fetches their dependencies first, decreasing

the latency (see Section 5.2).

Coarse-grained data buffer storage: Besides image (texture and

normal) data, objects also require data buffers containing geometry

meshes and other related information in order to render the object

correctly. However, we observed that the data buffers are typically

stored in one large .bin file, causing issues, because a single object

cannot be rendered until the entire file has been downloaded. For

example, in Fig. 6c, the data buffer asset is the second-slowest

file to download under a 10 Mbps connection due to its size; no

objects can render before the data buffer finishes downloading at 39

seconds. These observations motivated us to consider splitting the

binary appropriately; however, the challenge is to determine the

split granularity – a fine granularity allows object fetching flexibility

but incurs an extra RTT for each request (see Section 5.3).

5 PROBLEM AND SOLUTIONS
5.1 Overview
To quickly download and render the objects within the user’s FoV,

we have to solve the two aforementioned problems of object depen-

dency fetching order, and coarse-grained asset storage. Our system

system, has two modules:

• Object scoring (Section 5.2): The Object Scoring module’s

task is to determine which objects are within the user’s FoV,

and assign scores to the objects and their dependencies for later

request order optimization. Here, the problem is to determine

in what order to request the objects, based on where they are

in the scene. The main idea is that objects within the user’s FoV

and directly centered in front should have higher priority. This

information needed to compute this can be obtained from the

glTF metadata for the scene.
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(a) Default WebXR load latency of
38-51 seconds under 10Mbps.

(b) User-agnostic dependency fetching order. The roof tiles are
fetched earlier despite being behind the user, and satellite dish
is fetched later despite being within the FoV.

(c) The data buffer takes 39 s
to load, blocking all objects
from rendering.

Figure 3: High latency in default WebXR (a) is due to user-agnostic dependency fetching order (b) and coarse-grained data
buffer storage (c).

Figure 4: Overview of VIA.

• Data buffer grouping (Section 5.3): The Data Buffer Group-
ingmodule stores the data buffer dependencies in a finer-grained

fashion so that individual dependencies can be fetched in the

order prescribed by the Object Scoring module. The problem

here is to determine which data buffers to group together, to

enable fine-grained object requests, while preserving sufficient

aggregation for efficient downloads. The main idea is to define

an optimization problem to group data buffers in order to mini-

mize the average download time per object, and show that our

proposed solution is optimal.

The output of the Object Scoring module are the order in which

to request objects; these requests are sent to the server to retrieve

the relevant objects and their dependencies, as stored by the data

buffer Grouping module. A summary of the inputs, outputs, and

interactions between the modules are shown in Fig. 4, and their

details are provided next.

5.2 Object Scoring
The main intuitions behind our object scoring method are to de-

prioritize: (a) objects that have no vertices within the FoV and (b)

objects that are far from the center of the FoV in terms of angle.

This requires computing two weights in our method in Alg. 1: a

visibility weight, and an angle weight. Note that sometimes these

two objectives may be in conflict with each other. For instance,

there may be an object that is centered behind the user, but some

parts of the object are visible within the FoV (e.g., a ground object);

Table 1: Table of notation.

Symbol Definition

𝐴 𝑗 axis aligned bounding box of object 𝑗

𝐵 Bandwidth

𝐶𝑃 ,𝐶𝑂 ,𝐶𝐹 camera position, orientation, and FoV parameters

O ⊆ U subset of objects in the user’s current FoV

𝑅𝑖 𝑗 Whether asset 𝑖 is needed by object 𝑗

𝑠𝑖 size of asset 𝑖

𝑠𝑘 size of chunk 𝑘

𝑇 RTT/2

U complete set of objects in the scene

𝑈 sorted list of objects in the scene

𝑋𝑖𝑘 Whether asset 𝑖 is in chunk 𝑘

𝑌𝑖 𝑗 Whether object 𝑗 requests chunk 𝑘

in such cases, our method returns a moderately high score due to

its visibility and because the bulk of the object is behind the user.

Visibility Check. The visibility check returns whether (any part

of) an object 𝑗 is within the FoV, and penalizes any object that is

guaranteed not to be within the camera’s initial FoV by adding

𝜋 to the object’s score. Specifically, the visibility check relies on

computing the viewing frustum (line 5), which is the area in the 3D

scene that will be projected onto the user’s 2D screen. Then, view

frustum culling [Assarsson and Moller 2000] (line 7) is performed

to see if an object is within the viewing frustum, by computing the

six planes of the viewing frustum from the initial camera view, and

checking whether the axis-aligned bounding boxes (𝐴 𝑗 intersect

with the area in between the planes. The bounding box centers

can be computed from the minimum and maximum vertex position

co-ordinate elements given by the glTF metadata.

Angle Check. The angle weight determines how far off an object

is from the center of the user’s FoV. This is done by calculating

the angle between the camera’s default forward vector and the

“look at” vector (the vector from the camera’s position to the center

of an object). This is performed by the LookAtAngle function in

line 13. The weights from the visiblity check and the angle check

are then added together to compute the total score for each object.

Finally, the objects are sorted by their scores in ascending order

(line 16). The overall algorithm has complexity 𝑂 (𝐽 log(𝐽 )) due to
the sorting step.
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Algorithm 1 Object Scoring

1: Inputs: Set of objects in the sceneU, axis aligned bounding

box 𝐴 𝑗 for each object 𝑗 ∈ U, camera position 𝐶𝑃 , orientation

𝐶𝑂 , and FoV parameters 𝐶𝐹 .

2: Variables: score 𝑠𝑐𝑜𝑟𝑒 𝑗 of object 𝑗 , view frustum 𝐹

3: Outputs: Sorted list of objects𝑈

4: O ← ∅
5: 𝐹 ← ViewFrustum(𝐶𝑃 ,𝐶𝑂 ,𝐶𝐹 )
6: for all 𝑗 inU do
7: if 𝐴 𝑗 intersects 𝐹 then ⊲ visibility check

8: 𝑠𝑐𝑜𝑟𝑒 𝑗 ← 0

9: O ← O ∪ 𝑗

10: else
11: 𝑠𝑐𝑜𝑟𝑒 𝑗 ← 𝜋

12: end if
13: 𝜃 ← LookAtAngle(𝐶𝑃 ,𝐶𝑂 , 𝐴 𝑗 .𝑐𝑒𝑛𝑡𝑒𝑟 ) ⊲ angle check

14: 𝑠𝑐𝑜𝑟𝑒 𝑗 ← 𝑠𝑐𝑜𝑟𝑒 𝑗 + 𝜃
15: end for
16: 𝑈 ← sorted list of {𝑠𝑐𝑜𝑟𝑒 𝑗 }

5.3 Data Buffer Grouping
Setup. The Data Buffer Grouping module breaks down the single

data buffer file from aWebXR scene into its constituent data buffers,

so that the Object Scoring module can request object dependencies

at a finer granularity. However, decidingwhich data buffers to group

together is non-trivial because there are trade-offs between RTT

and propagation time. For example, grouping all data buffers into

a single file would cost only one RTT to retrieve from the server;

however, this would result in a longer propagation time (due to

constrained bandwidth) before rendering of any object could start

(as in the default WebXR). On the other hand, creating 𝐽 files from 𝐽

data buffers would require a fresh RTT to retrieve each data buffer,

but each file would have a short propagation latency, ensuring that

objects could be independently downloaded and rendered.

Problem Formulation. We formalize this problem as follows. There

are 𝑁 data buffers and 𝐽 objects in the scene. We seek to group data

buffers into files. The scene construction from the WebXR metadata

tells us 𝑅𝑖 𝑗 ∈ {0, 1}, whether data buffer 𝑖 is needed for object 𝑗 .

The problem is to determine the integer variables 𝑋𝑖𝑘 (whether

data buffer 𝑖 should be included in file 𝑘) and 𝑌𝑘 𝑗 (whether object 𝑗

requires file 𝑘). The objective is to minimize the download time of

the set of objects O visible within the FoV:∑
𝑘

max

𝑗 ∈O
𝑌𝑘 𝑗

( 𝑠𝑘
𝐵
+𝑇

)
(1)

where 𝑠𝑘 is the size of file 𝑘 , 𝐵 is the current bandwidth, and 𝑇 is

the current RTT/2. The second term

( 𝑠𝑘
𝐵
+𝑇

)
is the download time

of file 𝑘 , so 𝑌𝑘 𝑗
( 𝑠𝑘
𝐵
+𝑇

)
is non-zero only if object 𝑗 is dependent

on file 𝑘 . The max𝑗 ∈O term accounts for browser caching within

the same session; i.e., we only need to count the latency of one

download of file 𝑘 , if file 𝑘 needed by more than one object 𝑗 .

If we knew O in advance, then we could optimize the data buffer

grouping for those objects within the FoV. However, in reality, O
could be anything, since the user’s initial position and orientation

could be set arbitrarily. It wouldn’t be scalable to create and store

Figure 5: Problem 1 can be viewed as a series of set cover (𝑌𝑘 𝑗 ,
mapping objects to files) and set membership (𝑋𝑖𝑘 , mapping
files to data buffers) problems.

files for every possible user position/orientation. Instead, we can

try to optimize for a typical case, by minimizing the average time

of all files, so that no matter the user’s position/orientation, the

relevant files can be retrieved quickly. Mathematically, we write:∑
𝑘

max

𝑗 ∈O
𝑌𝑘 𝑗 (

𝑠𝑘

𝐵
+𝑇 ) ≤

∑
𝑘

∑
𝑗 ∈U

𝑌𝑘 𝑗

( 𝑠𝑘
𝐵
+𝑇

)
(2)

where the LHS is (1) and the RHS is an upper bound where the

maximum is replaced with a summation based on the intuition

above. Using the RHS as our objective, the optimization problem is

as follows.

Problem 1. Data buffer grouping

minimize
𝑋𝑖𝑘 ,𝑌𝑘 𝑗

∑
𝑗 ∈U

𝑡 𝑗 (3)

subject to 𝑡 𝑗 =
∑
𝑘

𝑌𝑘 𝑗

( 𝑠𝑘
𝐵
+𝑇

)
∀𝑗 (4)

𝑠𝑘 =
∑
𝑖

𝑠𝑖𝑋𝑖𝑘 ∀𝑘 (5)∑
𝑘

𝑋𝑖𝑘𝑌𝑘 𝑗 ≥ 𝑅𝑖 𝑗 ∀𝑖, 𝑗 (6)

𝑋𝑖𝑘 , 𝑌𝑘 𝑗 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘 (7)

The objective (3) is equivalent to the RHS of (2), and minimizes

the average time of retrieving all objects. Constraint (4) defines an

object’s download time as the sum of the transmission delay and the

RTT. Constraint (5) defines the file size as the sum of its constituent

data buffers. Constraint (6) states that every object must receive

all its required data buffers. 𝑋𝑖𝑘 and 𝑌𝑘 𝑗 are the integer decision

variables.

Solution. This is an integer linear program, which is generally

NP-hard. The problem can also be thought of as a variant of set

cover, where both the subset membership and multiple set covers

have to be determined. Namely, we have to determine the subset

memberships (𝑋𝑖𝑘 (which data buffers 𝑖 should be included in subset

𝑘), and then solve 𝐽 set cover problems, one for each object 𝑗 (𝑌𝑘 𝑗
(which subsets object 𝑗 needs to cover all the data buffers in its own

universe, {𝑅𝑖 𝑗 }𝑖 ). This is illustrated in Fig. 5.

However, it turns out that 𝑋 = 𝑅,𝑌 = 𝐼 is an optimal solution to

the problem (where 𝑋,𝑌, 𝑅 are the matrix versions of 𝑋𝑖𝑘 , 𝑌𝑘 𝑗 , 𝑅𝑖 𝑗 ,

and 𝐼 is the identity matrix). This solution corresponds to an easy-

to-implement grouping of placing all data buffers of an object into

a single file. Intuitively, it is possible to find a solution because



Web3D ’21, November 8–12, 2021, Pisa, Italy Carter Slocum, Jingwen Huang, and Jiasi Chen

the 𝑋𝑖𝑘 variable gives the ability to determine subset membership,

actually making the set cover problem easier. The main idea behind

the proof is that by requesting only one copy of each data buffer,

and incurring as few RTTs as possible (one request per object), then

the average latency per object is minimized. The proof is provided

in the technical report [Slocum and Huang 2021].

Proposition 1. 𝑋 = 𝑅,𝑌 = 𝐼 is an optimal solution to Problem 1.

The algorithm is shown in Alg. 2, and runs in 𝑂 (𝐽𝑁 ).

Algorithm 2 Data Buffer Grouping

1: Inputs: Whether object 𝑖 needs data buffer 𝑗 𝑅𝑖 𝑗
2: Outputs: Whether file 𝑘 includes data buffer 𝑖 𝑋𝑖𝑘 , whether

object 𝑗 requests file 𝑘 𝑌𝑘 𝑗
3: for all 𝑗 < 𝐽 do
4: for all 𝑖 < 𝑁 do
5: if 𝑅𝑖 𝑗 == 1 then ⊲ object 𝑗 needs data buffer 𝑖

6: 𝑋𝑖 𝑗 ← 1 ⊲ store data buffer 𝑖 in file 𝑗

7: 𝑌𝑗 𝑗 ← 1 ⊲ object 𝑗 requests file 𝑗

8: end if
9: end for
10: end for

Image re-ordering only. We also developed a simplified version of

VIA based on observations from certain test scenes where the total

data buffer size was much less than the total size of the textures and

images in the scene. In such cases, the data buffers did not impact

the latency much, since the images consumed most of the network

time. Therefore, we introduce a simplified version of VIA where

only the images are re-ordered according to the object scores, but

not the data buffers (essentially, running Alg. 1 but not Alg. 2). We

call this method VIA-Image.

6 VIA’S IMPLEMENTATION
VIA is implemented in approximately 700 lines of Python3 and

runs once per scene, when it is first placed on the server. It can

be run multiple times for different initial FoV’s expect from client

devices. The output of the script is the new data buffer files, new

metadata files. The WebGL library and a customized Javascript file

(containing the new request order) are also stored on the server. A

user wishing to reduce WebXR latency simply requests the new

Javascript file with an unmodified web browser, without needing

to make any other changes on the client side. Below, we briefly

overview the key implementation steps.

Parsing object dependencies. We developed a custom parser for

glTFs, which is a JSON-like object, and recorded the objects and

their dependent textures, normal maps, and data buffers into a

dictionary data structure. Parsing the axis-aligned bounding-boxes

for Alg. 1 required finding all bufferViews associated with an object,

and finding the minimum and maximum values of the vertex co-

ordinates along each axis. If any transformations are performed

on the geometry data in the glTF, this also needs to be taken into

account before computing the axis-aligned bounding boxes. All

glTF parsing and alteration was performed based on the glTF 2.0

standard [The Chronos Group 2021].

Creating new (.glTF) metadata. Alg. 1 is run to score the 3D

objects, and using the scores, the images are re-ordered within

the dictionary. For VIA-Image, this new dictionary is immediately

written to file as a new .gltf. For the full VIA, Alg. 2 is also run and

the original dictionary is split into multiple dictionaries, one for

each object. Then new .gltf metadata files are written, one for each

object. The glTF files are given a suffix in the file name to denote

what order they should be requested in. The buffer attribute in each

new glTF points to the URI of the relevant data buffer file (.bin).

We also experimented with creating one combined metadata file

for all the re-ordered objects (instead of one metadata file for each

object), but this resulted in all the binaries being requested first

followed by all the images, due to the default behavior of the glTF

loader, thus destroying our object ordering. Therefore we settled

one glTF per object; however, a disadvantage was this resulted in a

“flattening” of the object hierarchy stored in the original metadata

file, which we plan to address in future work.

Creating new data buffer (.bin) files. The byte ranges for the data
buffer associated with each object are parsed from the original

glTF, and then copied over and combined into the new .bin files

in order of their parent object score. Special care must be taken to

maintain byte alignment (4, 8, or 16 byte-aligned) in order to allow

for efficient processing of the contained data.

WebXR scene alterations: For VIA-Image, no additional changes

to the Javascript code are needed. For the full VIA, a short loop in

the Javascript code must be added to request each glTF in the score

order. This is currently done manually in 4 lines of code, and is

potentially automatable in the future.

Priority hints. An initial problem existed evenwith the re-ordered

image requests, by default, the Chrome browser automatically

tagged images with “low” priority and the .bin files containing the

data buffers as “high” priority [Google Developers 2019], thereby

over-writing our careful ordering. To overcome this, we had to

explicitly tag all the glTFs, data buffer binaries, and images with

the same “low” priority by altering 2 lines of Javascript in the glTF

loader. Note that setting these priorities alone would not enable

implementation of our scheme, as there are only two priority levels,

dis-allowing fine-grained re-ordering.

7 EXPERIMENTS
We performed experiments to show the performance of VIA. The
latency improvement depends on the user’s viewpoint, network

conditions, and characteristics of the scene itself. We also show

that our methods are robust to small changes in initial orientation

without needing to re-compute the object request order.

7.1 Setup
Experimentswere performed onGoogle Chrome, version 91.0.4472.124,

for different algorithms, test scenes, and network conditions. The

three algorithms were tested were:

• Control: The default operation of WebXR.

• VIA-Image: VIA with Alg. 1 only, so only image requests were

re-ordered, not data buffers.
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• VIA: VIA with Algs. 1 and 2, where the scene objects and their

image and data buffer dependencies were scored, sorted and

requested in order.

Our initial experiments were performed on four complex scenes

with varying sizes, number of objects, and sizes of binaries and im-

age files. We created three of the scenes based on publicly available

3D models, and the fourth scene is a WebXR test case.

• Solar System [Sol 2018]: A simple, open space with an ex-

tremely high image to .bin size (15.5:1 ratio). The scene contains

29 objects with a total size of 6.72MB.

• Future House [Fut 2016]: An enclosed indoor area with a mod-

erate image to .bin size (2.9:1 ratio). The scene contains 27

objects with a total size of 55MB.

• Bayou Shack [Bay 2021]: An outdoor scene with high image

to .bin ratio (6:1). The scene contains 425 objects with a total

size of 38.8MB.

• Sponza [spo 2019]: A walled-in area with a medium image to

.bin ratio (4.39:1). This is a sample WebXR scene. The scene

contains 103 objects with a total size of 50.2MB.

• City [Cit 2021]: An outdoor cityscape without any images, only

binaries. The scene contains 615 objects with total size 56MB.

We tested on three simulated network conditions indicative of

mobile networks: 30 Mbps with a 30ms RTT, 10 Mbps with a 60 ms

RTT, and the “Fast3G” preset in Google Chrome DevTools, which

roughly corresponds to 1.44 Mbps and 12 ms RTT based on an

Internet speed test. All results were averaged across 3 trials for

each Network-Scene-Algorithm combination, for a total of 135

experiments for the main results. The standard deviation in terms

of latency across trials was less than 1%, and so are not shown.

Measuring latency (time to first correct frame): The main evalu-

ation metric was the latency from the page reload time to when

all objects in FoV were loaded. Caching was disabled across tri-

als. To measure this, we used the load time of the last object to

show up in the FoV. By experimentally comparing with screen

recordings we captured, we verified that the last object’s load time

corresponds very closely to its actual display time, with the render-

ing latency being negligible on the order of a few ms. We developed

this methodology because existing page load time tools such as

Lighthouse [goo 2021] do not capture the desired latency. For exam-

ple, for the Sponza scene, Lighthouse reported a Largest Contentful

Paint of 0.7 s, which only corresponded a system menu appearing,

while in reality the entire scene was not view-able for 9.86 s.

7.2 Overall performance
Performance of VIA. Figure 6b shows the latency of each scene

with a 10 Mbps connection. While VIA had strictly lower latency

than the control in all scenarios, the largest gains occurred in scene

with the fewest bytes, with Solar System, Future House and Shack

saving 26.08%, 48.52% and 36.17% of time compared to Control,

respectively. Sponza and City saw the least improvement due to

a large number of visible objects in the FoV, as well as the floor

beneath the camera having amoderate object score and thus loading

near the end of the trace, delaying the time to correct frame. In

fact, Sponza, due to its scene structure, required 88% of all bytes to

be loaded before a correct frame could be rendered, and thus is a

challenging test case.

Performance of VIA-Image. VIA-Image showed some gains as well,

significantly beating the control (going from ~40 to ~25 seconds)

for Bayou Shack , the scene with the second highest image size

to binary size ratio. This is because fetching Bayou Shack’s large

images in the correct order saved significant amounts of time. How-

ever, for all scenes besides Bayou Shack, the last resource to finish

downloading was typically the large binary file (for Control and

VIA-Image), meaning that all the objects had to wait for the binary to

finish downloading before they were rendered all at once. In other

words, the binary was the bottleneck, and hence the full VIA with

data buffer grouping was needed. The City scene was particularly

challenging, because the majority of the objects were within view

(only 50 objects were culled by the visibility check).

Example screenshots. Figure 7 shows screenshots of the Sponza
scene loading for the 10Mbps results discussed above. VIA is able

to render in the first 3D objects at the five second mark, while the

Control and VIA-Image are unable to render a single 3D object until

the 45 second mark. VIA was able to render a partial scene after

20 s. This is due to the binary file splitting allowing rendering of

individual objects earlier in VIA, rather than waiting the original

single, large binary file. Control finishes a fraction of a second

later than VIA-Image (bottom row), due to it downloading the lion’s

head textures (at the end of the corridor) last, whereas VIA-Image

downloads it early on and thus is able to render a complete frame

as soon as the binary finishes downloading.

Large objects. One particularly challenging type of scene is those
with large objects whose bounding boxes cover nearly the entirety

of the scene. In such cases, poor object scoring may cause bottle-

necks in the latency for VIA, such as in Sponza or City. For example,

objects may pass the view frustum check yet the center of their

bounding boxes are located behind the user (e.g., floors or building
walls), resulting in a low tomedium request priority from the Object

Scoring module, despite them being visible in the FoV. On the other

hand, other objects may pass the view frustum check with their

centers directly in front of the user, thus receiving a higher priority

from the Object Scoring module, despite them not being visible in

the FoV because they are discontinuous (e.g., two windows on both

sides of a hallway). Scenes without large overlapping bounding

boxes, such as Solar System, do not have this issue and avoid these

potential bottlenecks.

System overheads. Here we briefly discuss the system overhead

of running VIA. One overhead is in terms of storage – a side effect of

splitting the large .bin of the original scene into many smaller .bins

results in a small storage overhead. For the four test scenes, the

average space overhead was an additional 3.3%, which is minimal.

In terms of runtime, the main Python script executed in at most

16 seconds on an Intel i7-10700K CPU @ 3.80 Ghz, with over 15

seconds of that consumed by file I/O (e.g., reading and writing the

new data buffer files). For extremely large scenes in the future, view

frustum cullingmay be accelerated with common space partitioning

structures like octrees [Wilhelms and Van Gelder 1992] or K-d trees.

Since the script only has to run once per WebXR scene, when it is
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(a) Time to first correct frame under Fast
3G network conditions.

(b) Time to first correct frame under 10
Mbps and 60 ms RTT.

(c) Time to first correct frame under 30
Mbps and 30 ms RTT network conditions.

Figure 6: Time to first correct frame for different scenes under different network conditions. VIA improves load time by up to
50%, with greater improvement in scenes where there are fewer objects in the FoV.

Control VIA-Image VIA

Time = 5 seconds

Time = 20 seconds

Time = 45 seconds

Figure 7: Screenshots of the Sponza WebXR scene at three
different time instances, for the Control, VIA-Image, and
VIA methods. VIA loads objects into the user FoV the fastest,
while VIA-Image provides some benefits over Control.

first saved to the server, we consider this runtime acceptable and

did not implement acceleration structures.

7.3 Impact of different viewpoints
The above experiments were conducted at the default initial user

viewpoint. In this set of experiments, we examined the impact of

different user viewpoints on performance. In particular, we studied

the Bayou Shack scene at 10 Mbps in greater detail to show the

extreme impact that different initial viewpoints can have on time

to first correct frame. Three viewpoints were chosen: a viewpoint

at the edge of the scene with only two objects in view (labeled as

“forward”), a viewpoint in the center of the scene, similar to the

Figure 8: Time to first cor-
rect frame from different
viewpoints, for Bayou Shack.
The improvement of VIA over
Control depends on the view-
point.

Figure 9: VIA Improvement
of VIA over Control for the
Sponza scene, if the sys-
tem mis-estimates the user’s
head orientation.

earlier experiments (labeled as “center”), and a viewpoint near the

edge of the scene looking inwards with nearly all objects visible

(labeled as “backward”).

Figure 8 show the latency of Bayou Shack at these viewpoints.

The greatest gains are achieved by VIA in the “forward” viewpoint,

because there are only two objects in the FoV that need to be

downloaded, and thus the remaining 423 objects can be loaded

afterwards. The “backward” viewpoint is the worst case scenario,

as very little latency savings are possible due to all objects in the

scene being visible. The results show that if all the resources are

needed to render a frame correctly, VIA can actually perform slightly

worse than Control, due to the overhead incurred by extra RTTs

to the server for each additional object (metadata and binary file)

request. However, when few resources are needed, the gains can

be substantial, around a 90% reduction in latency.

7.4 Impact of network conditions
The latency savings with the various methods depends on the net-

work conditions, as shown in Figures 6b, 6a, and 6. When increasing

the bandwidth from Fast 3G to 10Mbps to 30Mbps, VIA and VIA-
Image were able to outperform Control, with the magnitude of

those improvements varying greatly; for example, going from ap-

proximately 125 to 20 to 9 seconds as network speeds increased for

the Future House scene.
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In general, the latency improvements of VIA over Control are

inversely proportional to the network bandwidth (i.e., greater im-

provement at slower speeds, which is exactly where we need the

most improvement). This is because as network bandwidth in-

creases, the overhead from extra RTTs (from the individual object

requests) gradually dominates the total latency, while the propaga-

tion time shrinks. Note that as network speeds change, the relative

improvement of VIA over Control may change (such as in Future

House from 10Mbps to 30Mbps). Based on our observation that the

last object to appear in the FOV depends on the network conditions,

we hypothesize this is because modern browsers typically make

parallel resource requests, so while the total latency tends to reflect

the network speed, it may not be perfectly proportional due to

changes in download completion order and other overheads.

We also examined performance under a fast wired network con-

nection ( 250 Mbps with 30ms RTT). In those experiments, the fast

data transfer speeds resulted in the scenes loading very quickly

(2.5 s on average for Control), so the extra RTTs from VIA method

dwarfed the overall download time for the scene (approximately

4 times as long on average). Consequently, we do not recommend

using VIA for extremely high speed connections (250Mbps+), as the

gains from the algorithms are minimized and the extra overhead

from the additional object requests could result in worse perfor-

mance than Control. However, in practical use cases, the VR devices

are wireless, and so the network speeds would not be as fast.

7.5 Impact of FoV orientation mis-estimate
Our last set of experiments examined the impact of user orienta-

tion changes. Due to user movement during the page load time or

incorrect orientation estimates from the VR device, it is possible

for the viewpoint at the time of first correct frame to be different

from the original viewpoint input to VIA. We performed experi-

ments to show that our methods are robust to slight changes in

the user’s viewpoint. We loaded the Sponza scene and recorded

the time to first correct frame with a user making a yaw rotation

(turning left to right) from 0
◦
to 180

◦
, at intervals of 15

◦
. However,

the objects downloaded by VIA still used the object scores from the

mis-estimated 0
◦
rotation.

On the x-axis of Fig. 9, we plot the amount of yaw rotation,

and on the y-axis, we plot the latency differences between VIA and

Control (a negative number indicates an improvement over Control).

The resulting plot has discrete jumps because the latency only

changes when the user has rotated enough that an object that was

not previously visible comes into view, or vice versa. The main

observation is that the VIA method continues to outperform the

Control, unless the user looks more than 90
◦
away during the page

load time. This indicates that slight deviations from the user’s initial

viewpoint don’t significantly affect the performance of VIA.

8 CONCLUSIONS
This paper is the first study page load times for WebXR-based VR

scenes. Upon measuring the performance of the default WebXR, we

observed that the startup latency until all the 3D objects was quite

high, around 10 seconds on a 60 Mbps connection. Motivated by

this, we developed methods of fine-grained splitting and requests

of the objects within the user’s FoV. Experiments performed on a

working prototype indicated savings of more than 90% on some

test scenes, depending on the scene structure (number of objects

in the FoV). Future work includes generalizing our techniques to

other WebGL-based applications, and working with scenes with

more complex object hierarchies.
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APPENDIX
Proposition 1

Proof. The objective function (3) can be written as

1

𝐵

∑
𝑖

∑
𝑗

∑
𝑘

𝑋𝑖𝑘𝑌𝑘 𝑗𝑠𝑖 +𝑇
∑
𝑗

∑
𝑘

𝑌𝑘 𝑗 (8)

We will show that with 𝑋 = 𝑅 and 𝑌 = 𝐼 , the first and second terms

are individually minimized, and hence their sum is also minimized.

First term in in (3): Using constraint (6), we can write:

1

𝐵

∑
𝑖

∑
𝑗

∑
𝑘

𝑋𝑖𝑘𝑌𝑘 𝑗𝑠𝑖 ≥
1

𝐵

∑
𝑖

∑
𝑗

𝑅𝑖 𝑗𝑠𝑖 (9)

where the LHS is the first term in (3) and the RHS is a tight lower

bound (otherwise the solution would be infeasible). If 𝑋 = 𝑅,𝑌 = 𝐼 ,

then the first term is
1

𝐵

∑
𝑖

∑
𝑗

∑
𝑘 𝑋𝑖𝑘𝑌𝑘 𝑗𝑠𝑖 =

1

𝐵

∑
𝑖

∑
𝑗

∑
𝑘 𝑅𝑖𝑘𝑌𝑘 𝑗𝑠𝑖 =

1

𝐵

∑
𝑖

∑
𝑗 𝑅𝑖 𝑗𝑠𝑖 , achieving that lower bound.

Second term in (3): We claim that 𝑇
∑

𝑗

∑
𝑘 𝑌𝑘 𝑗 ≥ 𝑇 𝐽 is a tight

lower bound on the second term in (3), and since 𝑌 = 𝐼 satisfies

this lower bound, it minimizes the second term. To see the bound,

assume that

∑
𝑗

∑
𝑘 𝑌𝑘 𝑗 < 𝐽 . This implies ∃ 𝑗 such that:∑

𝑘

𝑌𝑘 𝑗 = 0 (10)∑
𝑖

∑
𝑘

𝑋𝑖𝑘𝑌𝑘 𝑗 = 0 (11)∑
𝑖

𝑅𝑖 𝑗 = 0 (12)

which contradicts the assumption that an object requires at least

one asset (otherwise we could just remove it from the problem). □
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