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ABSTRACT
Augmented reality is an emerging application on mobile de-

vices. However, there is a lack of understanding of the com-

munication requirements and challenges of multi-user AR

scenarios. In this position paper, we propose several impor-

tant research issues that need to be addressed for low-latency,

accurate shared AR experiences: (a) Systems tradeoffs of AR

communication architectures used today in mobile AR plat-

forms; (b) Understanding AR communication patterns and

adapting the AR application layer to dynamically changing

network conditions; and (c) Tools and methodologies to eval-

uate AR quality of experience in real time on mobile devices.

We present preliminary measurements of off-the-shelf mo-

bile AR platforms as well as results from our AR system,

ShareAR, illustrating performance tradeoffs and indicating

promising new research directions.

CCS CONCEPTS
• Networks; • Human-centered computing → Ubiqui-
tous and mobile computing;

KEYWORDS
Mobile Augmented Reality, Communication Efficiency, SLAM

ACM Reference Format:
Xukan Ran, Carter Slocum, Maria Gorlatova, and Jiasi Chen. 2019.

ShareAR: Communication-Efficient Multi-User Mobile Augmented

Reality. In The 18th ACM Workshop on Hot Topics in Networks (Hot-
Nets ’19), November 13–15, 2019, Princeton, NJ, USA. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3365609.3365867

1 INTRODUCTION
Augmented and virtual reality (AR/VR) are forecast to be the

next frontier of mobile devices and open up a $692 billion
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Figure 1: AR devices try to ensure consistent views of
the virtual object despite different reference coordi-
nate systems.

market by 2025 [8]. In AR, a user’s perception of the world is

augmented by overlaying virtual objects onto the real world.

These virtual objects provide relevant information to the user

and remain fixed with respect to the real world, creating the

illusion of seamless integration. Widely used examples of

AR apps today include Pokemon Go, Google Translate, and

Snapchat face filters. However, these apps mainly focus on

single-user experiences, and lack the ability for multiple,

co-located users to see and interact with the same virtual

objects in real-time.

In this position paper, we explore several research direc-

tions to enable shared multi-user AR experiences. Multi-user

ARwill enable a new class of AR applicationswhere users can

interact with a common set of virtual elements to perform

a common task or enjoy a common experience. For exam-

ple, we envision multiple students wearing AR headsets in

a classroom being able to see the same virtual chemistry

molecule floating on table and manipulate it, with the virtual

molecule remaining consistent across users. However, un-

coordinated or laggy updates to the virtual molecule would

break the illusion of seamless integration with the real world,

and result in artifacts such as other users appearing to touch

non-existent parts of the virtual molecule.

There are several challenges in realizing smooth commu-

nications between multiple AR users. Firstly, communication

characteristics of existing mobile AR platforms are under-
explored: there is a lack of understanding of what, how of-

ten, and to whom AR data transmissions are sent, and their

impact on the user’s AR-specific quality-of-experience. Sec-

ondly, AR involves complex computation: AR devices typically

https://doi.org/10.1145/3365609.3365867
https://doi.org/10.1145/3365609.3365867
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utilize simultaneous localization and mapping (SLAM) and

object detection techniques, which are initially computed on

the AR device (or with the aid of edge/cloud), disseminated

to other AR devices, and finally jointly processed to produce

the final computation result. Thirdly, AR devices can have

differing fields-of-view: the AR devices need to render the

virtual objects at the correct locations and orientations in

their current fields-of-view (FoVs), while maintaining a com-

mon understanding of the real and virtual worlds of other

AR devices. Fourth, users manipulate the virtual objects inde-
pendently: the changes made by one user to a virtual object

cannot be directly observed by other devices (e.g., through
their cameras) because these manipulations do not act on

real-world objects, and instead need to be explicitly commu-

nicated to ensure consistency between the users’ displays.

The contribution of this paper is a research agenda high-

lighting several key components to support networked,multi-

user AR applications in the near future:

• Who to send to? We examine common communication

architectures used by Google ARCore and Apple ARKit,

two mobile AR platforms, and find they use either cloud-

based or peer-to-peer architectures. To the best of our

knowledge, we are the first to clearly illustrate the flow

of information exchange in multi-user AR. Since these

platforms are closed source, we cannot perform an “ap-

ples to apples” comparison of the performance tradeoffs

(e.g., scalability, latency). Therefore, we propose extend-
ing an existing open-source single-user AR system [26]

with multi-user functionality (which we call ShareAR) and
use it to measure the performance tradeoffs, which can

help provide guidelines on which architecture to use for a

given AR application, environmental context, and network

conditions (§3.1).

• What and how often to send? We collected network traces

of several existing multi-user AR apps, and found that AR

data transmissions consist of relatively large map data

(more than 20 Mb) along with smaller chunks of user

interaction data. We propose methods to adapt the AR

application layer data to time-varying network conditions,

while maintaining good AR quality. Our key idea is to tune

the available “control knobs” of the AR application data

(e.g., number of keyframe features, number of transmis-

sions, point cloud spatial granularity), taking into account

their tradeoffs with AR quality, and choose the right con-

figuration (§3.2).

• How to measure multi-user AR quality? Tools to measure

AR quality are needed in order to quantitatively evalu-

ate any proposed modification to multi-user AR systems.

AR quality is defined in terms of the accuracy, jitter, and

drift of a virtual object’s position and orientation (§2.2).

However, computing a virtual object’s position and orien-

tation error is challenging because there is no common

“ground truth” point of reference (there exist only relative

Keyframe 
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SLAM
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detection Render

QoA estimation tool (§3.3)

To/from other AR devices

User input

Who to send 
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Input 
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Figure 2: ShareAR integrates new components for
multi-user AR with existing single-user AR.

observations made by each device). We propose an AR

quality evaluation tool that relies on markers placed in the

environment, serving as points of reference from which

to compute the virtual object’s position/orientation error.

The tool collects logs from each AR device and computes

the placement and orientation error of the virtual objects

seen by the AR users (§3.3).

Underlying the above ideas is the ability to experiment with

the internal computations and communications of multi-user

AR. Because existing multi-user AR platforms [3, 13, 21]

are closed source, we are currently working on integrating

the above ideas into our Android prototype, ShareAR, as
shown in Fig. 2. The purpose of our research prototype is not

to compete with existing commercial platforms, but rather

to provide a research prototype for experimentation and

testing. ShareAR implements multi-user AR functionality,

including sharing environmental maps and virtual object

information with other AR devices, as well the proposed

quality measurement tool, and provides a platform on top of

which other AR applications can be built.

In the remainder of this paper, we discuss relevant AR

background (§2.1), performance metrics (§2.2), related work

(§2.3), our research agenda (§3), and conclude in (§4).

2 BACKGROUND
2.1 Multi-User AR & SLAM
Simultaneous localization and mapping (SLAM) is a funda-

mental component of modern mobile AR systems, including

those from Google, Apple, and Microsoft [5, 14, 23]. In a

typical single-user AR scenario, the AR device uses SLAM

to construct a point cloud representing the real world, and

also estimates its own location and orientation (known as

pose). To compute the point cloud, SLAM selects a subset of
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camera frames (known as keyframes), extracts features from

the keyframes, runs SLAM algorithms on the features (e.g.,
bundle adjustment), and outputs the 3D coordinates of the

features (i.e., the point cloud) and the estimated device pose.

This pipeline is shown in the bottom half of Fig. 2. The 3D

coordinates of the point cloud are relative to an origin point,

typically set as the pose of the device when the AR app was

first launched. The device’s coordinate system is called its

world frame.
To place virtual objects for AR, the device records the

pose of the virtual object (the pose of the virtual object is

defined as its location and orientation, and can be provided

by user input, or an object detector). The device runs SLAM

continuously to update its own pose estimate and the point

cloud, and then draws the virtual object on the display when

its FoV overlaps with the virtual object’s pose.

In a multi-user scenario, each device runs SLAM to build

up its own point cloud of the environment, with coordinates

stored relative to its own world frame, as shown in Fig. 1.

One device can add a virtual object to its own world frame

and desire these objects to be reflected on the displays of

the other AR devices. Since the devices have different world

frames, they need to align their maps (i.e., point clouds) using
map fusion techniques. However, the point clouds estimated

by each AR device are likely not identical, making map align-

ment noisy and potentially resulting in inconsistency of the

virtual objects’ locations and orientation across users.

For this paper, we define a SLAM map
1
as comprised of

several data structures: a 4× 4 homogeneous transformation

matrix representing the device’s pose when each keyframe

was captured [16], the 3D coordinates of the keyframe fea-

tures (i.e., the point cloud), feature descriptors, and a Dis-

tributed Bag Of Words [9] (DBoW) database enabling fast

keyframe matching for map alignment.

2.2 Metrics for Multi-User AR
Single-user AR quality can be measured through a number

of quantitative metrics, including rendering quality, FoV size,

registration error, and task completion [30]. In this work,

we focus on quantitative metrics relevant to a multi-user,

collaborative AR experience.We call thesemulti-user Quality

of Augmentation (QoA) metrics. Specifically, the metrics we

focus on are:

• Virtual Object Pose Accuracy (m,◦): The pose accuracy
measures how far the virtual object is from the correct

position/orientation [33]. We assume that the correct pose

is given by the initiating device (either from user input, or

by an object detector). For example, Fig. 3 shows screen-

shots of an inaccurately placed virtual cube seen by device

B, relative to a virtual cube initially placed by device A.

1
The CloudAnchor, ARWorldMap, and SpatialAnchor objects used in

Google [13], Apple [3], and Microsoft’s [21] AR platforms, respectively,

are some version of SLAM maps.

(a) Virtual cube as seen by de-
vice A.

(b) Virtual cube as seen by de-
vice B.

Figure 3: Example of virtual object pose inaccuracy.

• VirtualObject Pose Jitter andDrift (m/s,◦/s):The pose
jitter measures the motion of the virtual object between

subsequent frames [22]. The pose drift measures the accu-

mulation of position and orientation errors over time [18].

Low jitter and drift means that the virtual object stays in

place with respect to the real world over time, even if the

user moves.

• End-to-end Latency (s): The end-to-end latency mea-

sures the time from when device A places a virtual object,

to when it is drawn in the FoV of device B. The compo-

nents of latency can include communication, computation,

rendering, I/O, OS time, etc.

We note that while pose accuracy, jitter, and drift have been

considered in the robotics community, “pose” in that setting

typically refers to the pose of the device. Instead, for AR, we

are interested in the pose of the virtual objects displayed in

the user’s FoV. Virtual object pose estimation differs from

real object pose estimation in that there is no external ground

truth observable by each device.

2.3 Related Work
Mobile AR systems: Several works focus on object detec-

tion for AR [2, 7, 15, 19, 20, 27, 33], sometimes with the

help of the cloud/edge. While object detection is one com-

ponent of AR that can generate virtual objects, we consider

communicating general pose information about the virtual

objects to other users. OverLay [17] labels real-world objects

with the help of odometry sensors, whereas we addition-

ally incorporate continuous camera frames, and can display

virtual objects with 3D location/orientation in the world.

MARVEL [6] focuses on the energy-efficiency of mobile AR,

and GLEAM [24] discusses lighting rendering for virtual

objects, which are orthogonal directions to this work.

Multi-user AR: CARS [34] discusses sharing object de-

tection results between multiple users, whereas we consider

more general virtual objects and integration with SLAM-

based AR. In industry, Google ARCore, Apple ARKit, and Mi-

crosoft HoloLens are recent mobile AR platforms [3, 13, 21];

our focus is on measurements and comparative evaluation
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Figure 4: Current mobile AR platforms use peer-to-peer or cloud-based architectures.

of the communication architectures and strategies of such

systems.

Multi-user SLAM: Since AR is closely tied to SLAM,

there has been some work on multi-user SLAM in the robot-

ics context. These works mainly focus on coordinate system

alignment algorithms, with less attention paid to the com-

munication aspects. For example, Zou et al. [35] hardcodes
transmitting the SLAM data up to every 5 frames, while

Schmuck et al. [31] transmits SLAM information whenever

it is updated. Furthermore, these works focus on commu-

nicating information about the real world, while AR also

requires communicating information about virtual objects.

3 RESEARCH AGENDA
3.1 AR Communication Architectures
3.1.1 Current P2P and Cloud-based Architectures. There

are two primary communication architectures in current

SLAM-based mobile AR systems: cloud-based and P2P. For

the remainder of this paper, for ease of exposition, we will

refer to two devices, A and B. Device A places a virtual object

in its environment, and wishes to share this information with

a newly joined device, B. In our current prototype, we focus

on the two-device scenario for simplicity, but we intend to

scale up our experiments in the near future.

Cloud-based: In a centralized architecture, the cloud col-

lects device pose information from the AR devices, performs

processing, and returns results as needed. Cloud-based ar-

chitectures are used, for example, by Google ARCore [13]

and MARVEL [6]. The information exchange is illustrated

in Fig. 4a, and described below:

(1) Device A sends: A sends its SLAM map (or the related

camera frames), and the virtual object’s coordinates to

the cloud.

(2) Device B sends: B sends a piece of its map correspond-

ing to its current location (or the related camera frames)

to the cloud.

(3) Cloud aligns coordinate systems: The cloud runs SLAM

(if camera frames only were sent), then aligns A’s map

and B’s map piece, and computes the virtual object’s

pose in B’s coordinate system.

(4) Cloud sends virtual object’s coordinates: The cloud sends
the computation result to device B.

(5) B draws virtual object: B draws the virtual object in its

world coordinate system.

P2P-based: In a de-centralized or P2P architecture, AR

devices communicate directly with each other, without the

assistance of a central entity. Such an architecture is followed,

for example by Apple ARKit [3]. The process is illustrated

in Fig. 4b and described below:

(1) Device A sends: A sends its SLAM map (or related cam-

era frames) and the virtual object’s coordinates to B.

(2) Device B aligns coordinate systems: B runs SLAM (if

only camera frames were sent), then aligns A and B’s

coordinate systems, and computes the virtual object’s

pose in B’s coordinate system.

(3) B draws virtual object: B draws the virtual object in its

world coordinate system.

In summary, these two architectures require similar types

of computation, but at different locations (i.e., on the device

or in the cloud), which impacts the information exchange

between the devices.

Measurements: We conducted measurements of several

AR applications utilizing the above architectures in a con-

trolled lab setting. We used Samsung Galaxy S7 smartphones

withWiFi connectivity (50Mbps download and upload speed),

unless otherwise mentioned. Each measurement was re-

peated 3 times, with the averages plotted. In Fig. 5a, we

show end-to-end latency measurements of three AR apps:

CloudAnchor [11] and Just a Line [12] (Google ARCore demo

apps), and AR MultiUser [4] (Apple ARKit demo app). We

observe that latencies between device A placing a virtual

object and device B drawing the virtual object are quite

long, from 7-18 s. The cloud-based apps tend to have longer

communication times and shorter coordinate system align-

ment times, because of cloud compute resources. On the

other hand, the P2P app has shorter communication time
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(a) End-to-end latency of current mobile
AR apps.

(b) Time to align coordinate systems on
a server versusmobile device in ShareAR.

(c) ShareAR (P2P version) reduces latency
by optimizing data transmissions.2

Figure 5: Latency breakdown starting from device A placing a virtual object to device B rendering it on the display.

but longer coordinate system alignment time due to running

the joint computations on the mobile device (in this case an

iPad), leading to longer end-to-end latency overall.

3.1.2 Comparing Architectures in ShareAR. Given our un-

derstanding of the above architectures, which architecture

is more suitable in different scenarios? The P2P architecture

has advantages in terms of scalability (there is no central

bottleneck link), and privacy (information doesn’t need to

be sent to the cloud). However, updates to virtual objects

can take time to propagate across the devices, potentially

resulting in inconsistent information. The cloud architecture

has advantages in terms of compute power, and can syn-

chronize updates about the virtual objects across devices,

but relies on Internet connectivity. Another possibility is a

hybrid architecture, where the devices share information

only amongst themselves, but one device acts as a “master”

node that undertakes communication and computation ef-

forts. Such an approach essentially assigns one of the devices

to take the role of the cloud, but places heavy computation

and communication demands on the master node.

Given that these architectures are currently implemented

in different mobile OSes (iOS and Android) and are closed

source, an apples-to-apples comparison of their system per-

formance metrics cannot be made between them, nor can

modifications be made. Our idea is to develop an open-source

reference system that allows comparison of the different com-

munication architectures. To do this, we build on an open-

source state-of-the-art SLAM system for single users [26],

and add multi-user capabilities and the ability to switch

between the communication architectures observed in the

commercial mobile AR platforms. This will enable accurate

measurements of the performance of each component of the

AR computation and communication pipeline. Our system,

ShareAR, will provide researchers and developers with in-

sight into the system requirements of multi-user mobile AR,

guidelines on architectural decisions, and understanding of

which parts of the AR pipeline can be optimized.

We have implemented an initial prototype of ShareARwith

two Android devices and an edge server. ShareAR allows de-

vice A to place a virtual cube and device B to receive and

render the cube in its FoV, with full control over all compo-

nents of the system, including SLAM algorithms, communica-

tion protocol, communication frequency, coordinate system

alignment frequency, etc. In Fig. 5b, we show some initial

measurements of ShareAR, comparing the computation time

of coordinate system alignment of P2P and server-based

architectures. We can see that the edge server-based compu-

tation time is lower, suggesting that an edge-server based

architecture may be ideal as communication latency is also

low in edge scenarios [28]. Specifically, the map alignment

time with the P2P architecture is seven times longer than in

the server-based architecture, which suggests great poten-

tial for both the edge- and cloud-based architectures. In fact,

the server-based architecture can still tolerate an additional

10 seconds of communication latency and still have lower

end-to-end latency than the P2P architecture (Fig. 5b).

Black box testing: To ensure that the results produced

ShareAR reflect existing AR systems, we will perform black

box testing. We will choose a set of sample AR apps and sce-

narios, and tune ShareAR until its results are similar to those

observed in commercial platforms (e.g., Google ARCore).

While we cannot have perfect reproduction of commercial

platforms, due to their opaqueness, we explicitly try to match

their performance for a given set of test cases. In our initial

results with ShareAR, the computation latency of the server-

based architecture (upper bar in Fig. 5b) is roughly compara-

ble to computation latency of Google ARCore’s server-based

architecture (the “B send map + server align” bar in Fig. 5a).

(ShareAR is slightly slower because its computation latency

includes the DBoW generation time, which we were not able

to measure in ARCore because it is closed-source.) Similarly,

ShareAR’s P2P computation latency (lower bar in Fig. 5b) is

comparable to ARKit’s P2P computation latency (“B align”

in Fig. 5a).

3.2 Adaptive AR Communications
A good understanding of the network traffic sent and re-

ceived by the AR devices is needed in order to effectively

manage the traffic and ensure good user QoE. While low

latency is a key requirement for mobile AR [28], our initial

measurements show that bandwidth requirements can also
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(a) Bandwidth trace.

(b) Zoomed in version of (a).

Figure 6: Bandwidth trace fromAR app, showing large
map and small user interaction transmissions.

be significant, due to the exchange of large amounts of map

data. We collected network traces from several AR applica-

tions [4, 11, 12], and show a representative example from

the Just a Line app in Fig. 6. The trace shows a large burst of

traffic (more than 26 Mb) around t = 21 s, and smaller peri-

odic bursts starting at t = 35 s. The ARCore documentation

and code [13] suggest that the large traffic burst contains

SLAM map data or camera frames, while the small bursts

contain the coordinates of the virtual line drawn by user A,

who is drawing periodically. Moreover, the large data burst

needs to be repeated if a new virtual object is placed in signif-

icantly different location by a user, which we have observed

experimentally (not shown).

3.2.1 Adapting ARCommunications to the Network. Based
on the above observations of large amounts of SLAM/visual

update data, we propose adapting the size and frequency

of data transmissions in order to improve communication

efficiency and reduce user-perceived latency. We propose

both lossy and lossless adaptation methods to do so.

Losslessmethods: Lossless methods involve suppressing

data that is not needed; for example, device A does not need

to send keyframe features corresponding to areas far away

from device B. In our initial work with ShareAR, instead
of sending the entire map for alignment between device A

and B, device A omitted sending its DBoW, which consumed

a large fraction of the map size. Instead, device B used its

own locally generated DBoW to perform matching with

A’s keyframes. Fig. 5c shows that this simple optimization

drastically reduced the communication time (to nearly zero).

However, the alignment time increased because B needs

to query all of A’s keyframes in B’s DBoW (which grows

continuously as B captures more frames), while in the default

case, B only needs to query its current keyframe in A’s DBoW

(which is frozen after transmission). A naive approach of

simply applying the standard Boost gzip compressor [29] to

the entire map, while saving communication time compared

to the baseline of full map transmission, did not result in as

much latency savings overall because it did not intelligently

select which data structures to send.

Lossymethods: Lossymethods involve tradeoffs between

the amount of communicated data and the QoA metrics. For

example, sending frequent map updates can improve the vir-

tual object’s pose accuracy by re-aligning the devices’ coor-

dinate systems, but also increase the end-to-end latency due

to longer communication time and use up system resources

for frequent data processing. Essentially, for lossy methods,

there are a set of “control knobs” that can be tuned (e.g.,
frequency of updates/map alignment, number of features,

spatial granularity or compression of the point cloud [25]),

each of which has some impact on QoA. We are inspired

by auto-tuning works in the multimedia community [1, 32],

where the control knobs/parameters are tuned to the current

network conditions to maximize quality-of-experience. In

the context of AR, these operating conditions include net-

work bandwidth, and the performance metrics are the QoA

metrics. Our proposed method first involves performing an

offline characterization of the tradeoffs between application-

layer parameters and the QoA. This will provide valuable

rules of thumb on how to set these parameters. Then, given

an understanding of these tradeoffs, we will formulate this

problem as an optimization problem, the output of which are

the optimal configuration parameters. We envision our adap-

tation method implemented as an API, which a developer can

incorporate into her AR app to improve its communication

efficiency.

3.3 Quality of Augmentation Tool
Agood estimate ofmulti-user AR performancemetrics (Sec. 2.2)

is needed to evaluate the performance of multi-user AR sys-

tems. Such a tool should take as input information from

device A on the correct location of each virtual object, and

information from device B on the rendered location of each

virtual object. The outputs of the tool are the QoA metrics

defined earlier. We envision such a tool as an overlay in our

ShareAR system, collecting logs from the AR devices, and

running on a device or an external server. While we will

evaluate our measurement tool in ShareAR, the tool will

also be usable in any multi-user AR system that exposes the

appropriate information (poses of virtual objects, certain co-

ordinates in the point cloud, and timing information; details

below).

While latency is relatively easy to compute by instrument-

ing timers in the code, the main challenge is measuring the

virtual object pose accuracy (and its derivatives, drift and

jitter). This problem is illustrated in Fig. 3a, 3b, where the

virtual cube is drawn at different locations, with respect to

the real world, in device A and B’s FoVs (e.g., in A’s FoV, the

cube hovers above the center of the laptop, while in B’s FoV,

2
In this set of experiments, send time is estimated as

file size

5 MBps
.
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Correct virtual cube
(placed by A)
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QoA tool computes pose error:
2) Learns from A: cube is +2 from marker
3) Learns from B: cube is -5 from marker
4) Infers that cube is misplaced by
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1a) B (inaccurately) infers: xB = -xA + 8
1b) B draws cube at: pB’ = -5 + 8 = 3 

mA=3,

Virtual object pose error: -3

Figure 7: The QoA tool uses markers placed in the en-
vironment to measure the pose accuracy of virtual ob-
ject. Above is a simplified 1D example.

the cube hovers to the upper left of the laptop). How can B

measure the misplacement and angle of its virtual cube?

The robotics community typically tackles this problem

by collecting ground truth pose measurements (e.g., using
a laser system) that pinpoints the exact location of all the

physical objects in a space. However, such solutions do not

apply in the AR context because we are interested in the pose

of virtual objects, not the pose of real-world objects. Other

work [33] in the multimedia community manually labels the

ground truth locations of the real-world objects on which

the virtual object was placed. However, this is not scalable

over many frames.

Our idea, in a nutshell, is to place easily recognizable mark-

ers in the environment (e.g., ArUco markers [10]), whose

location and orientation can be accurately estimated by the

devices using SLAM or PnP methods [16], and used as refer-

ence points to measure the virtual object’s pose accuracy. A

toy 1D example is shown in Fig. 7, and described below:

(1) After (inaccurately) aligning A and B’s coordinate sys-

tems, device B draws the cube at pB′ = 3. This is an

error of −3.

(2) Device B accurately estimates the marker’s position

mB = 8, and reportsmB ,pB′ to the tool.

(3) Device A accurately estimates the marker position

mA = 3, and reportsmA,pA = 5 to the QoA tool.

(4) The QoA tool computes the cube’s pose error as (pA −

mA) − (mB − p ′B ) = (5 − 3) − (8 − 3) = −3.

We plan to extend this technique to all 6-DoF (position, ori-

entation). The virtual object’s pose jitter and drift will be

computed based on the pose accuracy.

We will place these markers at various locations in a con-

trolled environment. Having more markers requires more

setup time, but can improve the measurement accuracy, as

there are more reference markers to compare against. Hav-

ing fewer markers is a simpler setup, but results in fewer

reference points to calculate the virtual object’s pose accu-

racy against. We note that the markers do not need to be

placed at regular, fixed locations in the environment; they

can be moved between experiments, as the QoA tool only

requires that they be spaced out. In our initial experiments,

we investigated whether the presence of the markers impacts

the pose of the virtual object (i.e., whether the measurement

setup affects the quantity we are trying to measure); how-

ever, we found that adding/removing the marker from the

scene had little impact on the virtual object’s pose.

While we mainly propose a marker-based setup to esti-

mate the virtual object’s pose, a marker-less setup may also

be possible, for ease of deployment but potentially with lower

measurement accuracy. For example, we could use natural

features in the scene as the “markers”. However, even with

the ArUco markers, which are specifically designed to be

easily detectable in the environment, we find that multi-

ple AruCo markers (i.e., an ArUco board) are needed in the

scene to achieve good measurement accuracy. Using natural

features would likely further degrade the measurement accu-

racy. Furthermore, while extracting the 3D locations of the

natural features to use as markers is possible as an interme-

diate output of SLAM, this would couple the measurement

tool with the quantity being measured (the virtual cube’s

pose), which is undesirable.

4 CONCLUSIONS
Our proposed research dissects and enhances the communi-

cation capabilities of multi-user AR.We first examine current

mobile AR platforms to understand their communication

architectures, end-to-end latency, and bandwidth require-

ments. We propose ShareAR, which allows fine-grained con-

trol of the AR processing pipeline, in order to conduct fair

comparisons between different communication architectures

and strategies. We propose optimizations of the large data

transmissions arising from exchanging SLAM map data or

other visual information, accounting for AR-specific quality

metrics and current network conditions. We also propose a

simple mechanism using markers to measure the AR quality

in controlled environments. The outcome of this research

will be communication-efficient support for multi-user AR

applications in the near future.
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