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Abstract—As users equipped with high-resolution cam-
eras spontaneously capture and live-stream videos to inter-
ested parties through distributors like Twitch or Facebook
Live, a new style of video delivery is emerging: user-upload
streaming. Unlike video-on-demand and traditional live-
streaming in which video is stored by professional content
providers and distributed using standard CDN techniques,
in user-upload streaming, the video is generated and up-
loaded on-the-fly by heterogeneous clients with restricted
bandwidth and long latencies to the distributor. Hence,
it is crucial to factor in client-side “first-mile” factors
when making edge decisions. In this paper, we present
a systematic design of a video delivery architecture for
user-upload streaming, which focuses on the upload server
and upload bitrate as the important “first-mile” edge
factors that influence downstream delivery and quality-
of-experience for viewers. We present a polynomial-time
algorithm to minimize the end-to-end latency and maxi-
mize the video rate for all users for the scenario where
the upload and download server are the same. Further, we
present efficient heuristics for the general (NP-complete)
version where the upload streams are routed through
the distributor’s overlay network. Finally, we validate the
efficacy of our algorithms through extensive trace-based
simulations based on real-world data sets.
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I. INTRODUCTION

As increasing number of users armed with powerful
smartphone cameras or GoPros spontaneously upload
live streams such as graduation ceremonies and tourist
sites, live-streaming is no longer the privilege of just
a few select content providers. In response to this
trend (that we refer to as user-upload streaming or
crowd streaming) companies like Meerkat, Facebook
(Live), twitch.tv and Google (YouTube Live) have all
released mobile phone apps that enable live-streaming.
While such upload streams are increasing at a prolific
rate (1; 2), the constraints of video delivery such as high
latency and constrained bandwidth remain challenging,
particularly in the “first-mile” between the uploader
and the distribution network. Furthermore, the emerging
use-cases of AR/VR and 360◦ video will exacerbate
the situation due to the high volume of video data
being uploaded. Based on this, the main question we
ask in this paper is: What is the impact of “first-mile”

Figure 1: Two architectures for user-upload streaming. (a)
One-hop-overlay architecture (e.g., Skype): the uploader and
downloaders use the same edge server. (b) Full-overlay archi-
tecture (e.g., Twitch, Facebook and Akamai): uploaded video
is routed through an Internet overlay. First-mile decisions
(upload server and upload video bitrate) impact downstream
decisions and viewer QoE.

edge decisions made by the uploader on the quality-
of-experience of downstream viewers, and how should
these edge decisions be made?

There has been excellent work in both industry
and academia on video-on-demand (VoD) delivery and
large-scale live-streaming architectures (3; 4; 5; 6).
Most VoD frameworks are based on traditional CDN
techniques where content is co-located or located close
to a CDN point of presence (PoP). These works have
considered “last-mile” mapping between viewers and
the CDN (3; 4), and centralized routing control within
the CDN (6). Similarly, most frameworks for planned
live-streaming of large-scale events (e.g., sports games,
presidential speeches) consider the problem of CDNs
deciding how to route their content to a reasonably pre-
dictable user-base (5). We claim that these architectures
cannot be directly applied to user-upload streaming due
to the following challenges:

1. When content is being generated spontaneously
by end users (rather than pre-planned large-scale events
such as sports games), we can no longer depend on
content being co-located with the distribution network,
or high-bandwidth and low-latency connections between
the content source and the distribution network. The
users uploading content will mostly have imperfect,
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heterogeneous “first-mile” connections with potentially
low bandwidth and high latency. Hence, these uploader
edge decisions must be taken into account.

2. Both VoD and live-streaming plan and provision
for content delivery based on a priori estimation of the
usage patterns, the weaker links in the network, and
other relevant parameters. In the case of user-upload
streaming, this is tough to do because of the unplanned
nature of uploads and the resulting user-base. Hence,
a more nimble approach that periodically re-optimizes
based on the current set of flows is required.

3. Since traditional video-delivery techniques have to
contend with a huge viewer-base (even millions) spread
across the world, they often have to use heavy-weight
techniques such as reflectors in the network. This is
overkill for user-upload streaming in which the viewer
base is in the order of thousands for the most popular
streamers. Hence, an architecture that is designed for
current live-streaming environments is required (7).

To address these challenges, we focus on two cru-
cial edge decisions: upload server selection and video
encoding bit rate, for each user uploading a video.
Clearly, it is important to upload the live stream to the
appropriate server at the appropriate bit rate that will
minimize the average latency and maximize the video
rate experienced by viewers across all streams served by
the distributor. While popular live-streaming platforms
such as the Open Broadcaster Software (8) do provide
options for the streamer to select the upload server
and bit rate selection, no guidance is provided. Instead,
streamers must rely on third-party applications (e.g.,
(9)) and heuristics to manually select these parameters,
leading to globally suboptimal solutions.

In this paper, we consider the problem of the distrib-
utor (e.g., Twitch, Meerkat or Facebook) looking at the
current set of uploader and downloaders (who are up-
loading and consuming videos during a certain window
of time) and solving a holistic problem that minimizes
the end-to-end latency and maximizes the video rate
experienced by viewers, based on the choice of upload
server and upload bitrate for each uploader. The solution
to this problem can guide uploaders on how to select
upload parameters that balance between the quality-of-
experience of their own viewers as well as other streams
utilizing the same distribution infrastructure.

Inspired by the measurements in (7), we solve this
problem for two prevalent system architectures as shown
in Fig. 1. In the One-hop-overlay architecture, the
uploader and viewer use the same edge server. The
streams traverse an overlay on the public Internet and
the distributor is not attempting to route the streams
through their overlay networks (a simple analysis of
the IP addresses of the packets in a Skype conference,
indicate that Skype uses this architecture). On the

other hand, in the Full-overlay architecture (favored by
Twitch, Facebook Live and Akamai (10; 6; 11; 12)) the
distributor routes streams through its overlay network.
Hence, apart from the upload server and bit rate, they
can also control the flow rates through the overlay links.

Existing works on video-conferencing (13; 14) and
crowd-sourced live streaming (1; 2) focus on effective
placement of transcoders that transmit the streams and
transform bitrates across the users, often utilizing the
cloud’s elasticity and agility. While transcoder place-
ment is important and complementary to our work, we
focus on a crucial element for quality-of-experience: the
“first-mile” link between the uploader (the user) and
the distributor, and we provide optimal algorithms for
selecting the upload server and bitrate. Since upload
server selection impacts the downstream routing and
downlink server selection we cannot simply choose the
closest server, as is commonly done for download server
selection (15).

In summary, we make the following contributions:
• We formulate a problem for user-upload streaming

based on current distribution architectures, where we
maximize the quality-of-experience of all users in the
system based on crucial “first-mile” choices of upload
server and upload bit rate.

• For a One-hop-overlay system architecture, we de-
velop an optimal polynomial-time algorithm for this
problem based on a novel reduction to the network
flow problem that considers server load-balancing
constraints (Section III-A).

• For the general Full-overlay system architecture, we
prove that the problem is NP-Complete and provide
an efficient heuristic that iteratively solves for upload
bit rate, routing and server selection. We also provide
an adaption algorithm to minimize the perturbations
to the current solutions during the arrival and depar-
ture of the video uploaders and viewers (Sec. III-B).

• We demonstrate our algorithm efficacy through sim-
ulations based on real-world Twitch datasets (16),
comparing them to strawman algorithms that choose
the closest server to upload based on RTT (Sec. IV).

II. PROBLEM FORMULATION

System model. In this section, we formulate the gen-
eral problem that captures the important aspects of user-
upload streaming. In our problem setting, we assume a
set of independent uploaders, each streaming a video
to a set of viewers. The video is distributed through
the overlay network of the live streaming service (e.g.,
Meerkat, Facebook). Every uploader uploads his/her
stream to an upload edge server, which transcodes the
video into a set of bitrates for viewing. Each upload
server can only accept a finite number of streams, due
to the limited amount of compute resources available
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for transcoding. The transcoded streams are then routed
through the overlay network to one or more edge
download servers, from which the viewers download the
stream. The amount of bandwidth available in the over-
lay network depends on the service-level agreements
between the live-streaming service and the ISP, as well
as the amount of non-streaming traffic present.

The decisions to be made are as follows. Uploader u
needs to decide which bitrate ru to use, and whether to
select upload server i, represented by the binary variable
xui. The overlay network must decide whether stream u
destined for viewer v should be sent on link l, using the
binary variable zuvl. Finally, viewer v watching stream
u must decide which rate to download at, ruv , and which
download server i to choose, yuvi. The main objective
in these decisions is to minimize the total latency and
maximize the viewer-perceived video rate across all the
viewers in this system.

Core Problem. We capture our system model and
the distributor decisions succinctly in Problem 1 and
summarize its symbols in Table I.

Problem 1: General problem

minimize
∑
u∈U

∑
v∈Vu

(∑
i

hup
i (ru)xui + hdown

i (ruv)yuvi

+
∑
l

hint(fl)ruvzuvl − αruv

)
(1)

subject to fl =
∑
u,v

ruvzuvl ≤ cl, ∀ l (2)∑
i∈S

xui = 1, ∀ u (3)∑
i∈S

yuvi = 1,∀ u, v ∈ Vu (4)∑
u∈U

xui ≤ ai, ∀i ∈ S (5)∑
l′∈Oi

zuvl′ + xui ≥ zuvl, ∀ u, v ∈ Vu, i, l ∈ Oi

(6)∑
l∈Oi

zuvl ≥ yuvi,∀ u, v ∈ Vu, i (7)

xuiru ≤ bup
ui,∀ u, i (8)

yuviruv ≤ min(ru, b
down
vi ), ∀ u, v ∈ Vu, i (9)

variables xui, yuvi, zuvl ∈ {0, 1}, ∀u, v, i, l
ru, ruv ∈ {R1, . . . , RM}

The objective function has four terms: the first three
terms represent the end-to-end latency (sum of upload,
internal, and download latency), and the fourth term
represents the viewer-perceived video rate. The objec-
tive function balances between video bitrate and latency
using the parameter α, which can be set by the user
or application. Latency is a key consideration for live
video streams, in contrast to video on demand which
mainly cares about bitrate, because delayed streams are

Symbol Description
d

up
ui, d

down
vi upload latency between uploader u and server i,

download latency between viewer v and server i
(sec).

b
up
ui, b

down
vi upload bandwidth between uploader u and server i,

download bandwidth between viewer v and server
i (bits/sec).

h
up
i , h

int, hdown
i upload, internal, and download latency of node i

(sec).
R set of possible video rates for video

{R1, . . . , RM}.
M number of of video rates available for uploader u.
S set of servers.
U set of uploaders.
Vu set of users viewing the video of uploader u.
Oi set of incoming links to server i.
ai maximum number of inbound connections that can

be served by server i.
cl capacity of link l (bits/sec).
fl flow on link l (bits).
α parameter trading off viewer latency versus video

bitrate.
xui binary variable indicating whether user u uploads

to server i.
yuvi binary variable indicating whether viewer v down-

loads from server i.
ru video rate of uploader u (bits required in the

current time epoch).
ruv downloaded video rate for viewer v of uploaded

video u (bits required in the current time epoch).
zuvl binary variable indicating whether video uv is sent

on link l.

Table I: Table of notation

out of sync with external events (e.g., the group chat
that appear next to Twitch streams, social media). More
precisely, we define the upload (hup

i ), internal (hint), and
download (hdown

i ) latencies as:

hup
i (ru) = dup

ui +
ru
bup
ui

(10)

hint(fl) =
1

[cl − fl]+
(11)

hdown
i (ruv) = ddown

vi +
ruv
bdown
vi

(12)

The upload latency (10) is the sum of the queuing and
processing delays (dup

ui) and the transmission delay ( ru
bup
ui

),
and similar for the download latency (12). The internal
latency is given by the queuing delay and is modeled
by an M/M/1 queue (17).

The control knobs are the discrete variables xui,
the uploader’s server selection; ru, the upload video
rate (these variable are the crucial “first-mile” factors);
yuvi, the viewer’s download server selection; zuvl, the
routing decisions and ruv , the download video rate.
Constraint (2) says that the sum of flows on each link
must be less than the link capacity. Constraints (3, 4)
says that each uploader (viewer) must be connected
to one upload (download) server. Constraint (5) says
that each server i can accept at most ai uploaders, due
to limited transcoding ability on the server and desire
for load-balancing. Constraint (6) says that flows can
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only be forwarded on from a node if they are received
or stored there. Constraint (7) say that the data must
flow outward from a download server with a connected
viewer. Constraint (8) says that the upload video bitrate
must be less than the bandwidth between the uploader
and the upload server, and constraint (9) says that the
download video bitrate must be less than the bandwidth
between the viewer and the download server. In the
following section, we present solutions to Problem 1
for two different architectures that are prevalent in real-
world content distribution systems.

III. SOLUTIONS FOR DIFFERENT ARCHITECTURES

First, we consider a One-hop-overlay architecture
(Fig. 1) that is used for video-conferencing in Skype-
like systems, in which both the uploader and viewer
download from the same edge server. We present an
optimal polynomial-time algorithm for this problem
through a novel reduction to a network-flow problem.
Second, we consider a Full-overlay architecture (Fig. 1)
in which the overlay network can replicate its streams to
different download servers. We prove that this problem
is NP-complete and present convex relaxations that
yield practically efficient solutions. All proofs can be
found in the Appendix.

A. One-hop-overlay Architecture

In this architecture, since the download and the
upload server are the same for the uploader and its set of
viewers, the remaining decision variables are the upload
server for each uploader xui, the upload video bitrate
ru, and the download video bitrate ruv . Clearly, there
is negligible internal routing latency hint. Based on this,
Prob. 1 can be re-written for the special case of the
One-hop-overlay architecture:

Problem 2: One-hop-overlay

min
∑
u∈U

∑
v∈Vu

(
∑
i

(
hup
i (ru) + hdown

i (ruv)
)
xui − αruv)

subject to (3), (5), (8), (9)

variables xui ∈ {0, 1}, ∀ u, i
ru, ruv ∈ {R1, . . . , RM}, ∀ u, v ∈ Vu

Prob. 2 is a challenging integer non-linear problem
where a naiive brute-force solution is very expensive
with time-complexity O(M |Vu|(M |S|)|U|). However,
we find an optimal solution with polynomial time-
complexity by breaking the problem down into two
tractable parts. Firstly, in the inner loop, we solve for
the download video rate ruv when the upload video
rate ru and upload server xui are known. We show
that given the upload rate and upload server, selecting
the download rate reduces to a discrete choice between
the minimum and maximum possible bit rates. We do
this by reducing the problem to an instance of a min-
cost network flow problem. Secondly, in the outer loop,

we efficiently solve for the upload video rate ru and
upload server xui. These steps are combined and shown
in Alg. 1, and are now described in further detail.

Inner loop (viewer bitrate): We can solve for the
download rate directly when the upload server and
upload bitrate are known, as given in Lemma 1.

Lemma 1: For a fixed server i, uploader u with
upload rate ru, viewer v, and weight parameter α,
the objective function in Prob. 2 can be minimized by
picking the appropriate download rate ruv(i):

ruv(i) =

{
R1, if 1

bdown
vi

≥ α
max{r ∈ R : r ≤ min(bvi, ru)}, otherwise

Intuitively, when the weight α is high, video rate is
highly favored in the objective function, so we pick the
highest bitrate. On the other hand, when the viewer’s
bandwidth is low, we tend to pick the lowest download
bitrate. The “in-between” video bitrates are not selected.

Outer loop (upload server and upload bitrate): We
can now iterate over different combinations of server
selection xui and upload rate ru, each time calculating
the associated optimal download bitrate according to
Lemma 1. However, a brute force approach to solve
for the remaining variables xui and ru would require
iterating over all possible combinations of uploaders,
servers and upload rate. This approach is extremely
inefficient since it has time complexity O((M |S|)|U|),
which is exponential in the number of uploaders.

Therefore, we reduce the problem to an instance
of the network flow problem, which yields an opti-
mal polynomial-time algorithm. The main idea is to
transform Prob. 2 into a graph-based flow problem.
An example transformed instance is shown in Fig. 2,
where uploaders are represented by nodes and replicated
M times, according to the number of possible upload
bitrates. Latency (part of the objective in Prob. 2) is
incorporated into the problem as link weights, and load
balancing (constraint 5) as link capacity. Constraints (3)
and (8) are satisfied by construction, and constraint (9)
by Lemma 1. The resulting graph problem is solved
using minimum-cost network flow algorithms to find
the optimal matching.

For ease of exposition, we rewrite the inner terms of
the objective function of Prob. 2, for a specific uploader
u with upload rate ru selecting server i, as:

wui(ru) =|Vu|hup
i (ru) +

∑
v∈Vu

hdown
i (ruv(i))αruv(i), ru ≤ bui.

This cost wui(ru) is used as the link cost between the
set of replicated uploaders U′ and the set of servers
S. We construct the network flow instance and solve
for the upload server and upload rate as described in
Alg. 1. Fig. 2 illustrates an example of the network flow
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Figure 2: Example of Alg. 1. The capacity of all links is 1,
except for the links between S and T . The costs of all links
are 0, except for the links between U′ and S.

instance constructed by Algorithm 1. The following
proposition proves the correctness of Alg. 1:

Proposition 1: Alg. 1 solves Problem 2.

B. Full-overlay Architecture

The Full-overlay architecture is where an uploader
sends its video stream to an edge server, the overlay
network internally routes the stream from the upload
server to the set of download servers, and viewers
stream the video from the download servers. The Full-
overlay architecture is similar to content distribution
networks (CDN) but also includes the “first-mile” de-
cisions, which are relatively less important in CDNs
because content can be pre-stored on servers. In the con-
text of CDNs, the “last-mile” mapping between viewers
and download servers has been well-studied (e.g., (4));
for example, a CDN can select the download server
with the minimum RTT predicted using historical data,
or according to other factors such as load balancing.
Following current practice, we assume that the live
streaming service uses typical CDN download server
selection techniques (i.e., the variable yuvi is known).
The remaining job of the live streaming service is to
determine (a) upload server selection and upload video
bitrate, and (b) the internal routing. Therefore, in the
Full-overlay architecture, Prob. 1 becomes:

Problem 3: Full-overlay

minimize
∑
u∈U

∑
v∈Vu

(∑
i

hup
i (ru)xui

+
∑
l

h(fl)ruvzuvl − αruv

)
subject to (2), (3), (5), (6), (7), (8), (9)

variables xui, zuvl ∈ {0, 1}, ∀u, v, i, l
ru, ruv ∈ {R1, . . . , RM}

Algorithm 1 One-hop-overlay Network Flow Algorithm

Input: Constants dup
ui, d

down
iv , bup

ui, b
down
iv , R1, ..., RM

Network flow graph construction:
1) Create uploader nodes for each u ∈ U, connect

them to one source node. Create server nodes for
each s ∈ S, connect them to one sink node.

2) For each uploader node, create new data rate nodes
for each Ri ∈ R and connect. For each server node,
connect it to all data rate nodes.

3) Set the capacity of edge between server node i
and sink to be ai. Set the capacity of the rest of
the edges to be 1.

4) For each uploader u, set the cost of edge between
server node i and the data rate node Ru to be
wui(Ru). Assign 0 cost to the rest of the edges.

5) Set the demand of the source node to be |U|.
Minimum cost network flow solution:

1) Apply the cost-scaling push-relabel algorithm to
the constructed graph.

2) For each uploader u, set r∗u ← Ru if node u is
connect to data rate node Ru in the solution. Set
x∗ui ← 1 if the data rate node is further connected
to server node i. Set r∗uv ← ruv(i) for each v ∈ Vu
according to Lemma 1.

Output: Decision variable values x∗ui, r
∗
u, r
∗
uv

Compared to Prob. 1, constraint (4) is assumed to be
satisfied and is removed, and thus the objective function
is re-written to be slightly simplified. This problem is
a non-linear integer problem that is expensive to solve
in a brute-force manner. In Prop. 2, we show that the
decision version of Prob. 3 is NP-complete, thus the
optimization problem is hard to solve.

Proposition 2: The decision version of Prob. 3 is NP-
complete.

The proof involves showing that set cover, which is NP-
complete, reduces to the decision version of Prob. 3.

Heuristic: Therefore, eschewing optimality, we
present a heuristic solution in which we relax the
problem and iteratively solve for two sets of variables.
Specifically, for fixed xui and zuvl, Prob. 3 is a convex
problem if allow the relaxation 0 ≤ ru, ruv ≤ 1.
Similarly, for fixed ru and ruv , it can be shown that
Prob. 3 is a convex problem if we allow the relax-
ation 0 ≤ xui, zuvl ≤ 1. In particular, hint(fl)ruvzuvl
is convex. Based on these relaxations, we design a
heuristic where we first solve for xui and zuvl, which
correspond to the upload servers and the links on which
video will be sent, and then we solve for ru and ruv,
which corresponds to the upload and download rate.
We continue until the difference between values of the
objective function over time becomes small.
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Iterative updates: In practice, optimization decisions
have to be made for every arrival and departure event
of either video uploaders or viewers. It is impractical to
repeatedly solve Prob. 3 when these events occur. There-
fore, it is important to solve Prob. 3 in an incremental
manner that allows us to select new upload server and
video bitrate selection solutions based on the current
solutions with minimal perturbations. We propose a
decomposition approach that decomposes Prob. 3 into
multiple sub-problems that are associated with each
individual video uploader sessions. Then, when arrival
and departure events occur and an incremental solution
is required, only the affected sub-problems for the
uploader and relevant links need to be recalculated.
Video streams that are unaffected by the arrival or
departure of a viewer will not be altered.

We define θl as the inverse residual capacity of link
l. It represents the value of the internal latency at link
l according to equation (11). We also define hint

uvl as
a slack variable for uploader u, user v and link l, to
linearize the internal latency equation in (11). Let L be
an arbitrarily large value. Then we can rewrite Prob. 3
as an equivalent Prob. 4 (proof omitted due to lack of
space):

Problem 4: Transformed version of Prob. 3

minimize
∑
u∈U

∑
v∈Vu

(∑
i

hup
i (ru)xui

+
∑
l

hint
uvlruv − αruv

)
subject to (3), (5), (6), (7), (8), (9)

hint
uvl + (1− zuvl)L ≥ θl, ∀ u, v, l (13)∑
u,v

ruvzuvl +
1

θl
= cl,∀ l (14)

variables xui, zuvl ∈ {0, 1}, ∀u, v, i, l
ru, ruv ∈ {R1, . . . , RM} ∀u, v
hint
uvl, θl ∈ R+ ∀u, v, l

To decompose Prob. 4, the dual decomposition tech-
nique is applied to relax the new constraints (18). We
introduce λuvl for constraint (13) and βl for constraint
(14) to create the following Lagrangian equation:

L(X,Z,R, λ, β) =∑
u∈U

∑
v∈Vu

(
−αruv +

∑
l

hint
uvlruv +

∑
i

(hup
i (ru)xui)

+
∑
l

λuvl(θl − hint
uvl + zuvlL− L)

)
+
∑
l

βl(
∑
u∈U

∑
v∈Vu

ruvzuvl +
1

θl
− cl) (15)

The dual decomposition technique is designed to mini-
mize the Lagrangian equation by solving a primal prob-
lem and a dual problem. The primal problem is designed

to minimize the Lagrangian equation according to the
primal variables (i.e., X ,Z,R) while the dual problem is
maximizing the equation according to the dual variables
(i.e., λ, β).

In the primal problem, since the θ variables only
appear in the Lagrangian equation, we can separate
the decision of θ from the rest of the primal problem.
We refer to these sub-problems as the residual capacity
adjustment problems. For link l, the corresponding
residual capacity adjustment problem is to minimize
βl

1
θl

+
∑
u

∑
v λuvlθl, subject to θl ≥ cl. Solving

this problem produces a closed-form solution of θ∗l =√
βl∑

u

∑
v λuvl

.
Next, by relaxing the capacity constraint in (14), the

video sessions that share network links are no longer
coupled by the capacity constraint. Therefore, the primal
problem can be further decoupled into primal sub-
problems that are associated with each individual video
uploader sessions. We refer to these sub-problems as
the min-flow problem. For uploader u and all of its
viewers in Vu, the corresponding min-flow problem can
be written as follows:

Problem 5: Uploader u: Min-flow

minimize
∑
v∈Vu

(
−αruv +

∑
l

hint
uvlruv +

∑
i

hup
i (ru)xui

+
∑
l

λuvl(−hint
uvl + zuvlL)

)
+
∑
l

∑
v∈Vu

βlruvzuvl

subject to (3), (4), (5), (6), (7), (8), (9)

variables xui, zuvl ∈ {0, 1}, ∀v, i, l
ru, ruv ∈ {R1, . . . , RM} ∀v
hint
uvl, θl ∈ R+ ∀v, l

Prob. 5 can be solved using the heuristic algorithm
proposed previously. After solving Prob. 5 and the
residual link capacity problem described above, the
dual problem of updating the dual variables λ and
β is solved using subgradient descent to maximize
the value of (15) with respect to the dual variables.
Specifically, in the k-th iteration, the dual variable
λuvl is updated using the subgradient value of θl(k)−
hint
uvl(k)+zuvl(k)L−L, and θl is updated using the sub-

gradient value of
∑
u∈U

∑
v ruv(k)zuvl(k)+

1
θl(k)
− cl.

θl(k), h
int
uvl(k), zuvl(k), ruv(k) are the primal variables

produced by solving the primal sub-problems in the k-
th iteration. In summary, when arrival and departure
events occur and an incremental solution is required,
only the affected sub-problems for the uploader and
relevant links need to be recalculated. Video streams
that are unaffected by the arrival or departure of a viewer
will not be altered.
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Figure 3: Viewers have low end-to-end latency and good video
rates in the One-hop-overlay architecture.

IV. EVALUATION

In this section, we evaluate the performance of our
algorithms in the One-hop-overlay and Full-overlay ar-
chitectures through trace-driven (16) simulations. We
compare several algorithms:

• One-hop-overlay: Solve Prob. 2 using Alg. 1 for
upload server (same as download server), upload
bitrate and viewer rate.

• One-hop-overlay-strawman: The uploader picks the
server with the lowest RTT with rate equal to the
upload bandwidth. The viewers connect to the same
server and download at a rate equal to the minimum
of the uploader rate and download bandwidth.

• Full-overlay: Solve Prob. 3 for upload bitrate, viewer
rate, and internal routing including the upload server
and the download server.

• Full-overlay-strawman: The uploader picks the server
with the lowest RTT with rate equal to the upload
bandwidth. The viewers pick the server with the
lowest RTT with a rate equal to the minimum of the
uploader rate and download bandwidth. The internal
routing is optimized using a simplified version of
Prob. 3 that solves for the link usage only.

Setup: We perform simulations using traces from
real Twitch sessions (16). These traces give the time
zone of each uploader, and the number of users viewing
each uploaded stream. We take the top 30 most popular
uploaders in a 24-hour period, who have a total of
232,000 viewers with group size ranging from 2000-
58,000 (average 7700 users/group). We map the time
zone of each uploader to a central geographical location
based on their time zone, and randomly distribute clus-
ters of 1000 viewers geographically (since the trace does
not provide geographical information of the viewers).
For the topology, we map 17 Twitch servers (19) to
their geographical location, and generate 65 directional
links between them. It is difficult to know realistic link
capacities in real overlays/CDNs, so we model link ca-
pacity using two distributions (power law and uniform)
between 100 Mbps and 10 Gbps (20). The upload and
download edge latencies are generated proportional to
geographical distance between 0-1 s, and the upload and
download edge bandwidths are are generated inversely
proportional to latency with a range between 0-10 Mbps.
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Figure 4: Latency components in the One-hop-overlay architecture.
Choosing a further uploader server can reduce viewer latency.

A. One-hop-overlay

We first wish to compare One-hop-overlay with
the One-hop-overlay-strawman. We run Alg. 1 on the
Twitch data and plot the viewer end-to-end latency and
video rate in Fig. 3. In terms of viewer latency, we can
see that with our approach in Fig. 3a, approximately
10% of the viewers reduce their latency by about
0.5 s, and approximately 90% of users reduce their
latency by about 0.2 s. Relative to the mean latency
of One-hop-overlay-strawman, 2.7 s, this represents a
relative decrease (17% and 8%, respectively). We can
also see in Fig. 3b that the video rates maintained are
at a level similar to One-hop-overlay-strawman, but
overall the viewer experiences decreased latency, which
is important in live-streaming. The tradeoff between
video rate and latency can be controlled by changing the
parameter α (in this particular experiment, α = 0.5).
By changing α (not shown), we observe that One-
hop-overlay can perform better than One-hop-overlay-
strawman in latency or video rate, but not both, which
is an engineering trade-off.

We next wish to delve deeper to understand the
choices of Alg. 1. In Fig. 4a, we plot the RTT be-
tween the uploader and its selected server. We can
see that One-hop-overlay is selecting upload servers
with higher RTT than the servers selected by One-
hop-overlay-strawman. How can this be possible if the
end-to-end viewer latency is reduced? Indeed, looking
at the breakdown in latency between uploading and
downloading in Fig. 4b, we can see the One-hop-overlay
achieves lower upload latency despite choosing servers
with higher RTT. Upon examining the data, we find that
One-hop-overlay chooses a much lower upload video
rate of 6.9 Mbps on average, while One-hop-overlay-
strawman uploads at 9.8 Mbps on average. This means
that One-hop-overlay-strawman, despite choosing an
upload server with lower RTT, was wastefully uploading
at a higher rate in order to benefit a few of its viewers,
increasing the latency for its other viewers who could
not receive the high video rate due to constrained
download bandwidth. One-hop-overlay, on the other
hand, picked an upload server with slightly higher RTT
because it considered its viewers’ download latencies
and bandwidths, and chose an upload server based
jointly on RTT and bandwidth across its viewers.
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Figure 5: Impact of uploader RTT for One-hop-overlay archi-
tecture.
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Figure 6: Viewer end-to-end latency is reduced with good
video rates in the Full-overlay architecture.

Further, we wish to answer the question: what hap-
pens if we remove the “obvious” low-RTT servers
from the topology? Will One-hop-overlay-strawman
still make good decisions if there are many “mediocre”
server choices with moderate RTT? To answer these
questions, we increase the minimum RTT between the
uploader and server (keeping the total number of servers
constant), run Alg. 1 in each scenario, and plot the
average viewer latency and video rate in Fig. 5. In
Fig. 5a, one can see that the viewer latencies in-
crease for both One-hop-overlay and One-hop-overlay-
strawman as fewer low-RTT servers are available, as
expected. However, in Fig. 5b, we can see that One-
hop-overlay maintains high video rate by still selecting
the appropriate server and video rates, while One-hop-
overlay-strawman suffers as it chooses servers with low
RTT that also have low bandwidth, thus decreasing
the upload and download video rates. Thus, One-hop-
overlay performs well even as edge latency increases.

B. Full-overlay

We now turn our attention to the Full-overlay case,
and run our iterative algorithm ( Section III-B) to solve
Prob. 3. We plot the end-to-end viewer latency and
viewer video bitrates in Fig. 6. We see that the end-
to-end latency is reduced by approximately 0.16 s for
all users, and the video rates are similar for Full-
overlay and Full-overlay-strawman. Again, this shows
that latency can be reduced while keeping video rates
constant, but we cannot achieve both lower latency
and higher bitrates. We examine the choices made by
Full-overlay to see how they differ from Full-overlay-
strawman and the reason for Full-overlay’s reduced
latency. In Fig. 7a, we plot the RTT from the uploader
to the selected upload server for Full-overlay and Full-
overlay-strawman. The strawman chooses the server
with the lowest RTT, by definition, while Full-overlay
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Figure 7: Latency components in the Full-overlay architecture.
Choosing a further upload server can reduce overall viewer
latency.
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Figure 8: Impact of internal bandwidth on Full-overlay archi-
tecture.

chooses servers which are slightly further away. In
Fig. 7b, we see that Full-overlay has a lower upload
latency despite choosing an upload server with higher
RTT. We analyze the data and find that Full-overlay
tends to upload at a lower rate (9.2 Mbps versus 10.4
Mbps for Full-overlay-strawman), thus decreasing the
upload latency. The intelligent choice of upload server
also enables Full-overlay to decrease the internal latency
by choosing less congested paths, especially since the
9 of the 30 uploaders are located in the same city and
can benefit from upload server load-balancing.

Next, we wish to understand conditions when Full-
overlay can offer higher video rates, in addition to low
viewer latencies shown previously. We wish to examine
the effect of the internal overlay network, and see if
higher link capacities can increase the video rates. To
test this, we randomize the upload and download band-
widths and latencies to isolate the effect of the internal
network. We increase the average link capacity of the
internal network (e.g., Twitch pays the ISP for more
bandwidth) and measure the average end-to-end latency
and average video rate, and plot the results in Fig. 8. In
Fig. 8b, Full-overlay can take advantage of increased
link capacity to increase the video rates (which also
increases latency, although not to the level of Full-
overlay-strawman). Full-overlay-strawman, on the other
hand, enjoys decreased latency (Fig. 8a) as internal link
capacity increases, but its video rates stay constant at
low values since its video rate decision depends only on
the uploader-upload server or the downloader-download
server edge links. Thus, we can see that increasing the
internal bandwidth of the overlay network is one way for
live-streaming providers to improve video rates under
Full-overlay, while still lowering end-to-end latencies.
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V. RELATED WORK

Existing works (1; 2) consider matching users to
cloud transcoders to minimize the latency while ac-
counting for the cloud provider’s latency, bandwidth,
and transcoders. (21) provides a transcoding frame-
work that allows viewers different bit-streams. While
transcoder placement and downstream decisions are
important, they are complementary to our work as we
focus on the edge decisions made by the uploader and
the route followed by the streams in a multi-hop overlay
network, which are not considered in these works.

Prior work on mapping uploaders to edge servers (22)
focuses on minimizing economic cost. Since we con-
sider the problem from the perspective of a single live
streaming CDN, we consider multi-user interactions
when multiple viewers select the same upload server
as well as video-specific QoE metrics. (15) show that
choosing the best replica and route leads to better results
than just choosing the replica for online services. While
they focus on the benefit to the viewer, we consider the
multi-user scenario with joint benefit across viewers.

Traditional CDN solutions (4; 3; 23) that use his-
torical data to improve video caching or placement
are not directly applicable to our problem since user-
uploads are generated and consumed in relatively short,
unpredictable time spans, and are not pre-stored in the
CDN. While works such as (23) jointly optimize the
cost to the CDN and the viewer we optimize for upload
bitrate, with a focus on the uploader’s link to the overlay
network. (5) solves the problem of constructing a net-
work of reflectors that split and forward live streams to
viewers. This approach is too heavy-weight and costly
for user-uploads, where the relative number of viewers
is far less. Moreover, we consider more general network
topologies than their tree topologies. While (6) focuses
on the optimization of CDN routing for live streams, we
posit that along with routing, edge server and upload
bitrate selection are also important factors.

Several works (17; 24) consider joint content place-
ment and traffic engineering. (24) shows how content
placement is more important than traffic engineering
for CDNs. We believe that for user-upload streaming,
not only should the mapping between viewers and
the overlay network be considered, but also mapping
uploaders to the upload servers of the overlay network,
since that impacts downstream decisions and thus end-
to-end throughput and delay.

VI. CONCLUSIONS

In this paper, we contend that streaming high-quality,
voluminous, user-uploaded videos is different from the
existing systems for video-on-demand or live streaming
due to the “first-mile” between the uploader and the
network. Specifically, we show that the edge decisions

of where to upload the video and the video’s upload
bitrate are crucial to achieve quality-of-experience (both
latency and video rate) across all users. We developed
efficient algorithms and performed trace-based evalu-
ation to solve this problem. We plan to extend this
framework to consider edge containers that can perform
transcoding and IoT camera devices.
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APPENDIX

Lemma 1
Proof: We can rewrite the objective function

as:
∑
i

∑
u

(
|Vu|hup

i (ru) +
∑
v∈Vu

hdown
i (ruv)

)
xui −

α
∑
u

∑
v ruv . For a fixed server i, uploader u with

upload rate ru, and viewer v, then the objective can be
minimized by solving: minr′uv≤min(ru,bui) h

down
i (r′uv)−

αr′uv = minr′uv≤min(ru,bui) dvi +
r′uv

bvi
− αr′uv Clearly,

when 1
bvi
≥ α, then the expression is positive and we

should pick the minimum rate. When 1
bvi

< α, then the
expression is negative and we should pick the maximum
possible rate.
Proposition 1

Proof: The objective function of Prob. 2 can
be re-written as:

∑
u

∑
i

∑
t wui(ru)xui. The weights

wui(ru) are integer (or can be scaled to be integer).
The capacity of each link in the graph is 1 or ai, both
integers. The source and sinks have demand |U| are
integer. Therefore, we can use the integrality theorem
that states that as long as the input data to the network
flow problem are integer, there is an optimal solution
consisting only of integers. The graph G in Alg. 1 will
thus have integer flows and, by construction, be an
integer solution to Prob. 2.

Specifically, constraint (5) is satisfied because the
capacity between server i and T has capacity ai. (3)
is satisfied because the capacity of the links between
S,U,U′ is 1, and the demand of |U | at S forces 1 unit of
flow between for each node u ∈ U to be forwarded on to
one server. Constraints (8),(9) are satisfied by definition
of wui(ru) and ruv(i). in Lemma 1.
Proposition 2

Proof: We will show that set cover, which is NP-
complete, reduces to the decision version of Prob. 1.
The proof technique is inspired by (24). The set cover
problem defines elements 1, . . . , n sets S1, . . . , Sm.
Consider the following special case of the network
problem, as shown in Fig. 9. There are are m origin
servers which are fully connected with each other, and
each origin server has upload capacity 1. There are n+1
edge servers. There are m−k+1 uploaders which form

9



a fully connected bipartite graph with the origin servers.
Origin server i is connected to edge servers in the set Si.
The first uploader is very popular and is requested one
viewer at each of the first n edge servers. The remaining
m − k uploaders are requested by m − k viewers at
the (n + 1)th edge server. Each viewer has bandwidth
bdown
vi = 1 to her edge server, so yuvj is fixed.
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Figure 9: Mapping our problem
to set cover to prove Prop. 2.

The only possible
video rate is R1 = 1,
so r∗u = 1, r∗uv = 1.
Each link between
uploaders and origin
servers has upload
bandwidth bup

i = 1
and latency dup

ui = 0,
and therefore cost 1 if
the link is used (10).
Each link between
origin and edge
servers has capacity
2 and therefore cost
1 if the link is used (11). Each link between edge
servers and viewers (not shown in the example) has
download bandwidth bdown

vi = 1 and latency ddown
vi = 0,

and therefore costs 1 if the link is used (12). Based
on the problem setup, only the placement xui and the
routing zuvl must be determined.

The decision problem is: Can the above network
achieve a value ≤ b? The set cover problem is: Is there
a set cover of size k? We claim: There is a set cover
of size k iff the above network can achieve an value
≤ 2n+ 3m− 2k.

=⇒ : If there is a set cover of size k, the network
achieves a value n+m− 1. For the popular uploader,
select k origin servers according to the k set cover
locations. Send the popular video to one of the selected
origin servers, and forward from there to the other k−1
selected origin servers. This costs k. Send from the
selected origin servers to the n edge servers. This costs
n. Send from the edge servers to the corresponding
viewers. This costs n. For the m− k regular uploaders,
transmit to the remaining unused m− k origin servers.
This costs m − k. From there, send to the regular
edge server. This costs m− k. From there, send to the
corresponding viewers. This costs m−k. The total cost
is 2n+ 3m− 2k.
⇐=: If there is no set cover of size k, the network

achieves a value > 2n + 3m − 2k. Since each origin
server can only process one uploader, and each of m−k
regular videos must be uploaded to one origin server,
there are k remaining origin servers for the popular
video. If there is no set cover of size k, then one of
the n edge servers must be satisfied by using a link of
capacity 0. Therefore, the cost is ∞.

Therefore, since the decision version of Prob. 1 is
equivalent to set cover which is NP-complete, our
decision problem is NP-complete.
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