DeepDecision: A Mobile Deep Learning Framework
for Edge Video Analytics

Xukan Ran*, Haoliang Chen*, Xiaodan Zhu', Zhenming Liuf, Jiasi Chen*

*University of California, Riverside, Riverside, CA

fCollege of William and Mary, Williamsburg, VA

{xukan.ran, haoliang.chen} @email.ucr.edu; xzhu08 @email.wm.edu; zliu@cs.wm.edu; jiasi@cs.ucr.edu

Abstract—Deep learning shows great promise in providing
more intelligence to augmented reality (AR) devices, but few AR
apps use deep learning due to lack of infrastructure support.
Deep learning algorithms are computationally intensive, and
front-end devices cannot deliver sufficient compute power for
real-time processing. In this work, we design a framework that
ties together front-end devices with more powerful backend
“helpers” (e.g., home servers) to allow deep learning to be
executed locally or remotely in the cloud/edge. We consider
the complex interaction between model accuracy, video quality,
battery constraints, network data usage, and network conditions
to determine an optimal offloading strategy. Our contributions
are: (1) extensive measurements to understand the tradeoffs
between video quality, network conditions, battery consumption,
processing delay, and model accuracy; (2) a measurement-driven
mathematical framework that efficiently solves the resulting
combinatorial optimization problem; (3) an Android application
that performs real-time object detection for AR applications,
with experimental results that demonstrate the superiority of
our approach.

I. INTRODUCTION

Deep learning shows great promise to provide more intel-
ligent video analytics to augmented reality (AR) devices. For
example, real-time object recognition tools could help users in
shopping malls [1], facilitate rendering of animations in AR
apps (e.g., detect a table, and overlay a game of Minecraft on
top of it), assist visually impaired people with navigation [2],
or perform facial recognition for authentication [3].

Today, however, only a few AR apps use deep learning
due to insufficient infrastructure support. Object recognition
algorithms such as deep learning are the bottleneck for AR [4]
since they are computationally intensive, and the front-end
devices are often ill-equipped to execute them with acceptable
latencies for the end user. For example, Tensorflow’s Inception
deep learning model can process about one video frame
per second on a typical Android phone, preventing real-time
analysis [5]. Even with speedup from the mobile GPU [6],
[7], typical processing times are approximately 600 ms, which
is less than 1.7 frames per second. In industry, while a few
applications run deep learning locally on a phone (e.g., Apple
Photo Album), these are lightweight models that do not run
in real time. Voice-based intelligent personal assistants (e.g.,
Alexa, Cortana, Google Assistant, and Siri) mostly transfer the
input data to more powerful backends and execute the deep
learning algorithms there. Such cloud-based solutions are only
applicable when network access is reliable.

Our observations. While front-end devices are computa-
tionally weak, and sending deep learning jobs to “backend”
computers is inevitable, the following new observations will
yield an effective design.

Tradeoffs between accuracy and latency. AR apps relying
on deep learning have different accuracy/latency requirements.
For example, AR used in shopping malls for recommending
products may tolerate longer latencies (fine to let users to wait
a second or two) but have a higher accuracy requirement. In
an authentication system that uses deep learning, users could
wait even longer but expect ultra-high accuracy.

Sources of latency. When a deep learning task needs to be
executed remotely, both the data transmission time over the
network and the deep learning computation time can introduce
latencies. Prior works (e.g., [7], [8]) focus on optimizing
computation latencies (i.e., time between the job’s arrival at
the computation node and the job’s completion) by designing
sophisticated local scheduling algorithms. We observe that
network latencies are often much longer than the computation
latencies, so it is important to optimize the offloading decision
along with the local processing. Furthermore, although deep
learning based real-time video analytics are known to be
computationally intense, simple consumer-grade GPUs suffice
for most real-time video analysis (e.g., object detections).
Thus, home computers could be used as “backend helpers”
that are dedicated to a small group of users like family
members. In other scenarios, home desktops may not even
be needed, as wearable devices such as smartwatches or
head-mounted displays could send computation to a user’s
smartphone nearby.

Video streams and deep learning models as “first class citi-
zens.” Deep learning in an AR setting is primarily responsible
for interpreting data collected from a camera (i.e., video data).
Prior works (e.g., [5], [7], [8]) treat the videos merely as
sequences of images and the deep learning models as rigid
computation devices that produce uniform forecasting quality.
Yet these assumptions lead to the illusion that we face a
canonical scheduling problem: a fixed set of computation
tasks needs solving, and each deep learning model consumes
a predictable amount of resources and produces predictable
output (i.e., forecasting quality is known). The assumption,
however, will substantially reduce the system performance
because they ignore the compressibility of both deep learning
models and video streams.

Instead, we ought to treat video streams and deep learning
modules as “first-class citizens” and directly optimize the
tradeoffs between video and prediction qualities. Specifically,
video data should not be treated as a sequence of images
(i.e., independent computation tasks) because this will over-
consume network bandwidth; instead, aggressive leverage of
existing technologies for compressing videos (including DFT,
delta coding, and changing resolution efc.) will result in the
best use of network bandwidth. Certainly, over-aggressive
compression may cause declines in video analysis quality. Our
solution aims to find the most suitable video encoding scheme
that gives the optimal tradeoff between network consumption
and prediction quality.

Our contribution. We propose a distributed infrastructure,
DeepDecision, that ties together computationally weak front-
end devices (assumed to be smartphones in this work) with
more powerful back-end helpers to allow deep learning to
choose local or remote execution. The back-end helpers can
be any devices that supply the requisite computation power.
Our solution intelligently uses current estimates of network
conditions, in conjunction with the application’s requirements
and specific tradeoffs of deep learning models, to determine an
optimal offload strategy. In particular, we focus on executing
a convolutional neural network (CNN) designed for detecting
objects in real-time for AR applications. (A similar framework
could be applied to any application that requires real-time
video analytics.) We seek to understand how the changes of
key resources (e.g., network bandwidth, neural network model
size, video resolutions, battery usage) in the system impact the
decision of where to compute. An overview of our system is
illustrated in Fig. 1.

We make the following contributions:

1. Extensive measurements of deep learning models on smart-
phones to understand the tradeoffs between video compres-
sion, network conditions and data usage, battery consumption,
processing delay, frame rate, and machine learning accuracy;

2. A measurement-driven mathematical framework that effi-
ciently solves an optimization problem, based on our under-
standing of how the above parameters influence each other;

3. An Android implementation that performs real-time object
detection for AR applications, with experiments that confirm
the superiority of our approach compared to several baselines.

Organization. Sec. II explains the background on neural
networks, Sec. IIl describes our model and algorithm, and
Sec. IV shows our measurements and experimental results.
Finally, Sec. V discusses related work and Sec. VI concludes.

II. BACKGROUND, METRICS, AND DEGREES OF FREEDOM

Background. We first provide relevant background on
CNNs for video analytics and AR. In video analytics, object
recognition (classifying the object) and object detection (lo-
cating the object in the frame) are both needed. In AR, the
processing pipeline also includes drawing an overlay on top of
the located and classified object. Neural nets are the state-of-
the-art in computer vision for object recognition and detection,

Front-end device

Battery function
Latency function

Offline
perfarmance
characterization

Accuracy function

Online
decision engine

n_ =% -i',_.w' l. |

Camera feed

Small CNN Output display

Fig. 1: System overview. The front-end device chooses where to
analyze the input video for real-time display.

and many existing neural nets for object recognition build a
pipelined solution, i.e., they use one neural net to detect the
boundaries of objects and a second net to inspect contents
within each bounding box. In this work, we use a particular
CNN called Yolo [9]. (Our framework can also be adapted to
other popular CNNS such as [10], [11].) Yolo is optimized
for processing video streams in real-time and possesses two
salient features: 1. One neural net for boundary detection
and object recognition. Observing that using multiple neural
nets unnecessarily consumes more resources, Yolo trains one
single neural network that predicts boundaries and recognizes
objects simultaneously. 2. Scaling with resolution. Yolo han-
dles images with different resolutions, e.g., when there is
a change in the dimension of an input to a convolutional
layer, Yolo does not change the kernels and their associated
learnable parameters — this would result in a change of output
dimensions. Thus, the compute time of Yolo scales directly
with input’s resolution, e.g., lower resolution images require
less computation.

Key performance metrics. AR apps often require service
guarantees on two important metrics:

1. Frame rate: The frame rate is the number of frames that
we feed the deep learning model per second when it’s running
locally, or is the video frame rate (FPS) when offloading.

2. Accuracy: The accuracy is a metric that captures (a)
whether the object is classified correctly; (b) whether the
location of the object in the frame is correct.

Being a responsible citizen. While purely focusing on these
key metrics may maximize the performance of the video
analytics module, other potential impacts on the frontend
device should be considered. For example, running more pow-
erful deep learning models will consume extra CPU cycles,
disrupting other background processes, and draining the device
battery. If the client communicates with the server, the network
transmission also uses battery; also, if the data transfer is over
LTE, the monetary cost to the user in terms of data quota must
also be considered. These factors of battery consumption and
network data usage must be considered holistically alongside
the key performance metrics.

Degrees of freedom. There are several degrees of freedom
we consider in this work.

1. Adjust the frame resolution. By decreasing the frame
resolution, we can decrease the execution time of a deep
learning model, which also lowers the energy cost. However,

Variable Description

p frame resolution (pixels?)
T video bitrate (bits/s)

f frame rate (frames/s)

0) model decision at time ¢

a;(p,r,¢;) | accuracy of model i (%)

bi(p,r, f) battery of model ¢ (J/s if ¢ = 0, J/frame if 7 > 0)
Li(p,r, f) total delay when using model ¢ (s/frame)

(NN (p) processing delay from running model ¢

network bandwidth (kbps)

network latency (s)

target battery usage (J/s)

accuracy target (%)

frame rate target (frames/s)

monetary cost ($/bit, if use cellular network)

target monetary cost ($/bit)

parameter that trades off accuracy for frame rate in
the objective function

QI ® | | B 5 Iy

TABLE I: Table of Notation. ¢ = 0 represents remote execution, and
i =1,..., N represents local execution on the front-end device.

this may also decrease the accuracy of the model. Conversely,
increasing the frame resolution may increase the accuracy, at
the expense of lower frame rate and greater energy drain.

2. Use smaller deep learning models. We may wish to use
a smaller neural network to reduce the run time and the
energy cost, at the cost of reducing the prediction accuracies.
Conversely, using a larger deep learning model increases the
run time and energy, but boosts the accuracy.

3. Offload to backend. By sending the computation job to a
backend server, we can substantially reduce the computational
burden at front-end devices, increasing the frame rate. How-
ever, this may result in extra startup delay from the network
transfer, causing the server’s result to be stale by the time it is
returned to the client, thus decreasing the prediction accuracy.

4. Compress the video. When offloading, one may wish to
compress the video more/less based on the network conditions.
Choosing a low target video bitrate reduces the network
transmission time, but potentially decreases the accuracy.
Conversely, using a high video bitrate may result in higher
accuracy but will also result in longer transmission time,
making the detection results stale and decreasing the accuracy.

5. Sample the video at lower frequencies. We do not need to
process every frame in the video; instead we may sample only
a small fraction of frames for further processing. In this way,
we may reduce the total computation demand of an AR app.

Each of these operations may impact one or more of the
key performance metrics described above. Furthermore, we
may employ multiple operations simultaneously, e.g., we can
reduce the resolution and use smaller models at the same time.
In fact, any subset of these operations defines a legitimate
strategy, although not necessarily optimal.

III. OUR ALGORITHMIC PROBLEM

This section describes the problem, our optimization frame-
work, and the algorithms to solve this optimization problem.
Challenges: (1) As can be seen from the previous section,
the interactions between the degrees of freedom and the key
performance metrics are complex. For example, some decision

variables increase one key metric but decrease another metric
(e.g., higher resolution increases accuracy but decreases frame
rate); or some decision variables may affect the same metric
in multiple ways (e.g., transmitting the video at a higher
bitrate could increase the accuracy, but could also increase
the latency, which decreases accuracy. See Fig. 5). Selecting
the right combination of decision variables that maximizes the
key metrics, while satisfying energy, cost, and performance
constraints is no easy task. (2) Moreover, many of these
tradeoffs cannot be expressed cleanly in analytic form, making
any solution or analysis difficult. For example, analyzing the
relationship between staleness and accuracy is a challenging
task that depends on the video content, the particular deep
learning model being used, the resolution of the video, and the
compression of the video. The lack of analytic understanding
of these tradeoffs is in part due to the complexity of the deep
learning models themselves, whose theoretical properties are
not yet well understood.

Our approach: Our approach is therefore to create a
data-driven optimization framework that takes as input the
empirical measurements of these tradeoffs, computes the op-
timal combination of decision variables that maximizes the
key metrics, and outputs the optimal decision. Our frame-
work must be general enough to handle any values of input
measurement data while still capturing the tradeoffs between
decision variables and metrics. In this section, we will describe
the optimization framework that we designed and its solution;
while Sec. IV, we show the actual input data based on our
measurements with real systems, as well as the experimental
results from our Android application.

In the DeepDecision system, we divide time into windows
of equal size, and solve an optimization problem at the begin-
ning of each interval to decide the deep learning algorithm’s
configurations: the frame rate sampled by the camera (f), the
frame resolution (p), the video bitrate (r), and which model
variant to use (y;). The problem is:

Problem 1: a ’ |
mgﬁ{l;};ze [+« ;al (p, 7, 4i)y: (L
NN+ L+ L ifi=0
)b 7B
N
D i< f 3
i=0
r-yo < B 4
N
Suwru<B G
i=0
croy <C (6)
f>F @)
Vi:a(p,r, f) > Ay (8)
N
Zyi =1)
i=0
vars D, T?f 2 anl € {071} (10)

The objective (1) is to maximize the number of frames
sampled plus the accuracy of each frame (see Key Performance

Metrics in Sec. II). The relative importance of accuracy versus
frame rate is determined by parameter . Constraint (2) says
that the total delay experienced by a frame is equal to the
CNN’s processing time plus the network transmission time (if
applicable). Constraint (3) says that the frame rate cannot be
chosen to exceed the processing time of the CNN (remote or
local). Constraint (4) says that the video cannot be uploaded
at a higher bitrate than the available bandwidth. Constraint
(5) says that the battery usage cannot exceed the maximum
target. Constraint (6) says that the monetary cost cannot
exceed the maximum target. Constraints (7) and (8) allow
the application to define a minimum required frame rate and
accuracy. Constraint (9) says that only one model may be
selected (remote or one of the local models).

If the frame rate, resolution, and video bitrate were known,
then Prob. 1 is a multiple-choice multiple-constraint knapsack
program, where the items are the model variants, an item’s
utility is the model’s accuracy, and an item’s weight is in
terms of latency, bandwidth, battery, and monetary cost. The
multiple-choice comes from the fact that for each frame,
there is a choice to offload, or process locally (choosing a
model size). The multiple-constraint comes from the latency,
bandwidth, battery, and cost constraints. However, the key
difference from the classical problem is that the utility and
costs of the items are also functions of the optimization
variables. Moreover, they are generally non-linear functions,
and must be determined empirically from measurements.

A brute-force solution to Prob. 1 would take O (7max * fmax -
Pmax + IN). The brute-force solution is impractical when we
need to frequently make new decisions and/or carry out a grid-
search in fine granularity. We need to leverage the mathemat-
ical structure of the problem (based on simple intuitions and
confirmed by extensive measurements in Sec. IV) to design a
more efficient algorithm. These intuitions are:

1. Accuracy: For remote models, the accuracy per frame
depends on a number of factors: the video resolution, the video
bitrate/compression, and the end-to-end delay (which is itself a
function of resolution, bitrate, frame rate, and network latency
and bandwidth), i.e. ao(p,7,4o) = ao(p,r, lo(p,r, f, B, L)).
For local models, the accuracy model can be simplified be-
cause it depends only on the resolution and delay, since we
do not need to compress the video for transmission over the
network, i.e., a;(p,r,¢;) = a;(p,£;),i > 0.

2. Battery: When transmitting to the server, the energy
per time depends only on how much data is transmitted over
the network, i.e., bo(p,r, f) = bo(r, B). For local models,
the battery usage per time depends on the resolution and the
number of frames processed, i.e., b;(p,r, f) = f-bi(p),i > 0.

3. Latency: The latency per frame when running the CNN
locally depends only on the resolution, since a larger resolution
requires more convolutions to be performed, i.e., ¢;(p,r, f) =
(NN(p), i > 0. When offloading to the server, however, the
total latency is a function of the CNN processing time plus
the network transmission time, i.e., £o(p, 7, f) = £§NN(p) +
75+ L

We are now ready to describe our Alg. 1 that exactly solves

Algorithm 1 DeepDecision algorithm

Input: Target cost C, target battery 3, cost per bit ¢, network
bandwidth B, network latency L, model battery usage function
b;, model latency function ¢;, model accuracy function a;
Qutput: Frame resolution p*, video bitrate r*, frame rate f*,
decision of model variant y*

L f e fOC% > remote model
2P ATGMAX, i 05 (81), ©) (a0 (P NN +
i
7B + L))

:if ap(p,r, f) > A and f > F then
Umax f*ao(pa T, f)
r <;T‘af* <¥f7p* Hpvy*(iei
> try the local models

3
4
5
6: for i < 1 to N do
7 T 4= T'max > don’t need to compress locally
8 p 4 arg maxp(min(ﬁ7 Ti)) + ai(p, li(p))

9 f+ min(a%), Wi))

100w f+aip li(p))

11: if u > umax and a;(p) > A and f > F then
12: Umax < U

13: e [fpt —p iyt e

*

14: return p*, r* f*.y

Prob. 1 and improves on the brute-force search efficiency. With

some abuse of notation, we define the inverse of a function
g:R? 5 R as g7(y|z) = argmax, (g(z, 2) : g(x,2) < y).

e Line 1-5, 7 = 0 (remote model): The constraints are:

bo = L§"N + 55, 65NN < §.bo(r, B) < Bye-r < C,

and r < B. Since the objective increases with frame rate

(the f term grows and fLB shrinks, resulting in higher
accuracy), we can pick the maximum frame rate that
satisfies the constraints. We next search across resolution
p and bitrate r to find the best combination. Lastly,
we check if the frame rate and accuracy constraints are
satisfied.

e Line 6-13, ¢ > 0 (local models): The constraints are:
Li(p) < % and f-b;(p) < B. Since the processing is local,
the video bitrate is set to the maximum. The tradeoff
is between the resolution p and frame rate f (setting a
higher resolution improves accuracy, but the CNN takes
longer, decreasing the frame rate). For each value of p,
since b;(p) and l;(p) are non-decreasing, we can find the
maximum f that still satisfies the constraints, then pick
the best p overall. Finally, we check if the frame rate and
accuracy constraints are satisfied.’

The battery, latency, and accuracy functions b;” L £ ! a; can
easily be pre-stored (by using hash tables) so that their lookups
take constant time. We use linear interpolation on these func-
tions if the measurement density is insufficient. The running
time of our algorithm takes O(paz(Tmaz + N)), which is a
significant improvement over the brute-force solution.

'We remark that when the frame rate does not satisfy (7), we could not
have picked a different frame rate resulting in a feasible solution. This is
because the algorithm picks the maximum possible f for each value of p. A
similar argument also holds for accuracy constraint A.

We next make a number of remarks. 1. Utility function.
The utility function in (1) is the sum of frame rate and
accuracy. One may also consider other utility functions, e.g.,
multiplicative f - Z?LO a;(p,r,¢;)y;, where the intuition is
that utility depends on collecting more frames each with
high accuracy. Alg. 1 is still applicable when the utility
function changes (so long as it is monotone in both frame rate
and accuracy). We have experimented with the multiplicative
objective function and found that it tends to emphasize frame
rate at the expense of accuracy, and choose solutions with low
accuracy but high frame rate. Therefore, we use the additive
objective function (1) in the remainder of this work.

2. Budgets in each time interval. In the current formu-
lation, the user inputs her battery and monetary constraints
as an average usage over time (e.g., $/s,J/s). Alternatively,
the user may wish to specify total battery and monetary
budgets in each time period (e.g., $, J), and have the algorithm
use dynamic programming to make online decisions. But the
multi-stage optimization approach is unlikely to be effective in
our setting, as such an optimization often requires knowledge
of the distribution of the users’ future actions. Predicting users’
future actions is remarkably difficult, and is an area we intend
to explore in the future based on prior literature in similar
domains [12].

3. Time dynamics. Alg. 1 runs periodically, and re-
computes a new solution based on current network conditions.
For example, if a local model is currently being used, and the
network bandwidth improves, DeepDecision may decide to
change to offloading. However, if the network bandwidth will
only increase temporarily, it may be suboptimal to switch due
to cost overhead (e.g., loading a new deep learning model or
establishing a new network connection takes time). To reduce
frequent oscillations, we analyze the conditions under which
a switch should occur, and add this as an outer loop to Alg. 1.
We assume there is a throughput predictor that can estimate the
future bandwidth and latency over a short period of time [13].
Let T" be the length of time of the network conditions change,
fi,aj be the optimal solution of Prob. 1 assuming the model
decision is fixed to be local, and f},a},r" be the optimal
solution of Prob. 1 assuming the model decision is fixed to
be remote. Due to space constraints, the proof can be found
in the technical report [14], and here we present the results
directly. DeepDecision should switch from local to remote iff:

fr =1 <alaf —a) (1D

And switch from local to remote iff:
* _ * * _ l r: f’: _ *
ai—a <z (1- 7 (B +1)) - 5

Note that the conditions are asymmetric because switching
from local to remote incurs additional delay while waiting for
the first result to arrive from the server, thus decreasing the
average frame rate in the objective function (1). Intuitively,
the factors that encourage switching from local to remote are:
long period of time 7" of improved bandwidth, high bandwidth
B, and low network latency L.

12)

IV. MEASUREMENTS & EXPERIMENTS

This section describes our experiments, which serve two
purposes. First, we want to understand the interactions be-
tween various factors (e.g., processing time, video quality,
energy consumption, network condition, the accuracies of
different deep learning models) on both the local device and
the server. While prior works have carried out limited profiling
of running deep learning on servers [15] or on phones [8],
to the best of our knowledge, we are the first to explicitly
consider the input stream as a video rather than a sequence
of images, as well as the impact of network conditions on
the offloading strategy, and the tradeoffs of compressible deep
learning models. Second, we seek to understand our algo-
rithm’s behavior compared to existing algorithms and assess
its ability to make decisions on where to perform computation.
These baseline comparison algorithms include:

1. Remote-only solution: All frames are offloaded to the back-
end. Many industrial solutions (e.g., Alexa, Cortana, Google
Assistant, Siri, efc.) adopt this solution.

2. Local-only solution: All jobs are executed locally. Some
specific applications, such as Google Translate, run a com-
pressed deep learning model locally.

3. Strawman: We implement a “slim” version of MCDNN [8]
optimized for the scenario in which the device serves one
application. Our strawman picks the model variant with the
highest accuracy (defined below) that satisfies the remaining
monetary or energy budget. We note that MCDNN does not
consider the effects of network bandwidth/latency, how often
the neural net should execute, or the impact of delay on
accuracy.

A. Testbed Setup

Our backend server is equipped with a quad-core Intel pro-
cessor running 2.7 GHz with 8 GB of RAM and an NVIDIA
GeForce GTX970 graphics card with 4GB of RAM. Our front-
end device is a Samsung Galaxy S7 smartphone.> We develop
an Android version of Yolo based on Android Tensorflow [16]
and the Darknet deep learning framework [9]. The Android
implementation can run a small deep learning model (called
tiny-yolo) with 9 convolutional layers, and a bigger deep
learning model (called big-yolo) with 22 convolutional layers.
Both models can detect 20 object classes and are trained on
the VOC image dataset [17]. The server runs big-yolo only.

When offloading is chosen by Alg. 1, the front-end device
compresses the video frame and chooses the correct frame
rate and resolution, then sends the video stream to the server.
The stream is sent using RTP running on top of UDP [18§].
Videos are compressed using the H.264 codec at one of three
target bitrates (100kbps, 500kbps, and 1000kbps). The video
frame rate can be set between 2 and 30 frames per second
(FPS), and the video resolution can be set to 176 x 144, 320 x
240, or 352 x 288 pixels. Our app also logs the battery usage

2We also tested on other smartphones such as the Google Pixel and OnePlus
3T and found similar qualitative behaviors. Our system can work on any front-
end device by first running performance characterization offline.

5000 30
@ ~tiny-yolo ' ~=tiny-yolo o
%4000 I-big-yolo - 3 320 = big-yolo
£3000 o o2 .
o o 3§ e s
e D
&
0

0
100 200 300 400 500
resolution (pixel*pixel)

100 200 300 400 500
resolution(pixel*pixel)

(a) process time vs. resolution (b) energy vs. resolution

Fig. 2: Tradeoffs on the front-end device. (2a): Processing time
increases with resolution, especially for big-yolo. (2b): Energy usage
increases with resolution, especially for big-yolo.

reported by the Android OS, the data usage, and the time
elapsed between sending the frame and receiving the detection
result from the server. We feed a standard video dataset [19]
to the smartphone to ensure a consistent testing environment
for the different algorithms.

Accuracy metric. We measure accuracy using the Intersec-
tion over Union (IOU) metric, similar to [5]:

area(RN P)
area(R U P)

where R and P are the bounding boxes of the ground truth and
the model under evaluation, respectively. The average of the
object IoUs in the frame gives the frame’s IoU. The average of
the frame IoUs gives the video’s IoU. Our ground-truth model
is big-yolo executed on raw videos (without any compression)
at the 352 x 288 resolution (we select this particular resolution
out of convenience since pre-trained models are available).

IoU = (13)

B. Measuring tradeoffs without network effects

We first study when the phone runs the deep learning locally,
without offloading, to understand baseline performance.

Impact of video resolution: We vary the image resolution
from 160 x 160 to 480 x 480 pixels. Recall that Yolo can
dynamically adjust its internal structure for different resolu-
tions, so its running time is sensitive to the video resolution.
In Fig. 2a, we plot the tradeoff between frame resolution and
processing time. When the CNN runs on the phone, big-yolo’s
processing time is between 600ms and 4500ms, whereas tiny-
yolo’s processing time is between 200ms and 1100ms. Since
the processing time increases, we also expect the battery usage
to increase. In Fig. 2b, we show the tradeoff between frame
resolution and energy consumption per frame. We note that
both processing time and energy consumption scale linearly
with the width/height of a video. These two functions are used
as input to Alg. 1 (specifically, £SNN(p) and b;(p), for i > 0).
We also measure the energy of offloading, and find its mean
value to be 2900 mW, independent of bitrate and frame rate.

Parameterizing accuracy. We next study the correlation
between the accuracies of deep learning models under different
image qualities. We use two parameters to determine the
clarity of a video/image sequence. I. Resolution: This is
intuitive, because higher resolution often corresponds to better
image quality; and 2. Bitrate: Resolution by itself does not

1 - I@100kbps 1
250kbps [l 100kbps
0.8 [1500kbps 0.8 IM250kbps
- 1000kbps -, | [F500kbps
8 8 0.6 |[11000kbps
e o
= 3
Q Q
5] o
© ©

0.6
0.4
0.2

0

176*144 320*240 352*288
resolution

i il il

176*144 320*240 352*288
resolution

(a) Accuracy of big-yolo. (b) Accuracy of tiny-yolo.

Fig. 3: Model accuracy for different video qualities. Accuracy in-
creases with resolution and bitrate.

IS
=)
3

20—
[Mimage
15 ||_lvideo

10

5 I
NI |

100 500 1000
Bitrate (kbps)

Winetwork latency
server processing

"'.]
2 5 6
)

4
(a) Startup latency vs. bandwidth

noow
S &
s 3

=
8
Frame rate (frames/s)

Startup Laterncy(ms)

5}

3
Bandwidth (Mbit/s
(b) Video vs. image offloadings

Fig. 4: Tradeoffs on the cloud. (4a): Network latency dominates
compute latency. (4b): Compressing the offloaded video enables
higher frame rates than image offloading.

determine the image quality, as the number of bits used to
encode that resolution also matters. A low bitrate will cause
the video encoder to aggressively compress the frames and
create distortion artifacts, decreasing the video quality and the
prediction accuracy.

We seek to understand how the video resolution and bitrate
interact with the model accuracy. To do this, we encode the
videos in different combinations of resolutions and target
bitrates, measure their accuracy, and show the results in Fig. 3.
Which factor is more important for accuracy, the resolution
or the bitrate? We observe that increasing the resolution
without increasing the bitrate has a limited impact on the
prediction quality; for example, in Fig. 3a the 100kbps bar
stays (almost) flat for different resolutions. However, if the
bitrate increases along with resolution, there can be substantial
accuracy improvement, as shown in Fig. 3a for the high-
resolution case.

The non-linear interactions between bitrate, resolution, and
accuracy suggest the need for a sophisticated offloading deci-
sion module that will carefully consider the complex tradeoffs
between the various resources. In Alg. 1, these tradeoffs are
captured by the function ag(p, r, {o).

C. Measuring tradeoffs with network effects

Next, we study the impact of the (communication) network
conditions on system performance. The Samsung Galaxy S7
phone is located in the same subnet as the server, and for the
sake of these measurements, always chooses to offload. We
use the tc traffic control tool to emulate different network
conditions and use data usage to estimate LTE monetary cost.

End-to-end latency. The end-to-end latency [; experienced
by the viewer is the sum of the processing latency /SN plus
the network transmission time. We measure the end-to-end
latency of each frame as well as the frame rate, when varying

0.8~

(11—

300 400
latency(ms)

accuracy
I o
EN o

o
)

Fig. 5: Accuracy as a function of total latency (model processing
time + network transmission time). Accuracy decreases as the latency
increases, due to stale frames, especially for high-motion videos.

the bandwidth and latency between the client and the server.
The latency with unconstrained bandwidth between the client
and the server is about 30 ms. We repeat each trial 30 times
with a frame resolution of 352 x 288 pixels, and plot the results
in Fig. 4a. We observe that the network transmission time
consumes the majority of the total latency, while the server’s
big-yolo CNN generally executes in less than 30 ms. This
indicates that network transmission is the key driver of latency
and frame rate, rather than the CNN processing time, and that
any offloading strategy should be highly aware of the current
network conditions when making a decision.

Impact of latency on accuracy. Network latencies can cause
delayed delivery of the output, decreasing the accuracy. For
instance, suppose at time ¢ = 0, a frame is sent to the
back-end server, processed, and the result returned to the
front-end device at ¢ = 200 ms. At that time, if the scene
captured by the camera has changed (for example due to user
mobility), the detected object location, and thus the overlay
drawn on the display, may be inaccurate. Hence, any system
that performs offloading of real-time scenes must take this
delay into account when measuring the accuracy; however,
previous works generally compute the accuracy relative to
the original time of frame capture [8], [7]. To understand
the impact of latency on accuracy, for each video at fixed
(resolution, bitrate), we measure how the accuracy changes
as a function of latency (i.e., how changing the round-trip
time will affect prediction accuracy). A sample result for 1000
kbps, 30 FPS videos at 352 x 288 resolution is shown in Fig. 5,
where the height of the bar is the mean accuracy across videos
and the error bar is the standard deviation. We observe that
accuracy decays slowly for these particular videos, which have
relatively little motion. One qualitative observation we make
is that videos with more active subjects (e.g., foreman [19])
tend to have much shorter half-life than videos with “talking
heads” (e.g., akiyo [19]). The relationship between accuracy
and latency is modeled as ag(p,, {o), where £ is the latency.

Video compression. Finally, DeepDecision also leverages
the benefits of video compression. In contrast to previous
works which mainly consider videos as a sequence of images,
our system encodes the video as a group-of-pictures with I
and P frames, significantly reducing the network bandwidth.
To show this, we measure the frame rate of the offloaded scene
when the scene is encoded as an image versus as a video.
(Specifically, to compute the image frame rate, we divide the

Hremote
+local

©'60
350 4
a0t + 1000
40 ey + 4
30 500 &
1000 500 ' S
A
Net Latency (ms) 0 0&\?’ W

(a) Accuracy

Hremote
+local

ps)

b
o
<]
S

£

+
+ +

53
o
)

1000
o
500 (&

N o
0 0
Cx

Video Bitrate (kl
5]
So

500
Net Latency (ms)

(b) Video bitrate

Fig. 6: Better network conditions result in higher accuracy. To achieve
good accuracy when the network latency is large, the bitrate must be
carefully chosen to reduce the total transmission time.

network bandwidth by the size of each frame when saved as
an independent image.) We plot the results for different target
bitrates in Fig. 4b, and observe that encoding the scene as a
video can help us send 10x more frames to the backend when
the network conditions are poor and the target bitrate is low
(100 kbps), and 2x more frames when the network conditions
are good and the target bitrate is higher (1000 kbps).

D. Performance evaluation

We now study the behavior of the DeepDecision, and
compare its performance against baselines.

Different network conditions. First, we examine how our
algorithm’s decision changes for different network conditions
(latency and bandwidth). See Fig. 6. As the interactions
between video quality (free variables), network conditions
(constraints), and accuracy (objective) are complex, the de-
cision boundaries formed by our algorithm are non-smooth
and sometimes even discontinuous. In Fig. 6a, we plot how
the accuracy of the machine learning model chosen by our
algorithm changes with network latency and bandwidth. The
red dots are scenarios where DeepDecision chooses to execute
a model locally, and the plane represents choosing the offload.
One can see that when there is no network connectivity,
DeepDecision is forced to choose local models. Another sce-
nario where DeepDecision chooses local models is when the
bandwidth is non-zero but the latency is very large (1000 ms),
because there is too much transmission delay to the server,
resulting in stale frames and decreased remote accuracy. Note
that sometimes DeepDecision prefers remote models even
their accuracies are lower than local models (when latency
is slightly less than 1000 ms, and bandwidth is small but
non-zero). This is because backend models are faster so we
can process more frames, which will increase the objective
function (1). In general, when the bandwidth increases and/or
the network latencies decreases, the performance of DeepDe-
cision improves.

Fig. 6b shows how DeepDecision chooses the video bitrate
when the network conditions change. We note that while the
accuracies shown in Fig. 6a are deceptively smooth when
we decide to offload, the bitrates chosen by DeepDecision to
achieve these accuracies are highly non-smooth (as a func-
tion of network conditions) and sometimes discontinuous.
In particular, the intuition is that when network latency is

vvvvv

&
0.4 -
© big-yolo
803 9-y
©

EE T
. .

2 L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

00
00000000

©
00
0000 0000000

++0000 0000000000000

0 I I . I I I I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0000
000000000
000000000000000
00000000000

300F 44

resolution

++++

100
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
energy target(mW)

Fig. 7: Impact of energy budget on accuracy and frame rate metrics.
With additional energy budget, DeepDecision must choose which
metric to increase.

high (> 400 ms), rather than transmitting the video at the
maximum possible bitrate, DeepDecision instead (counter-
intuitively) offloads at a slightly lower video bitrate in order to
save network transmission time and prevent stale frames from
decreasing the accuracy of the remote model (Fig. 5).

Energy target. The battery (i.e., energy target) plays an
important role when network conditions are poor (namely,
very long latency or very low bandwidth). See Fig. 7 for
how DeepDecisionmakes decisions under such a harsh circum-
stance. This figure illustrates three major decision variables
as determined by our algorithm: accuracy, frames per second
(fps), and resolution. The red dots mean that the DeepDeci-
sion decides to run tiny-yolo locally. The blue dots mean that
DeepDecision decides to execute big-yolo locally.

The main observation is that the energy budget needs to
exceed a certain threshold in order to start using big-yolo.
When the phone has an extremely small battery target, it is
only able to execute tiny-yolo, which uses less energy (see
Fig. 2b). If the battery target increases, the question is whether
DeepDecision should use that extra energy to (a) increase the
frame rate of the current model, (b) increase the accuracy of
the current model by increasing the resolution, or (c) bump
up the accuracy overall by upgrading to a more powerful
model? Our results in Fig. 7 show that initially, DeepDeci-
sion will try to increase the frame rate while keeping accuracy
unchanged. Then, with more battery, DeepDecision tries to
increase resolution to allow the current tiny-yolo model to
have higher accuracy. Finally, when the battery target is large,
DeepDecision chooses the more powerful big-yolo model.

Comparison against baselines. In this set of experiments, we
evaluate the real-time performance of DeepDecision. In our
testbed, we vary the network bandwidth from 0-1000 kbps,
allow the network latency to fluctuate naturally, and plot the
accuracy over time in Fig. 8. We also plot the performance
of the baseline algorithms (strawman, local-only, and remote-

1000

—estimated bandwidth by client
—ground truth

500

network
bandwidth(kbps)

0 10 20 30 40 50 60 70 80 90 100

— DeepDecision
0.6 —local only

remote only
----- strawman

accuracy
1
~

o
)

o
o

10 20 30 40 50 60 70 80 90 100
time(s)

Fig. 8: Performance of DeepDecision compared to baseline ap-
proaches. DeepDecision is able to provide higher accuracies under
variable network conditions.

only).> DeepDecision estimates the network bandwidth and
latency by sending small 50 kB probe packets every second.
It uses 3727mW and 60.6% CPU usage when executing
remotely, and 2060mW with 38.8% when executing remotely.

Initially, DeepDecision chooses a local model, but as the
network bandwidth increases over time, it switches to offload-
ing at around ¢ = 20, which boosts accuracy. Past ¢ = 20,
DeepDecision selects the right combination of bitrate and
resolution to further maximize the accuracy. The local-only
approach, on the other hand, always has a low accuracy since
it uses tiny-yolo. The remote-only approach is not able to run
initially when the network bandwidth is low. The strawman
approach is slightly more intelligent; it starts offloading around
t = 60 when the network bandwidth is high enough to support
the video bitrate, but suffers from reduced accuracy before
that. Moreover, since the strawman uses a fixed resolution,
it does not know how to select the right combination of
resolution and bitrate after it begins offloading and achieves
worse accuracy than DeepDecision. Overall, the accuracy of
the model chosen by DeepDecision is always higher than that
of the baseline approaches. The frame rate is also high (about
15 FPS, capped by the server processing latency, which is
not shown). We see that DeepDecision is able to leverage the
changing of network conditions and always provide the best
accuracy model to the user, by adapting the video bitrate and
resolution accordingly, whereas the baseline approaches are
less responsive to changing network conditions.

V. RELATED WORK

Deep learning: Recently, applying CNNs to object classifi-
cation has shown excellent performance [20], [10]. [9] also
used CNNs to perform object detection with an emphasis on
real-time performance. [15] compares the speed and accuracy
tradeoffs of various CNN models. However, none of these
works have considered the performance of CNNs on mobile
phones. Several works have studied model compression of

3Specifically, local-only runs tiny-yolo with resolution 160x 160, and
remote-only runs on the server with a video bitrate of 500 kbps. The strawman
is based on [8] and uses a fixed resolution of 320x240 and a video bitrate
of 500 kbps, and picks the model (local or remote) with the best accuracy.

CNNs running on mobile phones. [7] uses the GPU to speed up
latency, while [21] considers hardware-based approaches for
deciding important frames. Our approach is complementary
to these in that we can leverage these speedups to local
processing, while also considering the option to offload to the
edge/cloud.

Mobile offloading: [22] developed a general framework
for deciding when to offload, while [23], [24] specifically
study interactive visual applications. These frameworks can-
not directly be applied to our scenario because they do
not take into account that machine learning models may be
compressed when executed locally as opposed to remotely.
[5], [25], [26] explore remote-only video analytics on the
edge/cloud, whereas we focus on client-side decisions of
where to compute. Specifically, [5] considered modifying the
data (sending a subset of frames) to reduce latency, while
we also consider modifying the machine learning model to
reduce latency. [25] offloads processing from Google Glass to
nearby cloudlets. [26] performs resource profiling similar to
our work, but focuses on server-side scheduling whereas we
focus on client-side decisions. [27] provides some initial on-
device profiling. The closest to our work is perhaps [8], which
decides whether to offload CNNs to the cloud; however, they
do not consider the current network conditions or profiling of
video compression, energy consumption, or machine learning
accuracy, which can greatly impact the offloading decision.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we developed a measurement-driven frame-
work, DeepDecision, that chooses where and which deep
learning model to run based on application requirements such
as accuracy, frame rate, energy, and network data usage.
We found that there are various tradeoffs between bitrate,
accuracy, battery usage, and data usage, depending on system
variables such as model size, offloading decision, video reso-
lution, and network conditions. Our results suggest that Deep-
Decision can make smart decisions under variable network
conditions, in contrast to previous approaches which neglect
to tune the video bitrates and resolution and do not consider
the impact of latency on accuracy. Future work includes
using object tracking to reduce the frequency of running deep
learning, generalizing the algorithm for a larger set of edge
devices, and customizing the algorithm for different categories
of input videos. The hope is that architectures such as Deep-
Decision will enable exciting real-time AR applications in the
near future.

VII. ACKNOWLEDGEMENTS

Xukan Ran, Haoliang Chen, and Jiasi Chen were in part
supported by the Hellman Foundation. The authors thank
Amazon for partly providing AWS Cloud Credits for this
research.

REFERENCES

[1] Thomas Olsson et al. Expected user experience of mobile augmented
reality services: A user study in the context of shopping centres.
Personal Ubiquitous Comput., 17(2):287-304, February 2013.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Michael Irving. Horus wearable helps
remember faces and read books.
horus-wearable-blind-assistant/46173/, 2016.
Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
Deepface: Closing the gap to human-level performance in face veri-
fication. In /IEEE CVPR, 2014.

Wenxiao Zhang, Bo Han, and Pan Hui. On the networking challenges
of mobile augmented reality. ACM SIGCOMM Workshop on VR/AR
Network, 2017.

Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl,
and Hari Balakrishnan. Glimpse: Continuous, real-time object recogni-
tion on mobile devices. ACM SenSys, 2015.

Loc Nguyen Huynh, Rajesh Krishna Balan, and Youngki Lee.
Deepsense: A gpu-based deep convolutional neural network framework
on commodity mobile devices. In ACM WearSys, 2016.

Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon:
Mobile gpu-based deep learning framework for continuous vision appli-
cations. ACM MobiSys, 2017.

Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal,
Alec Wolman, and Arvind Krishnamurthy. Mcdnn: An approximation-
based execution framework for deep stream processing under resource
constraints. In ACM Mobisys, 2016.

Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger.
IEEE CVPR, 2017.

Shaoqging Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. NIPS,
2015.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In ECCV, 2016.

Diala Naboulsi, Marco Fiore, Stephane Ribot, and Razvan Stanica.
Large-scale mobile traffic analysis: a survey. [EEE Communications
Surveys & Tutorials, 18(1):124-161, 2016.

Xiaoqgi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A
control-theoretic approach for dynamic adaptive video streaming over
http. ACM SIGCOMM, 2015.

Xukan Ran, Haoliang Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi
Chen. Deepdecision: A mobile deep learning framework for edge
video analytics (technical report). http://www.cs.ucr.edu/~jiasi/pub/
deepdecision_infocom17_techreport.pdf.

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop
Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song,
Sergio Guadarrama, and Kevin Murphy. Speed/accuracy trade-offs for
modern convolutional object detectors. IEEE CVPR, 2017.

Tensorflow android camera demo. https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/examples/android, 2017.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303-338, 2010.
libstreaming. https://github.com/fyhertz/libstreaming, 2017.

xiph.org video test media. https://media.xiph.org/video/derf/, 2017.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. NIPS, 2012.
Saman Naderiparizi, Pengyu Zhang, Matthai Philipose, Bodhi Priyantha,
Jie Liu, and Deepak Ganesan. Glimpse: A programmable early-discard
camera architecture for continuous mobile vision. ACM MobiSys, 2017.
Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making
smartphones last longer with code offload. ACM MobiSys, 2010.
Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai,
David Wetherall, and Ramesh Govindan. Odessa: Enabling interactive
perception applications on mobile devices. In ACM MobiSys, 2011.
Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi,
and Qun Li. Lavea: Latency-aware video analytics on edge computing
platform. In ACM/IEEE Symposium on Edge Computing, 2017.
Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan
Pillai, and Mahadev Satyanarayanan. Towards wearable cognitive
assistance. ACM MobiSys, 2014.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J. Freedman. Live video analytics at
scale with approximation and delay-tolerance. In USENIX NSDI, 2017.
Xukan Ran, Haoliang Chen, Zhenming Liu, and Jiasi Chen. Delivering
deep learning to mobile devices via offloading. ACM Sigcomm Workshop
on VR/AR Network ’17, 2017.

the blind navigate,
http://newatlas.com/

