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Deep	learning	on	mobile	devices

• Augmented	reality (AR)	is	the	next	“killer	app”	

• Fast	object	recognition	is	key	for	general	AR	applications

• Deep	learning	is	a	popular	technique	for	object	recognition
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Pokemon Go
Snapchat	filters	(face	detection)Google	Translate	(text	processing)



Problem

• Current	approaches	for	deep	learning	on	mobile	devices
1. Local-only	processing

• Apple	Photos,	Google	Translate
• GPU	speedup	[1]

2. Remote-only	processing
• Apple	Siri,	Amazon	Alexa

• Goal:	Develop	a	framework	to	intelligently	offload	to	nearby	edge	devices	
for	real-time	video	analysis	using	deep	learning.

• Cannot	use	general	offloading	techniques.	Need	to	specifically	account	for:
• Characteristics	of	the	video
• Characteristics	of	the	deep	learning	models
• Application	requirements
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Slow!	(~600	ms/frame)

Doesn’t	work	when	network	is	bad

[1]	L.	Huynh,	Y.	Lee,	R.	Balan,	“DeepMon:	Mobile	GPU-based	Deep	Learning	Framework	for	Continuous	Vision	Applications”,	ACM	MobiSys,	2016.



Design	space

Degrees	of	freedom
• Video	characteristics

• Frame	rate
• Resolution
• Bit	rate

• Deep	learning	characteristics
• Model	size
• Model	latency	/	energy
• Model	accuracy

Constraints
• App	requirements

• Latency
• Accuracy

Metrics
• Accuracy
• Frame	rate
• Energy
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Complex	interactions	between	these	degrees	of	freedom	and	metrics
• e.g.,	high	bit	rate	when	offloading	à high	accuracy,	high	energy
• e.g.,	small	deep	learning	model	à high	frame	rate,	low	accuracy

How	to	decide?



Optimize	decision

Constraints:
• Current	network	conditions
• Application	requirements

offloading	decision

neural	net	model	size

video	resolution

Decision	framework

detection	accuracy

frame	rate

energy	consumption

Metrics:Degrees	of	freedom:

Relation	between	the	degrees	of	freedom	on	the	metrics	
cannot	be	analytically	understood	à need	measurements!



System	design
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Experimental	setup

7

• Deep	learning	model:	YOLO	built	on	Tensorflow [2]
• tiny-yolo:	9	convolutional	layers
• big-yolo:	22	convolutional	layers

• Local	processing:	OnePlus	3T	Android	phone	with	quad-core	CPU,	6	GB	RAM
• Remote	processing:	Server	with	quad-core	CPU,	8	GB	RAM,	NVIDIA	GeForce	
GTX970	graphics	card	with	4GB	of	RAM

[2]	Joseph	Redmon,	Ali	Farhadi,	“YOLO9000:	Better,	Faster,	Stronger”,	CVPR,	2017.

Video	frame

Bounding	box

Developed	app	to	implement	offloading:
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Local-only	processingRemote-only	processing



How	do	latency	and	energy	change	with	
resolution?
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Energy	and	latency	increase	with	pixels2

• Encode	a	video	frame	at	different	resolutions
• Measure	the	processing	time	and	energy	usage	in	Android	on	the	smartphone



How	does	accuracy	change	with	bit	rate	and	
resolution?
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• Encode	20	videos	at	different	bit	rate	and	resolutions
• Measure	the	accuracy	(IoU)	relative	to	the	big-yolo	+	raw	video

Accuracy	increases	with	larger	model,	higher	resolution,	higher	bit	rate

big-yolo tiny-yolo



How	fast	is	deep	learning,	end-to-end?
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• Measure	#	processed	frames	per	second,	under	controlled	network	conditions
• Caveat:	stop-and-wait	for	each	processed	frame

• Increased	bandwidth	à higher	frame	rate
• When	bandwidth	>	5Mbps,	should	offload
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• Increased	latency	à lower	frame	rate
• When	latency	<	100ms,	should	offload



How	much	time	is	spent	for	communication?

• Record	timestamps	as	frame	travels	from	phone	to	server	and	back
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When	offloading,	majority	of	time	
is	spent	on	network



How	much	battery	is	used	from	offloading	
deep	learning?
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Higher	bandwidth	àmore	battery
Prefer	to	run	locally	to	save	battery

• Measure	the	battery	drop	after	30	seconds	of	continuous	usage



How	well	does	offloading	do	in	the	wild?
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• Perform	5	trials	in	public	locations	over	LTE	and	WiFi
• Coffee	shop	1:	Different	city	from	server
• Coffee	shop	2:	Same	city,	same	subnet	as	server

• Apartment	1:	Different	city	than	server
• Apartment	2:	Same	city	as	server

14Performance	over	LTE	sometimes	>	WiFi Higher	frame	rates	over	LTE	at	the	
expense	of	data	cost



Key	Take-Aways
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Real-time	video	analysis	using	deep	learning		
is	slow	(~600	ms/frame	on	smartphones)

Offloading	can	be	beneficial	(up	to	2x	frame	
rate),	but	optimal	decision	is	unclear

In	the	wild,	LTE	sometimes	>	public	WiFi


