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ABSTRACT
Deep learning has the potential to make Augmented Reality (AR)
devices smarter, but few AR apps use such technology today be-
cause it is compute-intensive, and front-end devices cannot deliver
sufficient compute power. We propose a distributed framework
that ties together front-end devices with more powerful back-end
“helpers” that allow deep learning to be executed locally or to be
offloaded. This framework should be able to intelligently use cur-
rent estimates of network conditions and back-end server loads, in
conjunction with the application’s requirements, to determine an
optimal strategy.

This work reports our preliminary investigation in implement-
ing such a framework, in which the front-end is assumed to be
smartphones. Our specific contributions include: (1) development
of an Android application that performs real-time object detection,
either locally on the smartphone or remotely on a server; and (2)
characterization of the tradeoffs between object detection accuracy,
latency, and battery drain, based on the system parameters of video
resolution, deep learning model size, and offloading decision.
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1 INTRODUCTION
Deep learning holds the promise to make Augmented Reality (AR)
devices smarter. For example, real-time object recognition tools
can improve a user’s shopping experience in large malls [23, 31],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VR/AR Network ’17, August 25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5055-6/17/08. . . $15.00
https://doi.org/10.1145/3097895.3097903

facilitate rendering of animations in AR apps (e.g., detect a table,
and overlay a game of Minecraft on top of it), and assist visually
impaired people in navigation [15]. Deep learning-based face recog-
nition tools can also be used in authentication systems [30]. Increas-
ing sophistication of deep learning models, such as the one used to
play Go [29], have the potential to provide powerful intelligence in
the near future.

However, few AR apps use deep learning today because there
is not enough infrastructure support. Deep learning algorithms
are computationally intensive, and the front-end devices are often
ill-equipped to execute them with acceptable latencies for the end
user. For example, Tensorflow’s Inception deep learning model
can process less than one video frame per second on a typical
Android phone; that is, the video streams cannot be analyzed in
real time [2]. Even with speedup from the mobile GPU [13], typical
processing times are approximately 600 ms, which is equivalent to
less than 1.7 frames per second and is still not acceptable for real-
time processing. In industry, although there are a few applications
that run deep learning locally on the phone, e.g.,Apple PhotoAlbum,
these are lightweight models that do not run in real-time. The
solution widely used to run deep learning at the front-end is to
transfer all the input data to more powerful back-ends and execute
deep learning algorithms there. Existing voice-based intelligent
personal assistants (e.g., Alexa, Cortana, Google Assistant, and
Siri) use this approach. Such cloud-based solutions are applicable
when network access is reliable, and is further encouraged by the
development of powerful server hardware for machine learning
(e.g., Google Cloud Tensor Processing Unit).

Our observation. AR apps relying on deep learning have different
accuracy/latency requirements. For example, an app helping visu-
ally impaired people navigate on a street may need low latencies
but may tolerate a high number of false positives, i.e., false alarms
are fine but missing any potential threats on the street is costly. ARs
used in shopping malls for recommending products may tolerate
longer latencies (fine to let users to wait a second or two) but have
a higher accuracy requirement. Finally, in an authentication system
that uses deep learning, users can wait even longer but they expect
ultra-high accuracy.

Thus, there is a need to develop a flexible architecture that can
make intelligent tradeoffs between accuracy, latency, and other in-
frastructural resources. We propose a distributed infrastructure that
ties together computationally weak front-end devices with more
powerful back-end “helpers”, to allow deep learning the choice
of local or remote execution. The back-end helpers could be any
devices that provide more computational power such as a cloud
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Figure 1: System overview. The smartphone chooses where
to process the input video for real-time display.

server, the user’s home router, or even the user’s laptop carried in
her backpack. For example, wearable devices such as smartwatches
or head-mounted displays with camera capabilities and video pro-
cessing requirements [8] could offload to a nearby device such as
the user’s smartphone.

Unlike the architecture for Alexa/Cortana/Google Assistant/Siri
that always offloads machine learning tasks to the back-end, our
final goal is to develop a framework that intelligently uses cur-
rent estimates of network conditions and back-end server loads,
in conjunction with the application’s requirements, to determine
an optimal offload strategy. For example, a Minecraft game relying
on deep learning to render games could reduce the resolution of
the video feed uploaded to the back-end server when the Internet
performance is not good, and if the connection further degrades,
would choose not to offload and switch to a smaller, although less
accurate, neural net model to run locally.
Our contribution. This work reports our preliminary investiga-
tion in implementing the aforementioned architecture, in which
the front-end is assumed to be smartphones. We focus on an execut-
ing a convolutional neural network (CNN) optimized for detecting
objects in real-time for augmented reality applications. We spe-
cially aim to understand how the changes of key resources (e.g.,
network bandwidth, neural network model size, image resolutions,
battery level) in the system impact the offloading decision. An ex-
ample of our system is illustrated in Fig. 1. We make the following
contributions:

• Development of an Android application that performs real-
time object detection, either locally on the smartphone or
remotely on a server. The object’s location in the scene is
returned and displayed to the user.

• Characterization of the tradeoffs between object detection
accuracy, latency, and battery drain, based on the system
parameters of image resolution, CNN model size, and of-
floading decision. We perform these measurements in both
controlled network environments and in public locations
in-the-wild.

In the remainder of this work, we discuss the relevant back-
ground on CNNs (§2), our setup (§3), and our measurements (§4).
We conclude with related work (§5) and future directions (§6).

2 DEEP LEARNING FOR OBJECT DETECTION
This section provides relevant background on CNNs for object
detection. Our objective is not to develop new object detection
algorithms, but to understand the performance of state-of-the-art
deep learning algorithms on smartphones and the potential benefits
from offloading.

A standard CNN works as follows (see also [9]): A frame of the
video is fed to the CNN as input. Filters (known as convolutions)
are applied to the RGB layers of the frame, and then averaging
and thresholding functions (known as pooling) are applied. These
stages of convolutions and pooling are applied repeatedly, with
the order and specific functions depending on the particular CNN
model. Finally, the features output by the CNN are probabilistically
classified to one of the trained categories.

The object detection task places an additional burden on CNNs
to locate the object in the image, in addition to object classification.
Many existing neural nets for object recognition builds a pipeline
solution, i.e., they use one neural net to detect the boundaries of
objects and a second net to inspect contents within each bounding
box. In this work, we evaluate a particular object detection CNN
called Yolo [27]. (In our future work, we intend to evaluate other
popular neural nets like faster-RCNN andMultiBox [18, 28].) Yolo is
optimized for processing video streams in real-time and possesses
the following two salient features: 1. One neural net for boundary de-
tection and object recognition. Observing that using multiple neural
nets unnecessarily consumes more resources, Yolo trains one single
neural network that predicts boundaries and recognizes objects
simultaneously. 2. Scaling with resolution. Yolo handles images with
different resolutions, e.g., when there is a change in the dimen-
sion of an input to a convolutional layer, Yolo does not change the
kernels and their associated learnable parameters – this results in
a change of output dimensions. Thus, the computation time of a
neural network scales directly with input’s resolution, e.g., lower
resolution images require less computation.

3 METRICS AND DEGREES OF FREEDOM
This section first discusses the key metrics of front-end apps, and
second, the other factors that affect the system design. Thirdly, we
discuss the possible degrees-of-freedom in our system.
Key metrics. AR apps often require service guarantee on two
important metrics: (see §1 for more discussion):
1. Latency/frame rate: Latency is the total time needed to get an
output on one frame of the video stream. When the deep learning
is executed locally, this is the time used for executing deep learning.
When the deep learning is executed at a backend server, this time
is the total of communication and execution time at the backend.
2. Accuracy: The mean average precision (mAP) is a measurement
of a classifier’s effectiveness. Specifically, the average precision
(AP) for standard image datasets [5] is defined for each class as
the fraction of correct classifications above a given rank, averaged
across ranks. The mAP is the mean AP across classes.
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Figure 2: Input parameters and outcomes.

Being a responsible citizen. While purely focusing on these
key metrics may maximize the performance of the deep learning
module, other potential impacts on the front-end device should
be considered. For example, running more powerful deep learning
models may consume more CPU cycles, disrupting other back-
ground processes, and also draining the device battery. If the client
communicates with the server, the network transmission also uses
battery; moreover, if the data transfer is over LTE, the cost to the
user in terms of data quota must also be considered. These factors
of battery consumption and network data usage must be considered
holistically alongside the performance metrics.
Degrees of freedom. There are several degrees of freedom we
may consider in our system.
1. Adjust the frame resolution. By adjusting the resolution of each
frame, the execution time for a deep learningmodel may change. For
example, increasing the frame resolution increases the processing
time, but may also improve detection accuracy.
2. Offload to backend. By offloading the problem to a backend
server, we can substantially reduce computation burden at the
front-end devices, possibly at the expense of transmission energy
and monetary cost.
3. Use smaller deep learning models. We may also use a smaller
neural network to reduce the run time, at the cost of reducing the
prediction accuracies.

Each of these operations may impact one or more of the metrics
described above. Furthermore, we may employ multiple operations
simultaneously, e.g., we can reduce the resolution and use smaller
models at the same time. In fact, any subset of these operations
defines a legitimate strategy, although not necessarily optimal.

4 EXPERIMENTS
In this section, we describe our initial efforts towardsmeasuring and
understanding the performance tradeoffs of running deep learning
algorithms on smartphones. We measure these tradeoffs under both
controlled conditions in the lab, as well as in-the-wild at various
public locations such as coffee shops and personal homes.

4.1 Testbed Setup
We set up a server at UCR which runs Yolo using GPU speedup. The
server is equipped with a quad-core Intel processor at 2.7 GHz with
8 GB of RAM, and with an NVIDIA GeoForce GTX970 graphics
card with 4GB of RAM. We use powerful phones (OnePlus 3T and
Google Pixel) to provide an upper bound on performance (in the
future, we intend to study performance on lower-end smartphones).

Figure 3: Screenshot from our Android appwhich can run in
“local” or “offload” mode and logs latency, battery, and data
usage. The bounding boxes indicate detected objects and the
numbers are the class probabilities. In this example, “boat”
is a false positive.

We experiment with two neural network models: a smaller model
with 9 convolutional layers that can detect 20 object classes, and a
larger model with 22 convolutional layers and can detect 80 object
classes. The Android implementation is based on Tensorflow [1]
and runs the smaller model, while the server implementation is
based on a custom framework called Darknet [25] and runs the
larger model. We extend the Android app to enable offloading of the
camera feed to the server. To avoid having the server process stale
frames, the app sends the current frame to the server and waits
to receive the result before sending the next frame for processing.
The client also logs battery drain reported by the Android OS, the
cellular data usage, and the time elapsed between sending the frame
and receiving the detection result from the server. To reduce the
communication time and bandwidth usage between the server and
the client, the server only transmits the location of the bounding
box, instead of sending the full video frame. On the server, we
modify Yolo to load the neural network configuration only once,
listen for frames sent by the Android app, and process each frame
in sequence.

4.2 Deep learning on the phone
Tradeoff between resolution and frame rate:We first examine
the case where the phone runs the CNN locally, without offloading,
to see the tradeoff between frame resolution and latency/frame
rate. Firstly, we vary the image resolution from 160x160 to 544x544
pixels. Recall that Yolo is dynamically able to adapt to different
image resolutions by adjusting the neural network model size. In
Fig. 4, we plot the tradeoff between frame resolution and frame rate.
When the CNN is run on the phone, the highest achievable frame
rate is about 5 FPS for a low resolution, while the lowest frame
rate is about 1 FPS for a high resolution. The phone must decide
between analyzing a high resolution with high latency, and a low
resolution with low latency.

We next compare against the scenario where the CNN is run on
the server with a 10 Mbps link to the phone. In this case, the frame
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Figure 4: Impact of frame resolution. The phone has lower
accuracy than the server, and trades off resolution for frame
rate.

rates are significantly higher; and moreover, the accuracy [27] of
the larger model on the server is better than the small model on the
phone. The phone’s decreased computational power and smaller
model result in performance degradation in terms of both speed
and accuracy; therefore, offloading may be helpful, even given the
additional time spent to transmit the data.

Battery: We measure the battery usage of running the CNN
locally on the phone for 30 minutes. In Fig. 5d, we show the results
for the OnePlus and Google Pixel phones. With the phones using
20-25% of their battery for 30 minutes of usage, running the CNN for
2-3 hours would result in complete depletion of the user’s battery.
For comparison, this is significantly more expensive than video
streaming, which uses about 5% of the battery for 30 minutes of
usage [20, 21].

4.3 Impact of variable network conditions
Next, we study how the (communication) network conditions im-
pact the performance of our system. For these experiments, the
phone is located in the same subnet as the server, and chooses to
offload. We measure the time it takes for each frame to be processed,
as well as the frame rate, while modifying the bandwidth and la-
tency between the client and the server using the tc traffic control
tool. The latency with unconstrained bandwidth between the client
and the server is about 30 ms. These experiments use the OnePlus
phone, and each trial is repeated 10 times, with a frame resolution
of 416x416 pixels, and a per-frame size of about 200 kB.

Latency breakdown: We first measure the time taken for each
frame to be processed, which is the sum of the network transmission
time plus the time taken by the server CNN to process to process the
frame. We plot the results in Fig. 5a. The majority of the processing
time is taken by the network transmission time, which the server
generally running the CNN in < 30 ms. This indicates that network
transmission is the key driver of latency and frame rate, rather than
the CNN processing time, and the offloading decision will highly
depend on the network conditions. Therefore, we dig deeper into
the impact of network conditions.

Offloading based on network bandwidth: In Fig. 5b, we vary
the network bandwidth and measure the frame rate. We see that
frame rate increases roughly linearly with network bandwidth,
which makes sense because frame rate is roughly proportional to
data transferred. We also show on the same plot the average frame
rate from running the CNN locally on the phone. This is a horizontal
line, because local processing speed does not depend on network
bandwidth. In this particular scenario, a simple offloading policy
may work to maximize frame rate: below a threshold of about 4
Mbps, run the CNN on the phone, and above the threshold, offload
the CNN computation to the server.

Offloading based on network latency: In Fig. 5c, we fix the
network bandwidth at 10 Mbps and add additional network latency
using the tc tool. We expect an inversely proportional relationship,
since frame rate is calculated as data transferred per time, and
this is what we see. Again, a simple offloading policy may work
here: when the network latency is below 100 ms, offload to the
server, and when the network latency is above 100 ms, run the
computation locally. Note that the processing time is dependent
on the specific phone model and server processing power/GPU,
so some calibration phase will be necessary in the final system to
determine these bandwidth and latency threshold values. Moreover,
the bandwidth-based and latency-based offloading policies must
be combined to determine an offloading policy for any tuple of
(network bandwidth, network latency). We intend to investigate
these offloading policies in future work.

Tradeoff between battery and frame rate: Finally, we also
examine the impact of offloading on battery usage. In Fig. 5d, we
plot the battery usage as the network bandwidth increases. We
run each trial for 30 minutes and plot the drop in battery reported
by the Android OS. When there is more bandwidth, the phone
tends to transfer more data, and use up the battery of the phone
for wireless transmission. Combined with the bandwidth-based
offloading policy discussed, we can see a tradeoff between battery
and frame rate: while the phone would prefer to offload to the server
in order to save battery, for network bandwidths below 4 Mbps, the
optimal offloading policy that maximizes frame rate is to run the
CNN locally, at the expense of high battery usage. Therefore, the
decision to offload cannot solely consider maximizing frame rate,
but most also consider the holistic effect of battery drain.

Finally, we note that across all of our experiments, even for high
bandwidth, the frame rate caps off at about 5 FPS. This suggests that
additional optimizations, such as batching the frame transmissions
and object tracking, will be needed to reach higher frame rates
suitable for real-time applications, which we intend to investigate.

4.4 Performance in-the-wild
In this section, we measure the offloading performance in-the-wild
at various locations, including a home, coffee shop, and university
campus. These locations are realizations of the controlled network
conditions discussed in Section 4.3. Our eventual goal is to compare
this offloading performance with the on-phone performance dis-
cussed in Section 4.2, in order to make the best offloading decision.

To evaluate edge computing versus a more distributed scenario,
we consider several test locations: when the client is in the same sub-
net as the server, a different subnet but in the same city, and finally
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Figure 6: Performance in-the-wild. Using LTE to increase the
frame rate comes at the expense of data quota usage.

when the client is in a different city than the server. Specifically,
our test locations are:

• Coffee 1 (different subnet, different city): A coffee shop in
Berkeley, CA. The camera is pointed towards a window and
detects cars and people on the street.

• Apt 1 (different subnet, different city): An apartment in Berke-
ley, CA with cable Internet. The scene is a fairly static home
environment and mainly detects computer monitors, cups,
and potted plants.

• Apt 2 (different subnet, same city): An apartment in Riverside,
CA. The main objects detected are chairs, refrigerators, and
TV monitors.

• Coffee 2 (same subnet, same city): An on-campus coffee
shop in Riverside, CA. It mainly detects chairs, tables, and
umbrellas.

In Fig. 6a, we plot the frame rate of the client in these locations,
when the client offloads using WiFi or LTE. Each trial lasts 60 sec-
onds, and repeated 3 times. In general, the frame rate with WiFi
in a city far from the server (Coffee1 and Apt1) show quite a low
frame rate, with each frame taking more than 500 ms to process.
When the client is located in the same city as the server (Coffee
2 and Apt 2), the frame rate over WiFi seems to be slightly better,
particularly if the client is located in the same subnet as the server.
Qualitatively, we observe that in high-latency environments such
as the coffee shop, the detection boxes become inaccurate and are
drawn in incorrect locations on the screen. The reason is because
if the camera or the object is moving and the network is slow, the
result returned from the server is stale. In general, the performance

(both in terms of quantitative frame rate and qualitative observa-
tions) over LTE seems to be better; however, there is a tradeoff
here. Although LTE may provide a higher frame rate, the typical
constraint is data usage, which is limited and costs money. To delve
further into the monetary costs to the user, Fig. 6b shows the LTE
data usage in the same scenarios. We can see that the average data
usage is about 15 MB/minute, which is fairly high. Assuming a 2GB
costs $35, this mean that each minute of usage costs $0.25. Another
possible tradeoff is with accuracy: if LTE has higher bandwidth, the
user can upload higher resolution video frames for higher accuracy,
at the expense of paying more for more data transfers.

5 RELATEDWORK

Object detection: Traditional object detection frameworks such as
SIFT [19] and Viola-Jones [32] have been proposed for general
and domain-specific detection. Recently, applying CNNs to object
classification has shown good accuracy[17]. [7] first proposed com-
bining region proposals and CNNs for object detection, while [6, 28]
improved accuracy and running time. [26, 27] also used CNNs to
perform object detection with an emphasis on real-time perfor-
mance. [12] compares the speed and accuracy tradeoffs of various
CNN models. However, none of these works have considered the
performance of CNNs on mobile phones.

Mobile offloading: [4] developed a general framework for task
offloading, while [24] specifically study interactive visual applica-
tions. These frameworks cannot directly be applied to our scenario
because our set of tasks may be reduced if executed locally as op-
posed to remotely. [2, 10, 16] explore offloading for real-time video
analysis. [2] considered modifying the data (offloading a subset of
frames) to reduce latency, which is complementary to our approach
of compressing the model to reduce latency. [16] developed a sys-
tem based on SIFT, whereas we focus on more recent CNNs. [10]
offloads processing from Google Glass to nearby cloudlets, whereas
we also consider running the code locally. The closest to our work is
perhaps [11], which decides whether to offload CNNs to the cloud;
however, they do not explicitly consider the current network con-
ditions, which can greatly impact the offloading decision. Finally,
[3] proposed traffic steering towards nearby mobile clouds for AR
applications, whereas we also modify the AR application itself to
improve performance.
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Deep learning on smartphones Recently, several works have studied
model compression of CNNs running on mobile phones. Specifi-
cally, [14] uses the GPU to speed up latency, while [22] considers
hardware-based approaches for deciding important frames. We be-
lieve our approach is complementary to these works in that we can
leverage these speedups to local processing, while also considering
the option to offload to the cloud.

6 CONCLUSIONS AND FUTUREWORK
In this work, we evaluated an architecture of running deep learning
algorithms on computationally-limited front-end devices such as
smartphones. The hope is that such architectures will eventually
enable applications such as real-time augmented reality. We found
that there are various tradeoffs between frame rate, accuracy, bat-
tery usage, and data usage, depending on system variables such
as model size, offloading decision, and video resolution. Overall,
the results suggest that offloading can at least improve the frame
rate and accuracy, depending on the network conditions. However,
while we evaluated the impact of network conditions in isolation, a
combination of factors will result in complex interactions that need
to be further investigated in order to fully develop an intelligent
offloading strategy.

Other future work includes evaluation of offloading decisions
under a greater variety of network conditions, development of
a more advanced offloading framework incorporating partial or
parallel processing on the phone or server, and using tracking
algorithms such as optical flow to improve processing times.
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