Lecture 1: Introduction

Agenda:

e Welcome to CS 238 —
Algorithmic Techniques in Computational Biology

e Official course information
e Course description
e Announcements

e Basic concepts in molecular biology

Lecture 1: Introduction

Course overview

e Topics covered:
— Biological background introduction
— My research topics
— Sequence homology search and comparison
— Sequence structural comparison
— string matching algorithms and suffix tree
— Genome rearrangement
— Protein structure and function prediction
— Phylogenetic reconstruction
* DNA sequencing, sequence assembly
* Physical/restriction mapping

* Prediction of regulatiory elements

e Announcements:
— Assignment #1 available soon.

— Suggestions for topics of class presentation will be pro-
vided in a few weeks.

— Finalize your presentation topic before mid quarter.

Lecture 1: Introduction

Official course information

e Grading weights:

— 50% assignments (3-4)

— 50% participation, presentation, and course report.

e Text and reference books:

— D. Gusfield, Algorithms for Strings, Trees, and Sequences:

Computer Science and Computational Biology, Cambridge
Press, 1997.

T. Jiang, Y. Xu and M. Zhang (co-eds), Current Topics in
Computational Biology, MIT Press, 2002. (co-published
by Tsinghua University Press in China)

D. Krane and M. Raymer, Fundamental Concepts of Bioin-
formatics, Benjamin Cummings, 2003.

P. Pevzner, Computational Molecular Biology: An Algo-
rithmic Approach, 2000, the MIT Press.

M. Waterman, Introduction to Computational Biology:
Maps, Sequences and Genomes, Chapman and Hall, 1995.

These notes (typeset by Guohui Lin and Tao Jiang).

e Instructor: Tao Jiang

— Surge Building 330, x82991, jiang®@cs.ucr.edu

— Office hours: Tuesday & Thursday 3-4pm

Lecture 1: Introduction

The Secrets of Life (also in Krane and Raymer, 2003)

(A mathematician’s introduction to molecular biology)

e Basic concepts: DNA, RNA, enzymes

e DNA (deoxyribonucleic acid)

— discovered by James Watson and Francis Crick, 40

years ago

— DNA discovery = modern genetic engineering

— at breathtaking speed

e astonishing scientific & practical implications

1.
2.

DNA sequence — the evolutionary record of life

genes for human insulin
— bacteria — protein (inexpensive large amount & pure)

farm animal & corps
— healthier & more desirable products

diagnosis for viral disease (e.g. AIDS)
sensitive & reliable

e molecular biology: the character of the field is changing
experimental science — theoretical science
databases of DNA and protein sequences

e the mathematical sciences — mathematics, statistics, and
computational science are playing an important role
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The Composition of a Living Organism
e Protein, Nucleic Acid, Lipid, Carbohydrate

e The human makes 100,000 proteins
— enzymes — digestion of food
— structural molecular — hair, skin
— transporter of substances — hemoglobin

— transporter of information — receptor in surface
of cells

e Protein do the work of the cell!
a linear chain of amino acids (20 types)
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Biochemistry

e Role of biochemistry:
- biochemistry (protein)

molecular biology function

\ -

genetics (gene)

e What is biochemistry?
Goal: Purifying and characterizing the chemical
components responsible for carrying out a partic-
ular function.

e What is a biochemist doing?
Devises an array for measuring an "activity” and
then tries successive fractionation procedures to
isolate a pure fraction having the activity.

Lecture 1: Introduction
Classical Genetics
Geneticists study mutant organisms that differ in one component.
Gregor Mendel 's experiments on pure breeding peas — 1865
Trait (phenotype): round O or wrinkled ®
Fy | pure breeding O or @
cross to generate F1 | O (100%)

cross Fy with & [ O (50%) X (50%)
cross Fy with Fy | O (75%) X (25%)

genotype:

Fr | O AA X aa
Fi | O Aa (100%)
O AA(25%) O Aa (50%) X aa (25%)

Mendel Hypothesis (gene)
e each organism inherits two copies of a gene

e genes occur in alternative forms — alleles, with different
biological functions

e pure breeding plants carried two copies of identical alleles
(AA, aa) and are called homozygotes.
the F1 plants have Aa and are heterozygotes.

e roundness (A) dominates over wrinkledness (a)

e inheritance is random.
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Molecular Biology

Scientists realized that Genes encode enzymes / pro-
teins.

What are genes made of? — DNA

Watson & Crick, 1953

e Double helix

e Nucleotides: Adenine, Guanine, Cytosine, Thymine

e Base pairs: A-T, C-G

e Replication of DNA: the two strands unwind and
each serves as a template

e DNA polymerase: carries out replication



Lecture 1: Introduction Lecture 1: Introduction

DNA (Deoxyribonucleic Acid) RNA (Ribonucleic Acid)
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The DNA sequence is ...CACTA...

It may encode the message dark hair. The RNA sequence is GCGGAUUGCUCC...

Lecture 1: Introduction Lecture 1: Introduction

Protein Synthesizing a Protein (in prokaryote)

e A gene is expressed with the transcription of the
DNA sequence into a messenger RNA (mRNA).

el This is carried out by RNA polymerase.
: {l L0 An RNA is made of A, U, C, G, and is single stranded.
R’ dipeptide

lophilin with bound Dipeptide

e Each triple of A/U/C/G encodes an amino acid,
called a codon.

e The mRNA is then translated into a protein by the
ribosome.

The protein sequence is KVLLAAALIAGSVFFLLLPG...
The elements are called amino acids.

11 12
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Pattern Matching in Nature

aga
agg
gca cga dgga
gcg cgg 999 ata
DNA codons gct cgt gat aat tgt gaa caa ggt cat att
gCcc cgc gac aac tgc gag cag ggc cac atc

Amino acid ) A)) R))D))N)) C))E)) @) G)) H))1)

tta agt

ttg N agc

cta / cca tca aca gta
taa ctg ccg tcg acg gtg
tag ctt aaa ttt cct tct act tat gtt
tga ctc aag atg ttc ccc tcc acc tgg tac gtc

JOTRIMY BRI S DIWIVIV)

1

|
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Areas of Computational Biology — continued

4 Comparative genomics, phylogenetic analysis — re-
covering history of evolution

5 Protein folding, structural biology — determine sec-
ondary and tertiary structures of protein sequences
e crystallography
¢ NMR data
e energy minimization

e protein threading

6 Genetic linkage — relative locations of genes
e SNP analaysis
e haplotyping
7 Gene expression arrays and DNA microarrays —
functional genomics
e How do genes relate to functions?
e How do genes relate to diseases?

e When are genes expressed and co-expressed?
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Areas of Computational Biology

1. DNA sequencing — determine DNA sequences
e shotgun sequencing
e sequencing by hybridization

e sequencing by mass spectrometry (for protein
fragments)

2. Physical mapping — low resolution information about
genome

e STS content mapping

e restriction mapping

e radiation hybridization mapping
e optical mapping

e fluorescent in situ hybridization (FISH)

3. Sequence analysis — extract functional/evolutionary
information from DNA/protein sequences

e sequence comparison
e gene recognition
e regulatory signal analysis

e sequence databases
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Areas of Computational Biology — continued

8 Gene networks, metabolism pathways

e How do genes relate to / control each other?

9 Genetic drug discovery, combinatorial chemistry

e Identify drug targets from molecular information
(sequence, 3D structure, etc.)

16



Sequence Assembly
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Physical mapping - a restriction (MCD) map
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Gene regulation

Enhancer
(distal)

-

TATA box

Promoter Enhancer
{proximal) {distal)
Y
— \
~30bp
Exon Intron

~300bp

Typical stiucture of a eukaryatic mRMA gene.

Many factor sites
(e.g. c-Fos, c-Jun, c-MyciMax)

{5p1, CRE

B, c-Ets, CTF,etc.)

transcription

TGACGCA CACBTE  GGRCGE  COAAT

400

copyright 1996 MW King
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gap p24 (2390bp) and pol (705bp) nucleotide sequences combined.

Phylogeny (evolutionary tree) reconstruction - SIVcpz
7 HIVieli
49/ A 17 HIVindk
rodents: a branch [~ Rat 3 HIV1jrcsf
1 102 113 7 HIVilai
House Mouse HIVirf
HIVimal
Cat % HIV1ant70
Harber Seal HIVmvp5180
18 41 SIVagmtyo
Grey Seal ,l,—'i SIVagn3
] White Rhine 69 SIVagniss
ferungulates 2|
E Horse 20 82  —[HIV2d206
: HIV2ucl
Finback Whale HIV2ben
Blue Whale 25 167 HIV2d194
HIV2nihz
Cow HIV2st
Gibbon IS{ﬂZrog
smm!
Gorilla ? SIVsmmh4
SIVmm239
Human
primates . SIVmne
Pygmy Chimpanzee SIVstm
SIVmndgb1l
Chimpanzee SIv:;kg
Orangutan FIVi4
extinct species Sumatran Orangutan A phylogeny of immunodeficiency viruses [D. Mindell, 1994]

e organism / species: DNA / RNA / protein sequence

e distance between sequences: estimate the time of evolution

e what data? (mitochondrial genomes) on 3 Molecular clock

e which method? e objective function: minimize the distance
21 22
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Protein Structure Inference of haplotypes from genotypes

Our genome is a diploid and our genes come in pairs, called geno
1gnment of genes to paternal and maternal chromos

This is the ras protein. Knowing the 3-D structure of this important
molecular switch governing cell growth may enable interventions to Haplotype information is useful in fine gene mapping, association

shut off this switch in cancer cells. studies, etc.

23 24
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Gene Expression Array Gene network
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Gene network Functional genomics

INNOVATIVE APBROACHES
ALONG UNCONVENTIONALPATHS

n AL
COMMUNITIES

«

system

sBEkTIry

e .

Metabolism

CHARACTERIZE GENE
REGULATORY NETWORKS

Courtesy U.S. Department of Energy Genomes to Life program:

DOEGenomesToLife.org
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Drug Discovery

The cellular targets (or receptors) of many drugs used for medical
treatment are proteins. By binding to the receptor, drugs either

enhance or inhibit its activity.

29

Research Projects in Jiang's Lab

1. Efficient haplotyping on a pedigree
e polynomial-time algorithm for O-recombinant data
e missing alleles imputation using LD information
2. Dynamics of gene evolution on plant genomes
e comparison of 12 chloroplast genomes
e analysis of Myb families on Arabidopsis and rice
genomes
3. Search for TFBS in the human genome

e an “optimized” markov chain algorithm
e prediction 4 in vitro validation doubled known
HNF4« binding sequences

4. Classification of microbial communities by oligonu-
cleotide fingerprinting on DNA arrays
e design of probe sets
e a discrete approach to clustering
5. Sequence annotation and comparison
e comparison of RNA structures
e prediction of operons in Synechococcus Sp.
6. Analysis of barley EST database
e design of popular and unique oligo probes

7. automatic NMR spectral peak assignment

31
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Drug Discovery

Key Steps in the Drug
Discovery Process

~
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% oo sy
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Fw.lnw::tu:m—T
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Lecture 4: Pairwise Sequence Alignment

Agenda:
e Dynamic programming concept, review
e Edit distance between two sequences
e Global alignment

e Optimal alignment in linear space

Reading:
e Ref[JXZ, 2002]: Pages 45 — 69
e Ref[Gusfield, 1997]: Pages 209 — 258

e Ref[CLRS, 2001]: Pages 331 — 356

32



Lecture 4: Pairwise Sequence Alignment

Why sequence comparison:
e Genes diverging from a common ancestor are homologous.
e Homologous genes perform the same or similar functions.

e Homologous gene sequences are similar.
— On average, human and mouse homologous gene se-
quences are 85% similar.
e Similarity:
— How to define it
— How to compute it

— twin definition — distance.

33

Lecture 4: Pairwise Sequence Alignment

Matrix-chain multiplication (from CS 218):

e Observations:

— A lot of re-computation in the recursion approach!
Avoid them!!!

— Carefully define the order of computation for M(i,j),
store them somewhere.

— When needed, get the value, rather than re-computation.
e Build a table of dimension n x n to store M (i,5)
e Order of computation: increasing (5 — i)

e This is Dynamic Programming

e Essence of dynamic programming
— Optimal substructures
— Overlapping subproblems
— Number of subproblems/substructures is polynomial !!!

— Given substructures, assembling an optimal structure can
be done in polynomial time !!!

35
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Matrix-chain multiplication (from CRLS):

e Input: matrices A1, Ao, ..., A, with dimensions do xd1, d1 xXda,
.., dp—1 X dy, respectively.

e Output: an order in which matrices should be multiplied such
that the product A; x Az x ... x A, is computed using the
minimum number of scalar multiplications.

e Example: n =4 and (do,ds,...,d,) = (5,2,6,4,3)

e Possible orders with different number of scalar multiplications:

((A1 x A) x A3) x As 5x2x6+5x6x4+5x4x3=240
(A1 X (A2 X A3)) x Ay 5x2x4+42x6x4+5x4x3=148
(A1 x A2) x (A3 X Az) B5X2x64+5x6x3+6x4x3=222
A x ((A2 x A3) x Ag) B5x2x34+2x6x44+2x4x3=102
Ar X (A2 x (A3 X As)) 5x2x34+2x6x3+6x4x3=138

e Number of orders in Q((4 —¢)™)

— Cannot afford exhaustive enumeration.

e Try recursion?

— M(4,j) — the minimum number of scalar multiplications
needed to compute product A; x Aj41 X ... X A; (i <j)

MG =1 % ) . ifi=j
, MiNice; {M(, k) + Mk + 1,5) 4 di_1dyd;}, if i <j
— M(1,n) € Q(3")
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Defining distance — String edit:

Problem: Given two strings S; and Sp, edit S; into Sy with the

minimum number of edit operations:
e Replace a letter a with b
e Insert a letter a

e Declete a letter b

Example:

S1
Sa

contextfree
test-file

context free
test-file

edit cost: 111001010110 =7

The minimum number of operations is called the edit distance
between S; and Ss.

Theorem: String edit can be done in O(nin2) time.

Examine the last edit operation
what about the first edit operation

36



Lecture 4: Pairwise Sequence Alignment

Edit distance by Dynamic Programming:

e Satisfying DP requirements?

— Computing edit distance between Si[1..n1] and S3[1..n3]
reduces to

— computing edit distance between S1[1..n;—1] and Sz[1..n3]

— computing edit distance between S;[1..n;] and Sa[1..no —
1], and

— computing edit distance between S;[1..n1—1] and Sa[1..no—
1]

e Define a generalized form of the problem with a few param-
eters:

D[i, j] — edit distance between aias...a; and biby...b;, 0 <
i <mnp and Ogjgnz

e Derive a recurrence relation:

Consider the last (rightmost) edit operation for ajaz...a; —
blbg - bji

— insertion
— deletion
— match or replace
Dli-1,5]1+1
Dli,j—-1]+1
0 if a; = bj

DJi, ] = min
Dli-1,j-11+ { 1 otherwise
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Lecture 4: Pairwise Sequence Alignment
Edit distance by Dynamic Programming (cont'd):
e Need to order the entries D[i, j] to be computed.

e Need to initialize some entries to start the computation:
D[:,0] =4, D[0,j] = j
e Use a table to store the entry values.

— S1=aiaz...a,

— So=lbiby.. by

— DP table: DJ[i,j] — records the edit distance between
aiaz...a; and biba...b;, for any pair 0 < i <mn; and 0 <
Jj < no.

e The recurrence relation for D:

Dli—1,5] +1
Dlij—1]+1
0 ifai=b;

Dli, ] = min
Dli-1,j-11+ { 1 otherwise

e An example,

® — =
INIVIN TS e
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Lecture 4: Pairwise Sequence Alignment

Edit distance by Dynamic Programming (cont’d):
e Need to order the entries D[i,j] to be computed.

e Need to initialize some entries to start the computation:
D[i,0] = 4,D[0,j] = j

e Use a table to store the entry values.
— S1=a1a2...an
— Sy =Dbiba...bp,

— DP table: DJi,j] — records the edit distance between
ajaz...a; and bibz...b;, for any pair 0 < i <mn; and 0 <
Jj < no.

e The recurrence relation for D:

Dli—1,4]+1
Dli,j—1]+1
0 if ai=bj

Dli, j] = min
Dli—1,j-1]+ { 1 otherwise

e An example,

o ==
NN HO
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Lecture 4: Pairwise Sequence Alignment

Edit distance by Dynamic Programming (cont’d):
e Need to order the entries D[i,j] to be computed.

e Need to initialize some entries to start the computation:
D[i,0] =4, D[0,j] = j

e Use a table to store the entry values.
— S1=aiaz...a,
— Sy ="biba... by,

— DP table: DJi,j] — records the edit distance between
aiaz...a; and bibz...b;, for any pair 0 < i <mni; and 0 <
Jj < no.

e The recurrence relation for D:

Dli—1,5]+1
Dli,j —1]+1
0 ifai=b;

D[i, j] = min
Dli—1,5-1]+ { 1 otherwise

e An example,

®—— -
NN HO
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Lecture 4: Pairwise Sequence Alignment

Edit distance by Dynamic Programming (cont'd):

Need to order the entries DJi, j] to be computed.

Need to initialize some entries to start the computation:
D[i,0] =¢,D[0,j] =j
Use a table to store the entry values.

— S1=aiaz...an

— Sy =biby...by,

— DP table: DJ[i,j] — records the edit distance between
aiaz...a; and biby...b;, for any pair 0 <i <mn; and 0 <
j <no.

The recurrence relation for D:

Dli—1,5]+1
Dli,j—1]1+1
0 if ai=bj

DJi, 5] = min
Dli-1,j-11+ { 1 otherwise

An example,

® —— =
MNWNHO

WNH O —
WN N =
NN NN W o
N WWW ™o
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Lecture 4: Pairwise Sequence Alignment

Edit distance by Dynamic Programming (cont'd):

Complexity

Need to order the entries DJi, j] to be computed.

Need to initialize some entries to start the computation:
D[i,0] =1¢,D[0,j]=1j
Use a table to store the entry values.

— S1=a1a2...an,

— So=1biba...bn,

— DP table: DJ[i,j] — records the edit distance between
aiaz...a; and biba...b;, for any pair 0 < i <n; and 0 <
j <na.

The recurrence relation for D:

Dli—1,j]+1
Dli,j—1]+1
if ai=b;

Dli, j] = min _ ) 0
Dli-1,j-11+ { 1 otherwise

An example,

MNWNHJO

WNHOH—
QN N =
NNIN N W
NWWw N

f
i
|
e

O(n1inz) time and space.
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Lecture 4: Pairwise Sequence Alignment

Edit distance by Dynamic Programming (cont’d):
e Need to order the entries D[i,j] to be computed.

e Need to initialize some entries to start the computation:
D[i,0] = 4,D[0,j] = j
e Use a table to store the entry values.

— S1=a1a2...an

— So=biby...by,

— DP table: DJi,j] — records the edit distance between
ajaz...a; and bibz...b;, for any pair 0 < i <mn; and 0 <

Jj < no.

e The recurrence relation for D:

Dli—1,4]+1
Dli,j—1]+1
0 if ai=bj

Dli, j] = min
Dli—1,j-1]+ { 1 otherwise

e An example,

©——
NWNHO

WNHOH -
(RIS IN B
N NN W ©
N W W w N
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Lecture 4: Pairwise Sequence Alignment

Pseudocode for Algorithm Edit(aiaz...an,,b1ba...by,)

int D[0..n1,0..n2]
int P[l..n1,1..n2]

for 1 < 0 to ny do
DJ[i,0] « 1
for j«— 0 to no do
DI0,j] — j
for 1< 1 to ni do
for j« 1 to mo do
if a; = b; then
d—0
else
d—1
D[i,j] = Dli — 1,j1+1
P[i, 5] — (0,-1)
if D[i—1,j] < D[¢,j — 1] then
Dli,j] < Dli — 1,51 + 1
P[i,j] — (=1,0)
if D[i—1,j— 1] +d < D[4, j] then
D[i,j] — D[i — 1,5 — 1] +d
Pli,j] < (-1,-1)

Notes:

e Edit distance only: O(n) space

e Backtracing the path from entry [n1,n2] to entry [0,0] in array

P to find an optimal series of edit operations.
e Next: reducing time & space complexity
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Speeding up string edit by preprocessing: Linear space algorithm for string edit:

Assumptions:

Ideas: Edit distance takes O space.
e Sequences S1 = ajaz...an, and Sz = biby...b,, are from (n) sp

a fixed alphabet > with |Z| = k. (Recall: optimal substructure?)
o n1 < no. Edit(aiaz .. .an,,biba... by) =
o Let 1= Liogns - 1. Edit(aiaz...an,bibz ... b)) +Edit(am yam .. any, bjt1bjta .. bny),
Preprocessing: The Idea for some j.
e Compute an (£+ 1) x (¢ + 1) matrix D;; for each pair br... b ... bn,
AiQi41 - - - Al and bjbj+1 - bj+[. a1
e D;; can be computed in O((£+ 1)) = O(log? n2) time. ay
e How many distinct D;; matrices? a
Since || = k, there are (k‘*1)2 = ny of them. "
Conclusion: Recursively solve for (aias - - - as, bibs---b;) and (a%_,_1 Gy —1Gny, b
o Setting ¢ = 1logz;no — 1.
: : Determining j:
e Preprocessing each pair on two vectors over {—1,0,1}:
O((k2H D 1092 np) x 32U+ = O(n» 109% no). e Compute Edit(aiasz. S, biby b;) for all 5;
e For each of the (™2) entries, filling in 2(¢ + 1) values o Compute Edit(an,any—1-..am 1 q,bnybn—1...b41) for all j;
from the corresponding D;; matrix: 2
o(lg;"nz ). e Find the j that minimizes
2

Edit(alaz L..am,bibo .. .b:)—i—Edit(a Apy—1---Qm 4 1,bnybpo—1...0; 1)
e Preprocessing is minor and thus in total O(lgé’j;) time. 2 ! e z e g

e Two keys:
— How many D;; matrices are there?

— Why preprocessing on those vectors only?
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Linear space algorithm for string edit (cont’d): General string edit:

Conclusion: e Strings S; and S> over a fixed alphabet X

e Divide-and-conquer;
a e Replacing letter a with b has a cost o(a,b), where a,b € ZU{_}
e Compute Edit(ajas... a%, biba...bn,);

Compute Edit(an,an,—1 ... an1,bnbno1...b1); e The minimum cost of series of operations transforming Si
2 into S» is the edit distance between S and Ss.
e Linear space for storing all necessary entries;

e Space complexity: e A series of operations is equivalent to an alignment of the
sequences:
= max{2 j -7 .
S§(n2) = max{2na, 5(j) + S(n2 - j)} € O(n2) — inserting spaces (_) into or at the ends of sequences

e Time complexity: — putting one resultant sequence on top of the other, such

To(ni,n2) = niny — normal running time that every letter or space in one sequence is opposite to
) ) a unique letter or a unique space in the other sequence
T(n1,m2) = 2 xTo(%,n2) +T(F,5) +T(%,n2—35)

= mnino i % X (i’(n%,jz_+ T'(5,m2 —5)) +T(5 .. - eachtedit operation corresponds to a column of the align-
= minz+ Fno+ Fno+... men

< 2ning . .

€ O(nina). — alignment cost is the sum of costs of columns

e Alignment construction? e A series of edit operations of the minimum cost corresponds
concatenating. to an optimal (pairwise) sequence (global) alignment.

e Global alignment — similarity over the whole sequences.
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Age

Lecture 5: Pairwise Sequence Alignment &
Sequence Homology Search

nda:
Global & local pairwise alignments
Pairwise alignments with affine gap penalty
The BLAST
Pattern Hunter

Database search demonstration

Reading:

Ref[JXZ, 2002]: Pages 45 — 69
Ref[Gusfield, 1997]: Pages 209 — 258

S. F. Altschul et al. Basic local alignment search tool. Journal
of Molecular Biology. (1990) 215, 403 — 410.

S. F. Altschul et al. Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic
Acids Research. (1997) 25, 3389 — 3402.

B. Ma et al. Pattern hunter: faster and more sensitive ho-
mology search. Bioinformatics. (2002) 18, 440 — 445.

Webpage: http://www.ncbi.nlm.nih.gov/BLAST/
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Score schemes for sequence alignment:

The score scheme tells how to calculate the score of the
alignment.

The score scheme can measure either distance or similarity.

Various types of score schemes have been investigated:
— columns independent to each other:
* letter-independent (edit distance, BLAST)
* letter-dependent (PAM250, BLOSUMG62, PsiBLAST)
— gap penalties: what is a gap? why gap?
ATCCGGTGGTCTCGCCAT CA
Acce CTCGTCATGGTGGTGCA
cost: 0100 g(6) 00001000 g(7) 00

* general: g(i) denotes the cost of a gap of length i
O(ninz2(n1 + n2)) [Waterman et al., 1976]

* concave:
O(ninz2(logni + lognz)) [Miller & Myers, 1988; Epp-
stein et al., 1989]

* affine: g(i) = gopen + 1 - Geat
O(nin2) [Gotoh, 1982]
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Given two sequences, form a correspondence between
the letters by inserting spaces if necessary.

ATGCTCGCCATACA
ACCTCGTCATGCCA

ATGCTCGCCATA CA
AC CTCGTCATGCCA

cost: 011000010001100 = 5

Assume a similarity score/distance cost function s.

si1| -ACGT s2 | - A ¢ G T
-lo1111 -] 0o 2.3 2.3 2.3 2.3
Al1o0111 Al 2.3 o 1.7 1 1.7
cli11011 cl23 1.7 0 1.7 1
Gl11101 Gl=2.3 1 1.7 0 1.7
T|l11110 T|2.3 1.7 1 1.7 0

The score/cost reflects the probability of mutations,
e.g. s(a,b) = —logprob(a,b).

The score/cost of the alignment is the total score/cost
of all columns.

The goal is to maximize the score or to minimize the
cost.

The same DP algorithm for String Edit works for (global)

sequence alignment in O(mn) time and space.
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The PAM250 scoring matrix:

A[R|N|D[C[Q[E[G[H]I]|L[K[M[F[P[s][TW][Y]V]B]Z]X]
2

1/-3]0|1|-3]-1]0|5

-112(2|1|-3|3|1|-2|6

-1]-2|-2|-2|-2]-2|-2|-3|-2| 5

-2[-3[-3]-4]-6|-2]-3]-4|-2[ 2] 6

-1/3]1|0|-5|1]|0|-2|0|-2|-3|5

-1|0|-2|-3|-5|-1|-2|-3|-2|2|4 |0 |6

-4]-4|-4]-6]-4|-5]-5]-5|-2| 1| 2]-5] 0] 9

1|0[-1]-1|-3|0|-1|-1| 0 |-2|-3|-1|-2|-5

6
1/0[1]|0|0|-1{0|1|-1|-1|-3|0|2|-3|1|2
1/-1]0|0|-2|-1|0|0|-1|0|-2|0|-1|-3]|0

-6| 2 |-4|-7]-8|-5]-7]-7|-3]-5]-2]-3]-4| 0 |-6]-2]-5[17

-3|-a|-2|-4] 0]-4]-a|-5| 0 |-1]-1]-4]-2[ 7 |-5]-3]-3] 0 |10

-2|-2]-2|-2|-2|-2|-1|-2|4 | 2|-2| 2 |-1|-1]-1| 0 |-6|-2| 4

0 0[-5]-3|-2|2

N
w

x|N|w|[<|<[S][d|n]v|n|Z|x|-|~|z|o|m|O]n|o|z|D|>

2 2 1 1 0
0|1 3]-1/2|-2|-3|]0|-2|-5|0|0|-1|-6|-4|-2
0 0 0 0 0

3 1
3]-53
0 0 0

B: Aspartic D or Asparagine N;
Z: Glutamic E or Glutamine Q; and X: any undetermined amino

acid.
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Longest common subsequence (LCS):

Definitions:
e A sequence/string S =aiaz...an

e A subsequence is any a;ai, . ..a; where
1<iy<iz<...<ip<m.

® ajapz...a, is called a supersequence of a;a, .. .a;,.

Warning: Difference between subsequence and substring

Problem: Given two sequences S;1 = a1a2...an, and So = bibs ... by,,

find a longest subsequence of both S; and Ss.

Example: g;

010101001
1001010001

LCS=01010001

LCS as Sequence Alignment: Similarity score scheme: match
gets 1, mismatch and indel get 0.

The maximum score alignment is equivalent to an LCS.

State of the arts:
e Can be computed in O(nin2) time (in linear space).

e Open: the expected length of an LCS of random se-
guences of length n?
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Local sequence alignment:

Find one substring of S1 and one substring of S, to have the max-
imum (sequence) similarity.

For example:

ATAAGGTTGCTGAGCGC
CCCCTTCCTATTGATA

ATAGGTTGCTAGCGC TTGCTGA  ATA
CCCCTTCCTATTGATA  TTCCT A ATA

e Local sequence alignment can be done in O(nin>) time using
Dynamic Programming as well.

Key observation: allowing re-start
[Smith & Waterman, 1981]

e k-best non-intersecting local alignments can be found in
O(nina + kno) time.
[Waterman & Eggert, 1987]

e The space can be reduced to O(nz) as well.
[Huang & Miller, 1991; Chao & Miller, 1994]
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Affine gap penalty (g(i) =q+i-r)

Tables:

S[i, 7] is the maximum score of all alignments of aiaz...a; and
b1b2 - bj.

DJi,j] is the maximum score of all alignments of ajaz...a; and
bibz...b; that end with a deletion gap (in B) .

I[i,j] is the maximum score of all alignments of ajaz...a; and
bibs...b; that end with an insertion gap (in A).

0
0
0

Recurrences:
0 ifi=0andj=
D[i,0] ifi>0and j =
C o 110, 5] if i=0and j >
Stial = ST — 1.5 — 1] + o(as, b))
max< Dl[i,j] ifi>0and j >0
I3, j]
S[0,45] — ¢ ifi=0and j>0
— D[i=1,0]—r if i>0and j=0
Dli. 51 = Dli—1,5]—r o .
maxy GoLi—1.7]—q—r if i>0and j>0
S[i,0] — ¢ if i>0and j=0
o I[0,j—1] —r if i=0andj>0
1,51 = Ifij—1] - o .
maxq g -1 —q—r ifi>0and j>0

Linear-Space Algorithm:

An exercise.
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The maximum likelihood approach:

e An alignment describes a scenario of mutations.
AT|GICTCGCICAT|Al ICA
ACl CTCGT|CAT|GCICA

e Scores are the negative log of probabilities.

e Summing up scores is equivalent to multiplying probabilities
of mutations.

e The cost of an alignment is the probability of a particular path
of mutations.

e The maximum likelihood approach is to consider all possible
paths of mutations.
— Let L[Z,]] = Pr(alag c..a; — biby. .. bJ)
o Prinsert'L[i'flv]-]
- L[, il = Z Praetete - L[i,5 — 1]
Pr(a; — b;) - L[i — 1,5 — 1]

— We need find parameters Prinsert, Prdelete; Pr(a; — b;) to
maximize the L[ni,n2] = Pr(S1 — S2).

— This is a non-linear programming problem and heuristic
methods like Simplex and E(nergy)M(inimization) are of-
ten used.
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Sequences annotations and comparison of annotated se-
quences

1. Functional information

TBS SerSerAlaSer SerLeuAsn
Fok kKKK

cgccctataaaacccagce. .. .agctctgetagecacctgagectcaat

2. Structural information

alpha beta coil
skokskok ok sk ok ok bt Tt loToto oo Toth

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF. . .

3. Physical contact/bond

GC (7 ﬁ\\ﬂ
C CAGCGQUCACACCCGCGEGEGEEUAAACGCU

4. And many more.
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Combined DNA and protein sequence alignment:

e Amino acids are coded by triplets of nucleotides (codon); thus
actual mutations happen at the DNA level.

e Alignments of protein sequences are reliable (amino acid evo-
lution is slower than nucleotide evolution).

e Nucleotide changes are also important.

How do we align (coding) DNA sequences to reflect changes at
both DNA and protein levels?

1 Lys 1
Asn Asn TG - AAG —A—C

AAT AAT = T ACG
/V
}‘ ACT —T_g

Thr 1 Thr 0

1 LeuLeu 0
Leu Leu /mﬂ/ TtgcTG ﬂ Leuleu
T TG TG — __* TtgeTC
TTGCTC G—C " TTC ~ingel
LeulLeu 1 Phe 2

Alignment cost depends on order of events!
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Alignment of DNA Sequences with both Coding and
Non-Coding Regions

1. A Genomic sequence is a DNA sequence consisting
of both coding and noncoding regions.

TBS SerSerAlaSer SerLeuAsn
FK KKK KK #H## ###

cgccctataaaacccage. . .agctctgetageacctgagectcaat

How do we compare genomic sequences?

2. The sequences are usually broken up into segments,
which are compared separately.

3. For coding regions, classical methods align either
DNA sequences based on nucleotide evolution or
protein sequences based on amino acid evolution.

Since amino acids evolve slower than nucleotides,
alignments of protein sequences are usually more
reliable.

But nucleotide changes are also important!

4. Can we align coding DNA to also reflect the evolu-
tion of its protein?
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The notion of codon alignment [Hein, 1994]:

Align DNA to reflect nucleotide changes; but also consider the cost
of induced amino acid changes.

Alignment Model:
e cy(a,b): cost of substituting base b for base a.
e cy(erezes, f1f2f3): cost of substituting the amino acid coded
by fif2fs for the amino acid coded by ejexes.
e g4(i): cost of inserting (or deleting) a block of i nu-
cleotides.
We consider only indels of lengths divisible by 3, i.e. no
frame shifts.
e g,(i): cost of inserting (or deleting) a block of i amino
acids.
o Let g(i) = ga(3%) +gp(¢). (affine gap: g(4) = Gopen + i+ geat)
An alignment can be partitioned into codon alignments at codon
boundaries of both sequences.
The codon alignments are independent of each other.
Operation Costs:
Mutation
For eieses — fiezes,
costmut = cq(e1, f1) + cp(e1ezes, frezes).
Insertion
For ejezes — 6162€3f1...f3,j,
costins = g(i).
For ejezez — e1 fi...fziezes,
_ ; cp(erezes, e1fif2),
costins = g(i) + min { cplereaes, frieres).
Deletion
For eiezes...e3it1€3;42€3i+3 — €1€2€3,
costqer = g(4)-
For eieses...€3i+1€3i4+2€3i+3 — €1€3,42€3i+3,

. . cpl€er1€enez, e1€3; €3
costgel = g(z) + min p( 1€2€3, €1€3i+2 3L+3)7
Cp(c3i+153i+2e3t+37 c163[-%—233i+3)-
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Codon alignment: .
The 11 types of codon alignment:

e An alignment can be partitioned into codon alignments at
codon boundaries of both sequences.

e The codon alignments are independent of each other.

e There are 11 types of codon alignment.

e Each codon alignment involves at most 5 operations and thus
the optimal can be computed easily.

Summary:

1. An O(n2n3) algorithm [Hein, 1994]

2. An O(ninz) heuristic algorithm [Hein-Stgvibaek, 1994]

3. An O(ninz) time algorithm assuming affine gaps [Hua-
Jiang, 1987], which requires a table of size roughly 16644n;ns,.

4. An O(ninz) time algorithm assuming affine gaps [Pedersen-
Lyngsg-Hein, 1998], which requires a table of size roughly
15476n1ny (may be reduced to 800niny).

5. An O(niny) time algorithm assuming affine gaps for a
slightly simplified model (context-free), requiring a table
of size only 292n31n, [Hua-Jiang-Wu, 1998].
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A practical consideration: BLAST:

e Generalized from local alignment
Genomic Database Search. Given a query sequence QQ = ai1az...an,

find all sequences in the database that are similar to Q. e Maximal segment pair (MSP)
highest scoring pair of identical lengths segments chosen from
A database may contain millions of sequences, totaling in billions 2 sequences
of bases. Generalize to non-identical (score cutoff S)
The quadratic time DP algorithm is NOT fast enough! e Word pair
a segment pair of fixed length w (score cutoff T) — 12 for
Ideas in BLAST [Altschul et al., 1990] DNA, 4 for protein

e Screen out all sequences which don’t share a common Extending word pair to a possible MSP with score > 5

substring of length w with Q. e MSP vs. WP — T |, chance of MSP containing a WP |

e Often w = 12 for DNA and w = 4 for protein. number of WP hits T
e Consider n — w + 1 substrings a;a;4+1...a;4y-1, fOr i = running time 7
1,2,...,n—w+ 1.
e 3 algorithmic steps in BLAST:

e How to find the exact occurences of these substrings is . . . )
the topic of exact string matching (later). 1. compiling a list of high-scoring words (two ways:

e It is an approximate searching algorithm. . i
2. scanning the database for hits (two ways: s

Ideas in PatternHutter [Li et al., 2002]
. ) . 3. extending hits (heuristics: time vs. accuracy tradeoff)
e Looking for appearances of length m substrings with at
least w matches. e Implementation details:
— database compression
— removing repititive words

— allowing gaps (in the extension step)
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PsiBLAST:
e In the original BLAST, the extension step accounts more than
90% of execution time.

Try to reduce the number of extensions performed

e Observation: length of HSP is much larger than word-length
Therefore, multiple hits are very possible (same diagonal)

Idea: Do the extension only when
There are two hits at distance within A (pre-specified).
Some commonly used: w=3~4, T=11~13, A=37~ 40

e Implementation details:
— hit generation — use of position-specific score matrix
— hit extension (E-value, affine gap penalty, etc.)

— allowing gaps (only when the score is high enough)
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Notes:

e In any of the above homology search model, we look for either
exact or approximate occurrences of some word/seed/substring.

e Gaps are NOT allowed in the occurrences

e This is the Exact/Approximate String Matching problem.

Subject of some future lectures ...
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PatternHunter:

e A dilemma — increasing seed size decreases sensitivity while
decreasing seed size slows down computation

— large seeds lose distant homology while small seeds creates
two many random hits (which slow down the computation)

e Expect less to get more — use of nonconsecutive w letters
as seeds

The expected number of hits of a weight W, length w model
within a length m region of similarity p (0 < p < 1), is (m —
w—+ 1)p".

e For W =11, the most sensitive model:
111010010100110111 (sensitivity 0.467122 for certain p)

e Implementation details:
— hit generation
— hit extension

— allowing gaps (in the extension step)
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Agenda:

e Straightforward extension from pairwise algorithm
e Hardness results review
e Approximation algorithm concepts, review

e Approximate MSA

Reading:

e Ref[JXZ, 2002]: Pages 71 — 110
e RefGusfield, 1997]: Pages 332 — 369

e Ref[CLRS, 2001]: Pages 966 — 1054

68



Lecture 6: Multiple Sequence Alignment

The MSA problem:

e Input:
A set of k sequences together with a cost scheme o:

S1:  TACCCCGGGCCCCTTTGAGCA
S2: TCCTGGGCCAACCTTAAGCG
S3:  CACCCGGGCCAGCTTTTAAGCG
Sa: TACCCCGACCAACTTTAACT

e Output:

An alignment achieving the minimum cost (w.r.t. o):

Si1: TACCCCGGGCC--CCTTTGAGCA

So: T-CCT-GGGCCAACCTT-AAGCG

S3: CACCC-GGGCCAGCTTTTAAGCG

Sa: TACCCCGA-CCAACTTT-AA-CT
e Applications:

1. Identification of highly conserved regions in homologous
sequences.

E.g. the case of Cystic Fibrosis (Science, 1989).

2. Reconstruction of evolutionary trees.

A typical reconstruction algorithm begins with multiple
sequence alignment.

3. Applications in computer science.

E.g. syntactical analysis of HTML tables and analysis of
electronic chain mail.
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Identification of the Cystic Fibrosis Gene (cont'd):

Cloning and Characterization of Complementary DNA:
e MRNA sequence (NM_000492 to access NCBI)
e protein sequence (NP_000483 to access NCBI)

e Common disease:

About 70% of mutations observed in CF patients result from
deletion of three base pairs in CFTR's nucleotide sequence.
This deletion causes loss of the amino acid phenylalanine lo-
cated at position 508 in the protein (this mutation is referred
to as deltaF508 CFTR).

Homozygous patients have severe symptoms of cystic fibrosis
(e.g. breathing difficulty).

e Identification of the cystic fibrosis gene:
Done by Riordan et al. from Hospital for Sick Children (Toronto)

“Identification of the Cystic Fibrosis Gene:
Cloning and Characterization of Complementary DNA."”

Science, volume 245: 1066-73 (1989 September).

e Using multiple sequence alignment to detect the mutations
at the DNA-level.
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Identification of the Cystic Fibrosis Gene:

Cloning and Characterization of Complementary DNA:

Official Gene Symbol:
CFTR

Name of Gene Product:
cystic fibrosis transmembrane conductance regulator

Locus:
7931.2

The CFTR gene is found in region gq31-g32 on the long (q)
arm of human chromosome 7.

Size:

The CFTR gene's coding regions (exons) are scattered over
250,000 base pairs (250 kb) of genomic DNA. The 27 exons
translated into the CFTR protein are interspersed with large
segments of noncoding DNA (introns). During transcription,
introns are spliced out and exons are pieced together to form
a 6100-bp mRNA transcript that is translated into the 1480
amino acid sequence of CFTR protein.

Protein Function:

The normal CFTR protein is a chloride channel protein found
in membranes of cells that line passageways of the lungs, pan-
creas, colon, and genitourinary tract. CFTR is also involved
in the regulation of other transport pathways. Defective ver-
sions of this protein, caused by CFTR gene mutations, cause
cystic fibrosis (CF) and congenital bilateral aplasia of the vas
deferens (CBAVD).
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A multiple alignment between CFTR genes and
other membrane-bound proteins.
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QUVAESTALELEGEVRAGRILALVUSNINGRRTLLAR TR YLACGUTPRPATPVNRNLILAQNORTR - cazTCavcECavRLASYLOLTLLLLDERKNBLONMGHE
FYMGIAALTNIRIOTAAQUTAN G SGCCRETLLRTRNR  VOMVRQRTRTRIT-YONTARAURLE  mpecysLoasopmL cIAmG ATOPVLALORRCEALIR 161G
FHCERR AL LAARALLN LSS S0 LN L LOENBLASHRCPLERVRLALILN L PV LSHAA LR S AL UV LLEURY ALV LG
YRR RIRED AECEFWRVEREACEATLIRRTAG  VGMVRORYALTPRLAVARMRSTALNRR  ERNPRALAICACRVN R TL AR VR VIR LA ALY
TODEUT AT BT IARETLAT R Rt AR A TRMTRANFRTATNFRVIETTAR A v il LKL RIRRSTRLITL
CHERTLRAIVERL PAETIGVGRSGCERSTIARALIG  IQHEEUPLASLAVOMTIGETIANLY  MRYPHRRSa00CTRIGIARRLILEPHLLICD0AVALIVIOA

) ravmasGR AV GRAALENATRATHRTLNG  NATIRIRLELIDCLTINEREILARY LR e LA R AL IR
(5] VOHQSPEVHIVSFTLARGETLGVEGLMRAGRTELIVLYG  [REDRMCOLVAEVHERRELEALAY  pgntcrscominial bsLimhEVLILIBETRAVIVARE
LAY T R TG RRTRGRRTRE  TYTEVTTRMBGTYPRGRANTRS  STh s il WG TkG TR
Rt ELET AGEELLAPNGAGRATT IRATES  TATVSORDMLI S TVRRMLIVYGRTY  NTRMADLS UL TLACALIN QL LOTIG LT AR
NPAGALAGYTINGE DAL TG SGARETLRLIEG  [EMPODHEL ACRTVIDIVRIELTER NP TLLACORGURVGTARAANRIANTEACES TRNLEOALEE

72



Lecture 6: Multiple Sequence Alignment Lecture 6: Multiple Sequence Alignment

Typical reconstruction of evolutionary tree: Models of MSA:

1. Input: a set of molecular sequences. E.g. some globin genes e An alignment:
of human, mouse, etc.
S1:  TACCCCGGGCC--CCTTTGAGCA
i i S>: T-CCT-GGGCCAACCTT-AAGCG
2. Compute a multiple alignment of the sequences. S3:  CACCC-GGGCCAGCTTTTAAGCG
Sa:  TACCCCGA-CCAACTTT-AA-CT

121 131 141

trema TCCT--CAAG ~ A--TA-—-TT  TG--AGATTG " denotes the original sequence S; with spaces inserted
mouse-alpha AT-A--TGGA  GCTGAAGCCC  TGGAAAG--- S" 9 a o P :
midge CT-T--CAAG  GCTGA---TC  CATCAAT---
cow-myo GG-CCATGGG ~ CAGGAGGTCC ~ TCATCAG--- e Each column j has a cost: c(S}[5], S5l4], - - -, S,[5]).
mouse-beta AG-T--TGGA  GGAGAAACTC TGGGAAG---
human-myo GG-CCATGGG  CAGGAAGTCC  TCATCAG--- . .
vitreoscilla TTAT—-AAAA  ACTTG——-TT TGCCAAA——-— e Cost of alignment is the sum of costs of columns.
duck-beta CT-G--TGGA  GCTGAGGCCC  TGGCCAG---
oak TCTT--AAAG ~ A--TA---TT  TG--AGATCG e The goal is to minimize the cost.

3. Analyze each column to infer pairwise distance. e Example cost functions:

4. Construct an evolutionary tree. — Longest Common Subsequence (LCS):

-1 ifag=a>=...=a,
C(a17a27---7ak)={ 0 otherwise ‘

vitreoscil
— Maximum Weight Trace (MWT):
trema oak . >
clavaz,..a) ==Y (D I@a)] ,
aex i=1

cow-myo human-myo

where
mouse-alpha duck-beta mouse-beta .
I(a,a;) = 1 ifa=a;
»® 7 1 0 otherwise
73 74
Lecture 6: Multiple Sequence Alignment Lecture 6: Multiple Sequence Alignment

Models of MSA (cont'd):
( ) The evaluation of tree-cost of a column:

e Models of cost/scoring schemes:

*
Given a pairwise cost scheme s(a,b), TACGGGCC TTG [ T—
|b_1--+
e 1. Sum-of-Pairs (SP) cost: T CAGGCCC A J P— |
_ s |--b_3
elan,az,.o) = D sai,a) CA GGG COTTA  Ae——t |
i#j |b_2--+
2. Consensus cost: TACAA CCTTTG G-———+
c(ai,az,...,ar) = min s(a,a;)
* a Z tree-cost of column *:
C(G, A, A, G) = minb]4b2_b3
3. Tree cost: w.r.t. a given evolutionary tree T, . s(G,b1) + s(A,b1) + s(A,b2) + s(G, b2)
car . ap) = min Z s(ab) + s(b1,b3) + s(b2,b3)
internal node assignment
@her . =38(G,G) +5(A,G) +5(4,G) + 5(G, G)
TACGGGCC TTG  --———+ . +s(G, Q) + s(G,G)
lo-——+
T CAGGCCC A ——+ | . =2 _ _
|-—--0 (assume s(a,b) = 0 if a = b, or 1 otherwise)
CA GGG CCTTA ————+ |
lo-——+ This can be done by dynamic programming in linear
TACAA CCTTTG  --——-+ time. (also called the small parsimony problem)

Usually assume cost s(a,b) is a distance metric.
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An exact algorithm — Dynamic Programming: Dynamic Programming recurrences:

e Idea: e SP alignment:

Extending the Dynamic Programming algorithm for pairwise
sequence alignment to k dimensions.

Table entry computation (recurrence):

d(iy,i2,...,1;) denotes the cost of an optimal alignment for k
prefixes Si[1..i1], Sa[1..i2], ..., Sklix], where 0 <i; < nj.

d(in, iz, -y i) = min {d(@y, b, i) + 5@+ L+ 1,0+ 1)}

where 15 =ijorij—1and s(i{+1,i,+1,...,4,+1) is the cost of
the last column in the alignment containing k letters/spaces,
one from each given prefix.

The minimization is taken over 2¥ — 1 entries (recall the case
k=2).

Boundary entry computation:

An entry d(i1, i, ...,14) iS boundary if at least one of its indices
ij is 0.

Running time and space requirement:

If s(iy + 1,45+ 1,...,4, + 1) is known,
— There are (n1 + 1) x (no + 1) x ... x (n + 1) entries.
— Each needs to scan 2F — 1 values.
— Space: O(n*)

Time: O(2FnF)

7
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Approximate SP alignment:

o Sum-of-all-Pairs: c(S1,92,..., ) = 3, 5(5, ).

The exact algorithm running time O(n*),
which is NOT polynomial when k is also a variable !!!

In general, the problem is NP-hard — no polynomial time
algorithm exists unless P = NP

This is NOT the end of story.
We still want to solve the problem to some extent
— sacrifice the accuracy

— approximately good (performance guaranteed) alignments
in a short (polynomial) time

Observations:
— Fix index i, computing ¢(S;) = E#]. s(Si, Sj) is easy.
— Computing min; e(S;) is then easy too.

— Using the alignment A produced in this way as the ap-
proximate SP alignment.

79

Boundaries:
k ij
d(0iz, .. vix) = iz, i) + Y Y s(Silil, -,
i=2 j=1
Column cost:

c(ay,az,...,a;) = E s(ai, ;).

i#j
General recurrence:
d(i, 2, . .., i) { v .
= minl.rlgl.;gi]‘ <Y d(@), i, .1
+2c:(]51[%+ 1], Saliy + 1], Seli, + 1}
where S;[i; + 1] = —
e Consensus alignment:

An exercise !

e Tree alignment:
An exercise !
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Analysis of the approximation algorithm:

e Running time:

O(k x k x n?) eos
Sk
Siy1 S; 5
Si% 52
oo

e Performance analysis:
A — alignment computed
A* — an optimal alignment

— For fixed i, in A%, 3 5(Si, ;) > e(S).

— Thus c(A*) > 33, c(S:) > & - min; e(S)).
Or equivalently, min; c(S;) < 2¢(A*).

— Therefore,
(A = >..,s(55,50)
< (k—-1) Z s(S;, S;) (bytriangleinequality)
= (k- 1)c(5’§
< (2 = 2)c(AY).

= o(A) < (2 - B)e(AY)

e Simulations showing that the algorithm performs much better

in practice:
— On 19 random sequences, c(A) < 1.02¢(A*).
— On homologous sequences, c(A) < 1.16¢(A*).
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Approximation algorithm (review):
e Runs in polynomial time (in the input instance size)
e Produces a solution within certain range of the optimum

e For a minimization (maximization) problem, an a-approximation
algorithm produces a solution, for any instance, with cost less
than or equal to « (%, respectively) times the cost of an op-
timal solution.

« is called the performance ratio of the approximation.

e The above is a 2-approximation algorithm for the MSA with
SP cost.
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Approximate SP alignment (2) (cont’d):
e Maximum weighted matching can be computed efficiently

e An optimal center sequence S; and its associated optimal
alignment A can thus be computed efficiently.

e (1992) The 3-star algorithm runs in time O(n3k3 + k%) and
achieves performance ratio 2 — 2.
e Analysis of 3-star algorithm:

— Running time
An exercise

— Performance
An exercise
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Approximate SP alignment (2):

The above approximation algorithm tries to find the best se-
quence to be used as a center sequence.

It has performance ratio 2 — 2.

The center sequence has the property that it has the minimum
sum of pairwise distances to other sequences.

The graph (tree) connecting the center to all other sequences
is called a 2-star, and the algorithm the 2-star algorithm.

e Generalizing to 3-star (disjoint triangles glued at the center):

— Now each "“edge” from the center involves 3 sequences.

Need a partition of the other sequences into pairs, which
should be optimal regarding the chosen center sequence.

e0e e%e
Sk Sk
Si+1 S Sy SL'+1 S / 51
Si®1 52 Si*1 52
o0 oe0

— For fixed index i, an optimal partition of the other se-
quences and the associated optimal alignment can be
computed by maximum weighted matching.

Weight function is defined by:
u)(Sj, S[) = mjn (d_A(Sj, S[) + (k — 2) . dA(S,‘7 Sj) -‘r (k — 2) -dA(S,’, Sé
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Approximate SP Alignment (3):

e Consider ¢-stars:

Thm.

Problem:

Solution:

Thm.

(1992) The multiple sequence alignment induced by an opti-
mal ¢-star costs at most (2 — £)c(A*).

Can't find an optimal ¢-star when ¢ > 3, because 3 dimensional
matching is already NP-hard.

balanced set of ¢-stars.

(1994)The best (-star in a balanced set also induces an align-
ment with cost at most (2 — £)e(A").

Running time: O(k-n’-|B|) = O(k3-n’).
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Balanced set of ¢-stars:

e Definition:

The edge set connecting to the /-starts covers each edge of
the complete graph the same number of times.

e Example:

Ks (k=5): M

There are in total 30 possible 3-stars (¢ = 3).

e A balanced set of 3-stars — covers each edge 3 times:
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Approximate tree alignment:

e Tree alignment is NP-hard, even when the cost scheme sat-
isfies the triangle inequality.

e Generalized Tree alignment (when the tree is not given ahead

of time) is MAX SNP-hard.
Which means, no PTAS !!! unless P = NP.
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Approximate consensus alignment:

e Consensus sequence:
— Steiner consensus sequence S — definition without MSA
* S need not be from the set of given set of sequences

* It is generally hard to compute S

* Assuming the pairwise alignment cost scheme satisfies
triangle inequality,
The 2-star sequence is an approximation, with perfor-
mance ratio (2 — 2).

— Definition based on MSA:

For each column in the MSA, which letter minimizes the
column cost?

Concatenating the consensus letters into a sequence —
consensus sequence
e Two definitions equivalent to each other

e NP-hard

e 2-approximation algorithm

Can you improve it ?
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Agenda:
e PTAS for Tree Alignment
e Special cases of MSA

e PTAS for some special cases

Reading:
e Ref[JXZ, 2002]: Pages 71 — 110

e M. Li et al. Near optimal multiple alignment within
a band in polynomial time. ACM STOC 2000.
425-434. Portland, Oregon.

e C. Tang et al. Constrained multiple sequence align-
ment tool development and its application to RNase
family alignment. IEEE CSB 2002. 127-137. Stan-
ford, California.
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Lecture 7: Multiple Sequence Alignment
Approximate tree alignment:

e Tree alignment is NP-hard, even when the cost scheme sat-
isfies the triangle inequality.

e Generalized Tree alignment (when the tree is not given ahead
of time) is MAX SNP-hard.

Which means, no PTAS !!l unless P = NP.

e Reformulating tree alignment:

Sequence reconstruction: Given a rooted evolutionary tree T'
with leaves labeled by sequences, construct a sequence for
each interior node to minimize the cost of the tree.

— An example,
1

S
S1 = ACTG
. S2 = ATCG
Sequences and cost scheme: 2 — ooy
S4 = GTTA
|A C G T -
A0 1 1 1 1
cji1 o 1 1 1
G|1 1 o0 1 1
T|1 1 1 0 1
-1 1 1 1 -
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Tree alignment vs. Steiner tree:
e Steiner Minimal Tree (SMT):
Given a set S of terminals in some space, find the shortest

network connecting S.

e For our generalized tree alignment problem, the space is DNA
sequences with (weighted) edit distance.

Corollary. The generalized tree alignment problem can be approximated
with ratio ~ 1.5.

e Tree alignment is SMT with a fixed topology !
Corollary. SMT with a fixed topology in any metric has a PTAS.

e PTAS: polynomial time approximation scheme — approxi-
mate arbitrarily close to the optimum
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Approximate tree alignment (cont'd):

e Cost of edge (z,y): the optimal pairwise alignment cost of
the sequence labels at z and y

String Edit, computable in O(n?) time
e Cost of (fully) labeled tree: total cost of edges
e This is a variant of fix-topology Steiner tree problem.

e Equivalence of the formulations:

ACTG ATCG GCCA GTTA
Si1:  ACT-G Si: ACT-G
To: ACTCG
Sa2:  A-TCG S>:  A-TCG
T3 GCT-A

The induced MSA: ri:  ACT-A
X ACTCG
S3:  GCC-A S3: GCC-A
r3: GCT-A
Sa:  GIT-A Sa: GIT-A

e Cost of optimally labeled tree = tree cost of optimal align-
ment
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Approximate tree alignment (2):

o Lifted tree:

A fully labeled tree in which every parent sequence equals
some child sequence.

e For example,

ACTG ATCG GCCA GTTA

Theorem. For some lifted tree T¢, ¢(T%) < 2 x ¢(T*).

T* is an optimal labeled tree.

Proof. By averaging over all lifted trees.

Theorem. We can compute an optimal T* in O(k® 4 k2n2) time.

2

Theorem. Tree alignment has a PTAS that achieves ratio 1 + — in

14t
O(kdn?™'*1) time, where d is the depth of the tree.
\ t 2 3 g \
[ ratio 1.67 1.50 1.40
[ running time [ O(kdn®)  O(kdn®) O(kdn®) |
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A sketch of analysis of 2-approximation:

e T* — an optimal labeled tree (not necessarily lifted)
For each v € T*, £(v) — the descendant leaf closest to v
WARNIing: some constraints on choosing £(v)

e T! — obtained by lifting sequence of £(v) to v
ACTA GCCA

ACTCG TA ACTG CA

/
/

ACTG ATCG GCCA GTTA ACTG ATCG GCCA GTTA

e Observation: ¢(T%) is at most the total distance between every
pair of adjacent leaves in T*.
With suitable flipping of the subtrees !l!

Theorem. ¢(T%) <2 x (T*).
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Uniform lifting tree:
e Given a phylogeny, the order of the sequences are fixed

e During the lifting, the lifting decisions (Left or Right) are
identical at each level of the tree

/ y

S1 52 S3 Sa S5 S6 57 sg
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Computing an optimal lifted tree:
e v — internal node
e T, — subtree rooted at v
e S(v) — subset of sequences corresponding to leaves in T,

e Define for each v and s € S(v), Dl[v, s] is the cost of an optimal
lifted tree for T, with v being labeled by s.

e Recurrence:
For each i # 2, find an s; € S(v;) to minimize D[v;, s;]4d(s, si).

Dlv,s] = Dlua,s] + Y _ (Dloi,si] + d(s,s))
i#E2

e Running time is O(k?n? + k3)
Can be improved to O(kn x depth) by uniform lifting (next).
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Uniform lifting tree:
e Given a phylogeny, the order of the sequences are fixed

e During the lifting, the lifting decisions (Left or Right) are
identical at each level of the tree

S1 52 S3 S4 S5 S6 S7 S8

The uniform lifting choice vector is V = (R, L, R)

Theorem. For an average uniformly lifted tree T%,

o(T™) < 2e(T).

Prove it.

Theorem. We can compute an optimal uniform 7% in O(kd+ kdn?) time,

where d is the depth of T'.

Dynamic programming.
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PTAS for Tree alignment:

Theorem. Tree alignment has a PTAS that achieves ratio 1 4+ -2~ in

T+t
O(kdn? '*1) time.
e Idea: from spanning to Steiner
Keeping the lifted sequences at some nodes while reconstruct-

ing Steiner sequences at the others

e For example,

GCCA GCCA

Tt T

ACTG ATCG GCCA GTTA ACTG ATCG GCCA GTTA
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Extending the 2-approximation to a PTAS:

e General idea: lifting + local optimization
Assuming A-ary trees

e depth-t component: a subtree with depth ¢

e Local optimization: optimize a depth-t component with fixed
labels at leaves and root

(%

/

e This requires optimizing A depth-(t — 1) components with
fixed labels at leaves and parent.

e Each takes M(A,t—1,n) = O(n2'*+1) time.
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PTAS for Tree alignment (cont’'d):

e Key techniques:

— Careful partitioning strategy

Local optimization
— Dynamic programming

— Uniform lifting

e Outline:

1. Partition the tree into overlapping components, each with
r boundary nodes

2. Uniform lifting to boundary nodes
Local optimization on each component
Dynamic programming

3. Consider a set of partitions (by shifting) so that every
node has equal chance of being a boundary node

The partitions yield a good approximation on average

4. The the best result of all partitions
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Extending the 2-approximation to a PTAS:

e The partition P, 0 <i <t (assuming binary tree)
— Fix a uniform lifting choice V'
— The top component is a binary tree of height ¢

— All nodes on the lifting path of head/leaf of a component
are also heads

— There are t x 2¢ different components, where d is the
height of the tree

— These components put all nodes of the tree on boundaries
with roughly equal frequency

L-type components:

R-type components:
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Extending the 2-approximation to a PTAS (cont'd):

e A partition example: t =3, r=4, V=(R,R,R)

Py 7

NIV

iV NV
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PTAS implementation and experimentation:
e TAAR — Tree Alignment and Reconstruction

e DNAPARS (in PHYLIP)
— Arrange the sequences (species) in some order
— Construct a tree for the first 3 sequences

— For each of the rest sequences do
Add the sequence to the current tree to achieve the min-
imum cost

(It assumes a given MSA)

— Assumption on MSA can be removed if the cost is mea-
sured using tree alignment
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Extending the 2-approximation to a PTAS (cont'd):

e With respect to each partition B, the best depth-t component
tree is denoted by T*

e Compute T¢ by optimally lifting leaves to the boundaries and
locally optimize the other nodes
For P, levels i, i +¢t, i+ 2t, ..., form the boundaries

— For each boundary node v and lifted sequence s,

DJv,s] — cost of an optimal depth-t component subtree
with root label s

— DI[v,s] can be computed iteratively from bottom to top
(dynamic programming)
Reduced to the optimization of tree of depth-(¢ — 1)

— The size of local optimization is r = A!"1 41
— Running time:

O(KA T2 5 M(A,t — 1,n)) = O(KA T +2pA 7 +1,

Lemma. $'70 (T < (t+ 3)e(T").

Corollary. For some i, ¢(T?) < (1 + 2)e(T*).

Key observation: Let T be a full binary tree. For each leaf
¢ e L(T), there is a mapping =, from I(T) to L(T) such that

— Vv e I(T), n(v) is a descendant of v
— The paths from nodes v to their images m;(v) are disjoint

— 3 unused path from root to ¢
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MSA in practice:

There are many multiple alignment programs available either com-
mercially or as freewares, such as

CLUSTAL W, DFALIGN, MULTAL, MST, ESEE, ...
It seems all are based on the same idea: clustering and progressive
alignment.
The Generic Algorithm
1. Find the pair of the most similar sequences.
2. Optimally align the pair.

3. Record the alignment as either a profile or a consensus
sequence, and substitute it for the pair.

4. Repeat until only one profile/sequence is left.
5. Recover the multiple alignment from the final profile or by
aligning each sequence with the final consensus sequence.
Comments
1. Quite efficient.
2. No clear objective function.

3. Some also use the evolutionary tree as the guide tree.

104



Lecture 7: Multiple Sequence Alignment Lecture 9: RNA Sequence and Structure
CLUSTAL W — king of progressive alignment: Alignment

Step 1: Simple pairwise alignments and distance Agenda:

e Quick approximate or dynamic programming (k-tuple match) e Three computation models
e score = 1 - percent identity - gap
e Algorithms & approximations
Step 2: Compute guide tree using neighbor joining (NJ)

e Branch lengths

e Rooted at "mid-point” Reading:

w(e)
ecP # of sequences sharing e

e Weight of sequence = >
e Ref[JXZ, 2002]: chapter 14.
Step 3: Progressive alignment

e traverse the tree in post-order e T. Jiang et al. A general edit distance between
alian a pair of alignments using dvnamic programmin RNA structures. Journal of Computational Biology.
e olana® 9 e prog ¢ (2002) 9, 371-388.

(Smith-Waterman, linear-space)

e existing gaps are frozen e G. Lin et al. The longest common subsequence

e column score = average score between each pair of residues problem for sequences with nested arc annotations.
from different alignments (i.e. variant of SP-score) ICALP 2001. LNCS 2076, pp. 444—455.
e space results in O (worst case)
e K. Zhang et al. Computing similarity between RNA
structures. CPM 1999. LNCS 1645. pp. 281-293.

e V. Bafna et al. Computing similarity between RNA
strings. CPM 1995. LNCS 937. pp. 1-16.
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Backgrounds: Comparison taking sequence & structure information:
e RNA performs a wide range of functions (HIV) e Intended: the measure of similarity becomes more accurate
e Presumption: a preserved function corresponds to a preserved

structure e Possible mutations: looking at the structures

¢ RNA structures: — nucleotide mutations (replacement, mismatch, substitu-

— primary — sequence of nucleotides tion, ...)
. . if that base is involved in a base pair, then the bond could
— secondary & tertiary — bonded pair of two complemen- disappear — depending on the other base change
tary bases

— single nucleotide indel

if that base is involved in a base pair, then the bond
— tertiary — base pair & spatially close pair of nucleotides disappears — more costly 7

weakly bonded

— secondary — base pairs

— a base pair indel

— one base involves in at most one base pair . i . .
— a base pair mutation (the bond maintains, e.g. A-U — C-G

— secondary structure non-crossing / nested — more costly than single base mutation?

e Representing a bond between a pair by drawing an arc con- — In short, mutation operations have to be carefully defined
necting them

arc-annotated sequence o .
a e Three existing comparison models (sequence + secondary

A tRNA and its associated annotated sequence: structure):
GCG — More focus on secondary structure units
CG Less on base pair mutations
C CG Even less on single nucleotide mutations
ANE AN - N dary struct it
CUGC GGUA 0 secondary structure units
G;C (f ﬂ Separate base pair mutations from single base mutations
AU ( \ — No secondary structure units
C CAGCGUCACACCCGCGGGGQUAAACGCUY e
Distinguish but not really separate the two sets of muta-

tions
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Tree edit distance:

e Using the planar secondary structure itself.

g
-4
N a
A
AU
aC
£ 0q
oy ‘AEAU AN
U C e UA,C
a a
. IIA U
u o
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If a base pair is not matched with another base pair,
then delete it:

ﬁA**U —AA**U
GAx-U GA-*-U
N N——
Knxxv —AA**U
GA*x-U G-A*U-

e Secondary structure vs. tertiary structure — solvable
Algorithm is similar to some to be described later ...

e Tertiary structure vs. tertiary structure — NP-hard

Approximations 777

The above (tree edit) model seems a bit too
strong. We consider a more relaxed model in
next page.
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Tree (rooted, ordered) representation of the
above RNA secondary structure.

Tree edit compares two trees taking into ac-
count secondary structure changes, base pair
mutations, and single base mutations

Lecture 9: RNA Sequence and Structure Alignment

If a base pair is not matched with another base pair,
then at least one of its bases should be deleted:

Kaxxt i
Ax* -=-AA*%U
GAx-U GA--%-U
N -
[ g \
AA** —-AA**U
GAx-U G-A*-U

e Levels of restrictions on arcs:
1. no sharing of end bases
2. no crossing
3. no nesting

4. no arcs

LAPCS: Longest Arc-Preserving Common Subsequence Problem:

Given two arc-annotated sequences, find a longest common
subsequence cica...c; such that (ci,c¢;) is an arc in one se-
quence if and only if it is an arc in the other.

1. unlimited — no restriction,

2. crossing — restriction 1,

3. nested — restrictions 1 & 2,
4. chain — restrictions 1, 2, & 3,
5

. plain — restriction 4.
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An example pair of arc-annotated sequences. The first

common subsequence ACGUUCCGGAU is arc-preserving

but the second common subsequence ACGUUUA is not.
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Lecture 9: RNA Sequence and Structure Alignment

LAPCS(crossing, plain) is NP-hard:

e General procedure of proof of NP-hardness of problem A:

e For

Find some appropriate known NP-hard problem B
For every instance I of B, construct an instance J of A

Prove that I is a yes-instance iff J is

LAPCS(crossing, plain):

An appropriate known NP-hard problem is Maximum In-
dependent Set of vertices in Cubic graphs (MIS-cubic):

Given a simple cubic graph G = (V, E), where |V| = n,
and an integer k, is there a subset S C V such that

1. no two vertices in S are adjacent in G,
2. |S|>k?

Reduction from MIS-cubic:

* S1 = (AAAACCGGG)"

* S = (AAAAGGGCC)"

% an edge between v; and v; corresponds to an arc con-
necting a G from the ith segment and a G from the
jth segment

* making sure that every G is used exactly once
x* set k' =k+6n

Prove that G has an independent set of size at least k iff
the constructed LAPCS(crossing, plain) has an APCS of
length at least k.
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Best-to-date results for LAPCS(:, -):

plain | chain | nested | crossing | unlimited |

unlimited || NP-hard [Evans, 1999] |
inapprox. within ratio nf, for € € (0, 3) |

crossing NP-hard [Evans, 1999]
MAX SNP-hard

2-approx.
nested O(nm?3) NP-hard
2-approx.
chain O(nm) [Evans, 1999]
plain O(nm) |

Special Cases for LAPCS(nested, nested):
e unary

e c-diagonal, c-fragmented

Results:
e still NP-hard; %—approximable
e still NP-hard; admit PTAS

Lecture 9: RNA Sequence and Structure Alignment
2-Approximation for LAPCS(crossing, crossing):

Given (S1, P1) and (Sa2, P2),
1. Compute a classical LCS for sequences S; and S>, denoted S;

2. If there is exactly one arc that connects two bases in S, con-
nect these two bases by an edge — this constructs a graph
G on bases in S;

3. Delete the minimum number of vertices (bases in S) from G
to make the remaining graph trivial

— equivalently, find an MIS for G;

4. Take the vertices remained as the approximate subsequence
T.
5. Properties:
e (G has the maximum degree (at most) 2.
e An MIS of G can be computed easily.
e The size of MIS is at least half the number of vertices.

e Therefore, |T| > 1|5].

6. Conclusion:
T| > 315] > 315"
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LAPCS(crossing, plain) is MAX-SNP-hard:

e General procedure of proof of MAX SNP-hardness of problem
A:

— Find some appropriate known MAX SNP-hard problem B
— For every instance I of B, construct an instance J of A
— Show OPT(J) <ax OPT(I)

— Prove that an approximate solution S to I implies an
approximate solution 7' to J such that

* T can be obtained from S in polynomial time
x OPT(I)—|S| <bx (OPT(J)—|T|)
namely, the error rate guaranteed
e Reduction from MIS for cubic graphs:
— 51 = (AAAACCGGG)"
— S2 = (AAAAGGGCQO)"

— an edge between v; and v; corresponds to an arc con-
necting a G from the ith segment and a G from the jth
segment

— making sure that every G is used exactly once
e Prove that v; isin the independent set if and only if AAAAGGG
from the ith segment is in the common subsequence (other-
wise AAAACC).
e LAPCS(crossing, plain) = MIS(G) + 6n < 25 - MIS(G).

e |k — MIS(G)| < |k — LAPCS(crossing, plain)|.

Lecture 9: RNA Sequence and Structure Alignment

Dynamic Programming for LAPCS(nested, plain) (cont'd):

Step 1: Given (S1,P1) and (S2,0), DP(i,4;j,5') records the length
of LAPCS of Si[i,i] and Sz[j,5'], where no arc has exactly
one base inside [4,4'].

Phase 1: if ¢ is free,
DP(i,i' —1;j,5' — 1) + x(S1[i'], S205'D),
DP(i,i'; j,5) = max< DP(i, @105,
DP(i, ;4,5 —1);
otherwise,

DP(i,ij,j) = max {DP(l u(i) = 1;5,57) + DP(u(@), 5 5,50 } -

Phase 2: (i1,j1) € P1,

DP(i1+ 1,51 — 1,5+ 1,5") + x(S1[i1], S2[4]),
DP(ir + 1,71 — 13,5/ — 1) 4 x(S1la, S207D).

DP(i1, j1;4,5") = max{ DP(i; + 1, 31*1,37])
DP(i1,j1; 4,5 — 1),
DP(ix,j1:5 +1,5');

Step 2: if ¢ is free,
DP(1,# - 14,7 = 1) + x(S1l¢1, S215'D),
DP(1,7;4,5) = max{ DP(1, z —1; ]7])
DP(1,4;5,7 —1);
otherwise,

DP(L,#35,7) = max {DP(Lu(i') — 1:5,31) + DP(u(), i 5", 5 } -
A )

DP(1,n1;1,n2) gives the length of the annotated LAPCS. Simple
back-tracing gives the subsequence.
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Dynamic Programming for LAPCS(nested, plain):

e The key ideas:

— Notice that at most one base for every base pair can be
in (any) LAPCS

— Ordinary DP reduces the computation to neighboring en-
tries, which is not true anymore

— Consider the two bases at the same time. How 777

* the nested arc structure enables us to do this ...

« for every pair of indices (i,i’), such that no arc can
have one base inside, while the other outside interval
[i,4:
compute how (Si[i, ], P1[i,i]) is aligned with Sx[j, 5]

Lecture 10: Sequence & Structure Alignment

Agenda:
e More algorithms & approximations for LAPCS

e Models on protein structure comparison

Reading:

e T. Jiang et al. A general edit distance between
RNA structures. Journal of Computational Biology.
(2002) 9, 371-388.

e G. Lin et al. The longest common subsequence
problem for sequences with nested arc annotations.
ICALP 2001. LNCS 2076, pp. 444—455.

e D. Goldman et al. Algorithmic aspects of protein
structure similarity. IEEE FOCS 1999. pp, 512—
521.
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LAPCS(nested, nested) is NP-hard:

e Similar idea as in the MAX-SNP-hardness proof of LAPCS(crossing,
plain), with carefully found problem: MIS on Planar Cubic
Bridgeless Graphs.

— MIS on planar cubic bridgeless graphs is NP-hard.

— A planar cubic bridgeless graph has a perfect matching,
which can be computed in linear time.

— Planar Cubic Bridgeless Graphs are subhamiltonian.

A graph is subhamiltonian if it is a subgraph of a Hamil-
tonian planar graph.

— There is a linear time algorithm which, for any planar
cubic bridgeless graph, finds a Hamiltonian supergraph of
maximum degree at most 5 and a 2-page book embedding
in each page every vertex has degree at least 1 (and thus
at most 2).

e This time,
— 51 = (CCCCDBAB)™CCCC, » — number of vertices
— S = (CCCCBDBA)"CCCC

— an edge between v; and v; corresponds to an arc con-
necting a B from the ith segment and a B from the jth
segment

— in Sy, if v; has degree 1, then an arc connecting last C
and D and an arc connecting B and A; in Sy, if v; has
degree 1, then an arc connecting next C and A and an
arc connecting B and D; making sure that every B is used
exactly once.
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More NP-hardness results:

e Observations:
— the matches are within segments

— the possible matches are of forms
(26 —1,2i — 1), (2i —1,2i), (2i,2i — 1), and (2i, 2i)

— we are limiting ourselves to
* cut S1 and Sy into fragments of length 2

* the possible matches are required to be inside the frag-
ments

x called 2-fragmented LAPCS(nested, nested)

* it is already NP-hard

e More hardness results:
— (-fragmented LAPCS(nested, nested) is NP-hard, ¢ > 2
— c-diagonal LAPCS(nested, nested) is NP-hard, ¢ > 1

e Some positive results:
— 1-fragmented LAPCS(nested, nested) is in P
— O-diagonal LAPCS(nested, nested) is in P
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LAPCS(nested, nested) is NP-hard (cont'd):

e An example reduction from K4 (which is planar, cubic, bridge-
less)

ANat

ccced baécccc@l@a@abccccﬂiﬂcccc

cccecbdbaccccbdbaccccbdbaccccbdbacccc
UU Uy

e Prove that w»; is in the independent set if and only if the
two B from the ith segment are in the common subsequence
(otherwise D is in the common subsequence).

e Therefore, there is an MIS of size k if and only if there is an
APCS of length 4n+4+2k+ (n— k) =5n+ 4 + k.

e This is not a MAX-SNP-hardness proof !l

Why 7
because MIS on planar cubic bridge

ss graphs admits a PTAS

122

Lecture 10: Sequence & Structure Alignment

PTAS for ¢-fragmented LAPCS(nested, nested):

e Observation:

— It is closely related to MIS on planar (cubic bridgeless)
graphs.

— MIS on planar graphs admits a PTAS.

o Key ideas:

— Inside each fragment, there are at most ¢2 possible matches,
of which some are in fact conflicting each other

— Make every possible match into a vertex
— Conflicting matches are connected via an edge
— To compute an MIS
— Problem: graph is NOT necessarily planar ...
inside and long-range
e More ideas:

— Use a super-vertex to represent the subset of vertices
inside a fragment

— Merge multiple edges, if any, into one (super-)edge

— Because of the nested arc structures, the new graph is
planar
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PTAS for ¢-fragmented LAPCS(nested, nested) (cont'd):

e Further ideas: for any integer k,

— Compute a k-cover {U1,Us>,...,U;} for this planar graph

(polynomial time)

— For each subset U;, which is (k— 1)-outerplanar, compute
a tree decomposition of width at most 3k — 4

(polynomial time)

— Substitute back the subset of vertices for every super-
vertex

— This substitution increases the tree width to at most (3k—
4)¢?

— Compute an MIS for U;

(polynomial time)
— Output the maximum MIS among the k ones computed

— It is of size at least 1 of the optimum

Theorem: ¢-fragmented LAPCS(nested, nested) admits a PTAS (£ > 2)

(it runs in O(2B=DE3c5(]51| + |S2|)) time and outputs an
APCS of length at least £ times the optimum).

Corollary: c-fragmented LAPCS(nested, nested) admits a PTAS, ¢ > 1.

125

Lecture 10: Sequence & Structure Alignment

A %-approximation for Unary LAPCS(nested, nested)
(cont'd):
e Compute a Lep-LAPCS Ty in O(njnp) time. Denote the
length by /1.
— How ?

— While a base-pair is cut, leave its left base, remove its
right base
Since left base has the priority ...

— Please fill in the details here

e Compute a Rip-LAPCS Tz in O(n3n2) time. Denote the length
by EQ.

e Compute a longest APCS T in O(nin2) time, which does not
contain any arc-match. Denote the length by /p.

— How 7
— Remove the right bases from all the base pairs ...

— Then compute the classical LCS ...

e Can prove

max{£1,£2,40} > 22*7

where ¢* is the length of an LAPCS.

127

Lecture 10: Sequence & Structure Alignment

A %-approximation for Unary LAPCS(nested, nested):

e Unary LAPCS(nested, nested) is still NP-hard ...
Proof similar (can you prove it ?77)

e Needs PTAS, or better approximations:
Given unary (S1, P1) and (Sa, P»),

e Key ideas in the %-approximation:
Count how many arc-matches in an LAPCS?

Count how many base matches in an LAPCS are not involved
in any arc-match?

left bases, right bases, of some arcs in P;?
What do they mean 777

Definition. Left-Priority subsequence:

T is a subsequence of S; and (i1,i2) € P, T cannot contain
S1[iz] unless it contains Si[i1].

Definition. Lep-LAPCS:

Left-Priority Longest Arc-Preserving Common Subsequence.
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Protein structure alignment:

e Measure of similarity:

— root-mean-square distance
the Euclidean distance between C, atoms in the two
aligned amino acids
minimize the sum / maximum

— similarity of distance matrices
compute the distance matrices for proteins
align the most similar local sub-matrices (hexa-peptides)

— scores based on secondary structure alignment

— scores based on hydrogen bonding pattern

— maximize the aligned contact
e Usually NP-hard (or even harder)

e Heuristics, Monte Carlo simulations, etc.
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Contact map:

e Construction:
— Linearly order the amino acids

— Compute the Euclidean distance between every pair of
amino acids

— Connect by an edge for a pair of distance less than pre-
defined threshold

— Hei, ... arc-annotated sequence, again

e Properties:

— One amino acid could be close to a few other amino acids
(not sequentially adjacent)

— a few — 0 — 4, usually

— (some assume that such pair should be at least 4 positions
apart — does it make the problem easier 777)

e Computational problem — Contact Map Overlap (CMO):

— two contact maps (n, E) and (m, F)

— find two subsets S C {1,2,...,n} and T C {1,2,...,m}
* S| =|T|
+ there is an order-preserving bijection f: S — T
* {(u,v) € E:u,veS (f(u),f(v)) €T} is maximized

— Hei, ... unary, again
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Contact map (2):

Theorem The CMO problem is MAX SNP-hard, even when both con-

tact maps have maximum degree 1.

well, ... not surprising :-)

e Special cases:

— self-avoiding walk on the 2D grid

— stack: no-crossing (e.g. RNA secondary structures)
— queue: not-nested unless sharing an endpoint

— staircase:
sets of crossing edges

no two edges from different sets cross, but can share an
endpoint

Theorem A queue can be decomposed into 2 staircases.
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Contact map (3):

Theorem

Corollary

Theorem

A

sk i st

For two degree-2 contact maps, of which one is either a stack
or staircase, the CMO problem can be solved in O(n3m?) time.

What you can expect 7?7 Dynamic programming (check pa-
per for more details)

All known RNA tertiary structures (except for one) can be
decomposed into 2 degree-1 stacks.

The CMO problem on RNA structures is NP-hard. Nonethe-
less, it can be approximated within ratio 2. (CMO for RNA
secondary structures can be solved in O(n3m?3) time.)

Augmented staircase: staircase + stack

such that for every staircase edge e and every stack edge f:
— e and f disjoint
— e and f share an endpoint

— e contains f

For two degree-2 contact maps, of which one is an augmented
staircase, the CMO problem can be solved in O(n3m3) time.
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Agenda:

More models on protein structure comparison

Reading:

L. Holm et al. Protein structure comparison by
alignment of distance matrices. Journal of Molec-
ular Biology. (1993) 233, 123—-138.

L. Holm et al. Mapping the protein universe. Sci-
ence. (1996) 273, 595-602.

V. Maiorov et al. Significance of root-mean-square
deviation in comparing three-dimensional structures
of globular proteins. Journal of Molecular Biology.
(1994) 235, 625—-634.

I. Shindynalov et al. Protein structure alignment
by incremental combinatorial extension (CE) of the
optimal path. Protein Engineering. (1998) 9, 739—
T47.

D. Goldman et al. Algorithmic aspects of protein
structure similarity. IEEE FOCS 1999. pp, 512—
521.
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Contact map (4):

Theorem

Corollary

Theorem

Corollary

A self-avoiding walk can be decomposed into 2 stacks and 1
queue.

A self-avoiding walk has maximum degree-2 except the head
and tail nodes. Therefore, the CMO problem on self-avoiding
walks can be approximated within ratio 4.

A self-avoiding walk can be decomposed into 1 stack and 2

augmented staircases.

The CMO problem on self-avoiding walks can be approxi-
mated within ratio 3.

Research problems:

Designing better approximations
PTAS, or prove the MAX SNP-hardness (on self-avoiding
walks)

Prove the CMO problem is NP-hard on queues
Or design an efficient algorithm
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Protein structure alignment:

e Measure of similarity:

— root-mean-square distance

the Euclidean distance between C, atoms in the two
aligned amino acids

minimize the sum / maximum

— distance matrices similarity
compute the distance matrices for proteins
align the most similar local sub-matrices (hexa-peptides)

— scores based on secondary structure alignment

— scores based on hydrogen bonding pattern

— maximize the aligned contact

e Usually NP-hard (or even harder)

e Heuristics, Monte Carlo simulations, etc.
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RMSD (1):

For functions, mainly determined by the backbone structure
/ folding

Protein typical represented by its virtual C, atom chain of
residues

About 1 tenth atoms represented
For each C, atom, we have its 3D coordinates z,y, z

Formally, protein S; and S of length n

— for every C, atom of the ith amino acid in Si, its 3D
coordinates z;, y;, zi

— for every C, atom of the jth amino acid in S3, its 3D
coordinates m;.,y;,z;

ds, (i,7) — Euclidean distance between the C, atoms of the
ith and jth amino acids in Sy

ds,(i,j) — Euclidean distance between the C, atoms of the
ith and jth amino acids in S>

Minimize the following quantity:

i (s (i 5) — dsy (i, )

D*(51,52) = D
2

Note: doesn’'t assume the alignment ...
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RMSD (3):

e An important job is to set up the threshold § to tell that

— D(S1,S52) < § indicates S1 and Sy are similar
— D(S1,S2) > d indicates S1 and S, are structurally dissimilar

Done by empirical studies ...

e For the rigid body superpositioning

— need assuming an alignment — not really reasonable

— gaps (allowing indels) make it more computation intensive
— NP-hard

139

Lecture 11: Protein Structure Alignment

RMSD (2):

e For functions, mainly determined by the backbone structure

/ folding

Protein typical represented by its virtual C, atom chain of
residues

About 1 tenth atoms represented
For each C, atom, we have its 3D coordinates z,y, z

Formally, protein S; and S> of length n

— for every C, atom of the ith amino acid in S;, its 3D
coordinates zi, y;, i

— for every C, atom of the jth amino acid in S», its 3D

coordinates z'j,yjf., zjf.

Rigid body superpositioning

— translate both of them such that their centroids are at
the origin

— rotate (one of the two) the coordinate system such that
the following is minimized:

v 2
D?(S1, 82) = > Z (R@i, yir 2:) — (2,9, 21))
i=1
which is coordinate RMSD

Note: assuming the sequence alignment ...
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Distance Matrix (1):

e Formally, protein S; and S> of length n and m, respectively

— for every C, atom of the ith amino acid in Sy, its 3D
coordinates zi, yi, zi

— for every C, atom of the jth amino acid in S», its 3D

coordinates z’j, J(., z;.

e dg,(i,7) — Euclidean distance between the C, atoms of the

ith and jth amino acids in S
Mg, — distance matrix for S1
dg,(i,j) — Euclidean distance between the C, atoms of the
ith and jth amino acids in Sz
Mg, — distance matrix for S>

e A sliding window of size L x L

— detect one submatrix of size L x L each distance matrix
achieving the maximum similarity

measured by RMSD, or other scores

— each submatrix pair tells there are two segments from
each protein having similar contact / distance

— for this pair of submatrices, check the corresponding intra-
segments similarities

— construct in this way candidate segment-pairs whose local
structures are similar

— chain them into a connected alignment

Note: No longer sequence alignment maps structure align-
ment ...
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Distance Matrix (2): Distance Matrix (3):

a b a v b c c v

L] L]
] L] L]
] L]

a b a b c
a’ v a’ d v
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Distance Matrix (4): Incremental Combinatorial Extension (1):
a b ¢ o o W o Aligned Fragment Pair (AFP):
D — pair of fragments (of length m, gapless), one from each
protein

— structure similarity
— measure of similarity
1 m—1m—1
D D D= YD lds (k) — ds,(k.0)]
=0

k=0

dg, (k,¢) — inter-residue distance

e Feasible combinations
— non-overlapping fragments
— following sequential ordering

a b c — gap allowed in between fragments

— gap size bounded — for the sake of computation

e Evaluation of a pair of combined AFPs

— the independent set of inter-residue distance

S = {(do, jo), (io + (m — 1), 4o + (m — 1)), (io + k, jo + (m —
a J b D—k)k=12,...,(m—2)}

1
D= D ldsi(k,0) - ds, (k. 0)]

(k.£)es
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Incremental Combinatorial Extension (2):

e Evaluation of a path of feasible AFPs
— RMSD

— ignore gaps inserted

4 \
— during extension ignore the statistical significance
— when terminated evaluate the statistical significance d \

— optimization to final path (gaps for example)

e Extension directions
— starting point
* all possible ones
— extension
* all possible ones
* best one

* best a few (intermediate)

Incremental Combinatorial Extension (3):
a b c d e f

: \
' N
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Agenda:
e Fundamental preprocessing
e 15t algorithm

e 214 3lgorithm — Boyer-Moore algorithm

Reading:

e Ref[Gusfield, 1997]: pages 1-23

Genomic database search:

Given a query sequence Q = ajaz...an, find all sequences in the
database that are similar to Q.

A database may contain millions of sequences, totaling in billions
of bases.

The quadratic time DP algorithm is NOT fast enough!

Ideas in BLAST: [Altschul et al., 1990]

e Screen out all sequences which don’'t share a common
substring of length w with Q.

e Often w =11 for DNA and w = 4 for protein.

e Consider n — w + 1 substrings a;a;41...a;+4-1 Of @, for
i=1,2,...,n—w+ 1.

e This becomes a multiple keyword search problem.

Ideas in PatternHutter: [Li et al., 2002]

e Looking for appearances of length m substrings with at
least w matches.

e This becomes an approximate multiple keyword search
problem.
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Multiple keyword search:

Problem Given words Wy, Wa, ..., Wy, and text T, decide if any W;
appears in T.

Theorem The problem can be solved in O(|T| +Zf:1 |W;l) time.

Example
Wi=pinkpig
Wa=pig
Wa3=pinpoint
Ws=park

T=pinkpinkpig...
A Kkind of tree:
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Naive method and its speedup:

e Naive method:
— align the left end of P with the left end of T
— compare letters of P and T from left to right, until
— either a mismatch is found (not an occurrence)
— or P is exhausted (an occurrence)
— shift P one position to the right
— restart the comparison from the left end of P
— repeat this process till the right end of P shifts past the
right end of T

e Running time analysis:
n=|P|
m = |T|
The worst case number of comparisons is n x (m —n 4+ 1)
(©(nm))

A worst case: P = aaa and T = aaaacaaaaaaaaaaaaaaaas

e Not useful as in current database there are trillions of letters
(billions of sequences), typically when P is long ...

e Speed it up !!!
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Definitions:

e string:

A string S is an ordered list of characters written contiguously
from left to right.

o substring:

For any string S, S[i..j] is the contiguous substring of S that
starts at position ¢ and ends at position j.

It is empty if ¢ > j.

e prefix:
A substring S[1..5]

o suffix:
A substring S[i..|S|]

. m
The ith character

e proper substring, proper prefix, proper suffix

e match, mismatch

e The problem:

Given a string P called pattern and a long string T called text,
the Exact Matching problem is to find all occurrences of P
in T.
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Naive method and its speedup (2):

e Where to speed up?

laJa]a[alalala]a]a]a[a[a[a]ala[a]a]a]a]a]a]a

[a]a]a]

1. shift P more than one letter, when mismatch occurs
but never shift so far as to miss an occurrence

2. after shifting, skip over parts of P to reduce comparisons

e An example: P = abzyabzz, T = wabryabryabrz

[e]alb]z]v[alb]=[yalb]=]=
[a[b[=]¥]e]b]=]]
(LTI
[TITTITT]
(LTI
(LTI
LTI
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Naive method and its speedup (3):

e An example: P = abzyabrz, T = zabryabryabrz
Shifting more than one letter

[z[alb[=]y]a]b][][v]a]b]e]z

[afo[=]y]alb]=]z]

T TTTT]
T

Skipping over parts of P to reduce comparisons

[e[afb[z]y]a[b]z[¥]alb]z]z
[afb]z[v]a]b]=]z]
(LTI
(LTI
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Fundamental preprocessing (2):

e Can be on pattern P (query sequence) or text T (database)

e Given a string S and a position i > 1

Z;(S) — length of longest common prefix of S and S[i..|S|]

e Example, S = abzyabzz

[a[o[=[y]a]b]=]z]
0 0 B A 7y
N I I I Ay
CLTTTTTTT) ze=o0
CITTTTTTT 2z=3
I I I B A ey
O 0 B I /ey
O N Ay

e Intention:

— Concatenate P and T, inserted by an extra letter $:
S = P$T

— Every i, Z; <|P|

— Every i>|P|+1 and Z; = |P|
records the occurrence of P in T

e Question: running time to compute all the Z;'s 777
The naive method runs in ©((n +m)?) time ...
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Lecture 12: Exact string matching

Fundamental preprocessing:
e Can be on pattern P (query sequence) or text T (database)

e Given a string S and a position i > 1
Z;(S) — length of longest common prefix of S and S[i..|S|]

e Example, S = abzyabzz

[afb[=y]a]b]=]z]
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Fundamental preprocessing (3):
e Goal: linear time to compute all the Z;'s ...
e Z-box: for Z; > 0, it is box starting at < and ending at i+ 7;—1
e r; — largest j+ Z; — 1 over all 1 < j <i such that Z; >0

[l 1 ]

L i T

Zy,
¢; — the j with Z-box ending at r; (tie breaks arbitrarily)

e Computing Zj:
— given Z; forall1<i<k-1
- T=TE-1
— L=l
1. k> r: compute Z; explicitly (updating accordingly r and
0if Z, > 0)

2. k< r: kisin the Z-box starting at ¢ (equivalently sub-
string S[¢..r])
therefore, S[k] = S[k—£¢+ 1], S[k+1]=Sk—-¢4+2], ...,
S[r] = S[Zi]
in other words, Z, > max{Zy_¢41,7 —k+ 1}
(@) Zy—t+1 <r—k+ 1. Zj, = Z,_j41 and r,£ remain un-
changed
(b) Zy—¢y1>r—k+1: Z;, > r—k-+1 and start comparison
between S[r + 1] and S[r — k + 2] until a mismatch is
found (updating r and ¢ accordingly if Z, >r—k+ 1)
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Lecture 12: Exact string matching
Fundamental preprocessing (4):
e Conclusions:
1. Z, is correctly computed

2. there are a constant number of operations besides com-
parisons for each k

|S| iterations
— whenever a mismatch occurs, the iteration terminates

— whenever a match occurs, r is increased

n total at most |S| mismatches and at most |S| matches
4. running time ©(|S])
Space complexity also ©(|S|)

Theorem: There is a ©(|S|)-time ©(|S|)-space algorithm which com-

putes Z; for all 1 < i < |S|.

Corollary: There is a ©(n 4+ m)-time ©(n 4+ m)-space algorithm which

finds all the occurrences of P in T', where n = |P| and m = |T|.
e Notes on the algorithm:
— alphabet-independent

— space requirement can be reduced to ©(n)
why 7?77 how 777

— not well suited for multiple patterns searching ...

— strictly linear — every letter in T has to be compared at
least once

e more algorithms to be introduced / designed ...
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Lecture 12: Exact string matching
The Boyer-Moore algorithm:

e Left-to-right shifting (like the naive algorithm)
e Rule 1. Right-to-left comparison
e Rule 2: Bad character rule

— for each = € &, R(z) denotes the right-most occurrence
of z in P (0 if doesn’'t appear)

— when a mismatch occurs, T[k] against P[i], shift P right
by max{1,i — R(T[k])} places
this makes T'[k] against P[R(T[k])], if to the left

— |X| space to store R-values

— not saving anything if R(T'[k]) to the right
Extended bad character rule: try the rightmost (but to
the left) occurrence of T'[k]

require n space
e Rule 3: Good suffix rule
— when a mismatch occurs, T[k] against P[i]

— find the rightmost occurrence of P[(i + 1)..n] in P such
that

the letter to the left differs Pli]
— shift P right such that this occurrence of P[(i + 1)..n] is
against T[(k+1)..(n + k —1)]

— if there is no occurrence of P[(i + 1)..n]:
find the longest prefix of P matches a suffix of P[(i+1)..n]

shift P right such that this prefix is against the corre-
sponding suffix
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An example:
e P = abxabxab, T = dababrababrabxrab

e Case 1:

[d]a]a]a[b]z]a[b]a]b[z[a[b]z]a]b]
alb|lz|la|blx|alb
[alb[z]a[b]e]a]b]

e Case 2:

[d[afa[alb[z]a[b]alb]=]alb]z]a]b]
lafblz]a]b[z]a]0]
lab[z]a]b[z]a]b]

e Notes:
— right-to-left comparison
— won't miss any occurrence

— some T'[i] won't be compared — achieving sublinear time
(in the above example, T[2] and T[1])

158

Lecture 14: Exact String Matching
Agenda:

e 3™ algorithm — Knuth-Morris-Pratt algorithm

e Applications

Reading:

e Ref[Gusfield, 1997]: pages 23—-66
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Lecture 14: Exact string matching

The Knuth-Morris-Pratt algorithm:

e History:
— best known
— not the method of choice, inferior in practice
— nonetheless can be simply explained and proved

— basis of Aho-Corasick algorithm for multiple pattern search

e Example,

\ [+]

la[b]=z]y[alb]z]|=]w]

lalo]z[y]alb]z]z]w]

— (back to) left-to-right comparison rule
— shift P more places without missing any occurrence

e Definition: sp;(P),2 <i<n (sp1(P)=0)

the length of longest proper suffix of P[1..i] that matches a
prefix of P

la[b]z]y[alb[z]=]w]

sp1 = sp2> = sp3 = spa =0
sps = 1,spe = 2,sp7 = 3
spg = 0,spg =0
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The Knuth-Morris-Pratt algorithm (3):
e Correctness

e Z; — length of the longest common prefix of P and P[j..n]

sp, — length of the longest proper suffix of P[1..i] that matches
a prefix of P, with the additional condition that character
Pli 4+ 1] differs from P[sp] + 1]

Zy  Z; j 7
Lo |
—] —

L[ J=f [T 9]
1 1
SPZ- i
Therefore,

SpézmaX{Zj‘Zj:i7j+l}
J

e Preprocessing sp/'s in linear time ©(n)
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Lecture 14: Exact string matching
The Knuth-Morris-Pratt algorithm (2):

o Definition: sp,(P),2 <i<n (sp1(P)=0)

the length of longest proper suffix of P[1..i] that matches a
prefix of P,

with the additional condition that character P[i + 1] differs
from P[sp] + 1].

[afb]=[y]alb]z]=]w]

Obviously, sp, < sp; for any i ...

spy = spy = spy =spy =0

spg =0
spg =0
Sp7 =
Sp§ =
spyg =0
e Shifting rule: shift P to the right (i — sp}) spaces (i = n if an
occurrence)
e Effect:

k

\ *]

la[b]z[y]a]b]z]z]w]

(i+1)
la[b[ay]alp]z]=]w]
(sp;+1)
T[(k — sp.)..(k — 1)] matches P[1..sp{]

and thus can skip sp, comparisons ...
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The Knuth-Morris-Pratt algorithm (4):

e Running time:
— in total s phases (of comparison/shift), s <m

— every 2 consecutive phases overlap one letter (the mis-
matched one) from T

— Therefore, in total m 4+ s < 2m comparisons

Question: any letter from T is skipped for comparison?

e A real-time algorithm (def):

any letter is compared at most a constant times

e KMP is NOT a real-time algorithm

Question: can you provide an example?
e Converting KMP into a real-time algorithm — more detailed

preprocessing
Exercise: figure out the details.
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Lecture 14: Exact string matching

The Knuth-Morris-Pratt algorithm (5)
— a way to multiple pattern search:
The initial preprocessing idea:

e Preprocessing to compute sp; values
sp; — length of the longest proper suffix of P[1..i] that matches
a prefix of P
sp, — length of the longest proper suffix of P[1..i] that matches
a prefix of P, with the additional condition that character
Pli + 1] differs from P[sp] + 1]

, [ spi, if P[sp; +1]# P[i+1]
SPi =\ sp,_,, otherwise
{spi}
[=] [v]
Spi 1
e Computing spiy1:

[v]

Sp; i
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The Knuth-Morris-Pratt algorithm (7)

— the initial preprocessing

e Computing spjy1:

spi+1, if P[sp;+ 1] = P[i+ 1]
< _ ) syt 1 if Plspry,) + 1] = Pli+1]
Pi+1 SP{spiy} +1, if P[SP{SF(%)} —+ 1] = P[i —+ 1]

ey

e An example,

SPk+1

la[b]z[a[b]q]a[b]z]a[b][r[a[b]z]a]b]d]alb|z]alb]z]

| ! T N

SP{spy} SPk kk+1
SP{spiapy}
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The Knuth-Morris-Pratt algorithm (6)
— the initial preprocessing

e Computing spiy1:

spi+ 1, if P[sp;+ 1] = P[i + 1]
e Pyt 1 f Plsprgy 4+ 11 = Pli + 1]
Pit1 Papog) T 1 If Plspiag, )+ 1= Pli+1]

)

e An example,

la[o[z]ab]a]a[b]z]a]br]alb]z]alb]9]alb]z]alb]z]

[

kk+1
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The Knuth-Morris-Pratt algorithm (8)

— the initial preprocessing

e Computing spiy1:

spi+ 1, if P[spi+ 1] = P[i +1]
gz = 3 Pl T L 0T Plopggy + 1 = Pli+1]
i SP{spion} +1, if P[Sp{sp(_w)} + 1] =Pli + 1]
e An example,
SPk+1
e ™~

la[b[z]a]b]a]a[b]z]a]b[r[alb]z]alb]9]alb]z]alb]z]

| T I

SP{spi} SPk kk+1
SP{spiapy}

e Preprocessing can be done in linear time

Proof.
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Lecture 14: Exact string matching Lecture 14: Exact string matching

Keyword tree: Keyword tree (2):
e Given a set of patterns P = {P1, P,,..., P;}, the keyword tree e A keyword tree containing multiple keywords:
K is a tree: PL=pinkpig
_ . P,=pig
rooted, directed Ps=pinpoint
P,=park

— each edge is labeled with one letter
— edges coming out of a node have distinct labels
— every pattern P, is spelled out

— every leaf maps to some pattern

e A keyword tree containing one keyword

P1 = abzxabgabxabrabrabgabrabz:

e A keyword tree can be constructed in linear time (in the sum
of lengths of patters).

— provided the alphabet is fixed (and thus of constant size)
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Lecture 14: Exact string matching Lecture 14: Exact string matching
Multiple pattern matching problem: Multiple pattern matching problem (2):
e Given a set of pattern P ={P, P,,..., P} and e The keyword tree preprocessing:
a text (database) T Pp=pinkpig
— find all the occurrences of all the patterns ... R bidpoint
Py =park

e n — sum of the lengths of patterns
m — length of text

e Previous results imply a search algorithm in ©(n + km) time

there are algorithms running in ©(n + m + £) time, where
¢ — total number of occurrences of all the patterns

e Using keyword tree of P ...

e An idea to speed up — from KMP

e Ip(v) — the length of the longest proper suffix of string £(v)
that is a prefix of some pattern in P

e Ip(v) for all the v's in K can be computed in linear time —
O(n)

e failure links v — n,
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Lecture 14: Exact string matching

Aho-Corasick algorithm:

Create the keyword tree
Computer the Ip(v) and n, for every v in the keyword tree

During the searching
— every occurrence is reported ©(¥)
— whenever a mismatch, T shifted Ip(v) spaces to the left

— whenever a match, T[i] never compared again
Running time ©(m + £)

Therefore, in total ©(n + m + £) time
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Exact string matching applications:

Sequence-tagged-sites
Exact string matching with wild cards
Two-dimensional exact matching

Regular expression pattern matching

Reading: Ref[Gusfield, 1997], pages 61—66
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Aho-Corasick algorithm (2):

e The keyword tree:

Pp=pinkpig
P,=pig
Ps=pinpoint
Ps=park

o T = pinkpinkpig
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Lecture 15: Suffix Tree
Agenda:

e Introduction
e Construction

e Applications

Reading:

e Ref[Gusfield, 1997]: pages 87—168
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Lecture 15: Suffix Tree Lecture 15: Suffix Tree
Introduction: Introduction (2):

e Given a finite alphabet X, a string S of length m * Given a finite alphabet 3, a string S of length m

E.g., S = zab
E.g., S = abzabc g zabzac

e Suffix tree of S:
e Suffix tree of S: i

— rooted, directed

— rooted, directed .
— edges labeled by (non-empty) substrings of S

— edges labeled by (non-empty) substrings of S — could be a single letter

— could be a single letter : : L

— edges coming out of a node start with distinct letters

— edges coming out of a node start with distinct letters
— exactly m leaves

— exactly m leaves — leaf i spells out suffix S[i..m]

— leaf i spells out suffix S[i..m]
za bxac

e Keyword tree for a set of patterns:
— rooted, directed
— edges labeled with letters
— edges coming out of a node have distinct labels
— every pattern is spelled out 3

— every leaf maps to some pattern
e Have to assume sp,—i+1(S[i.m]) =0 ... Why 777

Solution: if sp,,_;+1(S[i..m]) # 0, append to it an extra letter
$¢x ..

177 178

Lecture 15: Suffix Tree Lecture 15: Suffix Tree

First construction: Why suffix tree — 15t application:

o ASSUMING NOW spy_ig1(S[i.m]) = O e Suppose in ©(m) time we can build the suffix tree for text T
m—i - -

e Given any pattern P — at any time

e Make every suffix as a pattern P, = S[i..m]
— match letters of P along the suffix tree

e Apply the linear time keyword tree construction algorithm — ... until

e Concatenate “paths’ into “edges” — either no more matches are possible

e Running time: P doesn’'t occur anywhere in T
— or P is exhausted

m

linear in the sum of the lengths of patterns — Zhl | Pl o

= the labels of the leaves inside the subtree under the last
_ m(m+1) matching edge are the starting positions of the occur-
- 2 rences

— a ©(m?) construction algorithm :-( Conclusi
e Conclusion:

e Next goal: design a linear time algorithm ©(m) — Exact string matching done in ©(m + n + £) time
— Exact multiple strings matching done in ©(m+n-+£) time

¢ — number of occurrences
Other applications:
e Multiple keyword search
e Longest repeating substring
e Longest common substring of two (or more) strings
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Lecture 15: Suffix Tree
Ukkonen's linear time construction:
e Implicit suffix tree for S$ — from the suffix tree
1. remove every copy of $

2. remove every edge without labels

3. remove the degree-2 internal node (except the root)
need to concatenate the edge labels ...

E.g., S = zabza

za bra$

e T, contains almost all the information about the suffix tree
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Lecture 15: Suffix Tree
Ukkonen's linear time construction (3) — speedup:
e How?

e Key thing: locate the ending position of S[j..i] in T;
S[1..5] = azaxb, try adding S[6] = a:

2

— j=1— easy (use a pointer pointing to the longest path
in T;)
append a to the edge label (entering the leaf spells out
S[1..4])

— denote the leaf edge as (v, 1)
1. if v is the root: j = 2 is done straightforwardly
2. if v isn’'t the root:

there is another node, denoted s(v), such that if root-
to-v spells out S[1..4] then root-to-s(v) spells out S[2..4]

3. when we have the information on s(v), continue search
from it
not necessarily from the root again ...
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Ukkonen's linear time construction (2):
e T; — implicit suffix tree for S[1..i]$

e Construct T; incrementally
— from T; to T;41

— need to add S[i 4+ 1] to every suffix of S[1..i] and the
empty string
there are i + 1 of them ...
— append S[i 4 1] to suffix S[j..i] — becoming a suffix of
S[1..(i41)]
j=1,2,... ,4i+1
1. if S[j..i] ends at a leaf, append S[i + 1] to the corre-
sponding edge label
2. if S[j..7] ends at an internal node
(a) if there is an edge out of the node with label begins
with S[i + 1], done
(b) otherwise add an edge and a leaf, with edge label
'Sli+ 1]’
3. if S[j..i] doesn't end at any node

(a) if the succeeding letter in the edge label is ‘S[i+1]’,
done

(b) otherwise add an internal node right after (break into
two edges) and an edge adjacent with a leaf. label
for the new edge is ‘S[i + 1]’
e Straightforward implementation ©(m3)
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Ukkonen's linear time construction (4) — speedup:

e S[1..5] = azazd, try adding S[6] = a:

In this example, save a few comparisons between z and z ...

e Notes:
— need to record s(v) if a new node v is created

— it doesn’t give a “faster” algorithm

e Trick 1 — skip/count
In this example, we know that a is appended 3 letters after

S[1..4] = az
Therefore, if we can record for every edge, the length of its
label ...
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Lecture 15: Suffix Tree

Ukkonen'’s linear time construction (5) — speedup:

e Analysis of trick 1:

— every node has a depth — # of nodes on the path from
root

— the depth of v is at most one greater than the depth of
s(v)

— constructing Tj4; from T;:
x decrease node depth at most 2m

% could increase a lot but bounded by 3m — why?
since the maximum depth is m

so construction done in O(m) time

Applying Trick 1 gives an O(m?) time suffix tree building al-
gorithm

e One observation to overcome the ©(m?)-barrier

total number of letters in the edge labels could reach ©(m?)

e An alternate way to represent labels

using position intervals [start, end] to represent label S[start..end)
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Lecture 16: Suffix Tree
Ukkonen's linear time construction:

e Implicit suffix tree for S$ — from the suffix tree
1. remove every copy of $
2. remove every edge without labels

3. remove the degree-2 internal node (except the root)
need to concatenate the edge labels ...

E.g., S = zabza

za bra$

e T, contains almost all the information about the suffix tree
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Lecture 16: Suffix Tree
Agenda:

e Introduction
e Construction

e Applications

Reading:

o Ref[Gusfield, 1997]: pages 87—168
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Lecture 16: Suffix Tree

Ukkonen's linear time construction (2):
e T, — implicit suffix tree for S[1..i]$

e Construct T; incrementally
— from T; to T;41
— need to add S[i 4+ 1] to every suffix of S[1..i] and the
empty string
there are i + 1 of them ...

— append S[i + 1] to suffix S[j..i] — becoming a suffix of
S[1..(G + 1)]
j=1,2,...,4,i+1

1. if S[j..i] ends at a leaf, append S[i + 1] to the corre-
sponding edge label

2. if S[j..i] ends at an internal node

(a) if there is an edge out of the node with label begins
with S[i + 1], done

(b) otherwise add an edge and a leaf, with edge label
‘Sl + 1]

3. if S[j..i] doesn't end at any node

(a) if the succeeding letter in the edge label is ‘S[i+1]’,
done

(b) otherwise add an internal node right after (break into
two edges) and an edge adjacent with a leaf. label
for the new edge is ‘S[i + 1]
e Straightforward implementation ©(m?3)
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Lecture 16: Suffix Tree
Ukkonen's linear time construction (3) — speedup:

e How?

e Key thing to do: to locate the ending position of S[j..i] in T;
S[1..5] = azaxb, try adding S[6] = a:

2

— j =1 — easy (use a pointer pointing to the longest path
in T;)
append a to the edge label (entering the leaf spells out
S[1..4])

— denote the leaf edge as (v, 1)
1. if v is the root: j = 2 is done straightforwardly

2. if v isn’'t the root:

there is another node, denoted s(v), such that if root-
to-v spells out S[1..4] then root-to-s(v) spells out S[2..£]

3. when we have the information on s(v), continue search
from it

not necessarily from the root again ...
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Lecture 16: Suffix Tree

Ukkonen's linear time construction (5) — speedup:

e Analysis of trick 1:

— every node has a depth — # of nodes on the path from
root

— the depth of v is at most one greater than the depth of
s(v)

— constructing T4, from T;:
* decrease node depth at most 2m

* could increase a lot but bounded by 3m — why?
since the maximum depth is m

so construction done in O(m) time
Applying Trick 1 gives an O(m?) time suffix tree building al-
gorithm

e One observation to the ©(m?)-barrier

Total number of letters in the edge labels could reach ©(m?)

e An alternate way to represent labels is necessary

Use position intervals [start, end] to represent label S[start..end)]
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Ukkonen's linear time construction (4) — speedup:

e S[1..5] = azazd, try adding S[6] = a:

In this example, save a few comparisons between z and z ...

e Notes:
— need to record s(v) if a new node v is created

— it doesn’t give a “faster” algorithm

e Trick 1 — skip/count
In this example, we know that a is appended 3 letters after

S[1..4] = az
Therefore, if we can record for every edge, the length of its
label ...
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Ukkonen's linear time construction (6) — speedup:

e Another observation:

When S[j..i] doesn’t end at a leaf and there is an extending
edge whose label starts with ‘S[i + 1]’, we are done

“we are done” TOO when considering
S[(G+1)..4], S[(j+2)..4], ..., S[E+1)..d] =0
Why 7?7 — proved by contradiction ...

e Trick 2: whenever this happens, T;y1 is built
123 i i‘—i—l i 141
7 +1

e 3 observation:
Once a leaf, always a leaf
— there is no case which extends a leaf

e Trick 3: use a parameter e to denote the last position thus to

skip the extensions (only need to update e once per iteration)
Recall that a leaf edge is labeled [¢,¢] ...
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Lecture 16: Suffix Tree
Ukkonen's linear time construction (7) — analysis:

e Appending rules (recall):
append S[i + 1] to suffix S[j..i], for j =1,2,...,4,i+ 1
1. if S[j..i] ends at a leaf, append S[i+ 1] to the correspond-
ing edge label

2. if S[j..i] ends at an internal node
(a) if there is an edge out of the node with label begins
with S[i + 1], done
(b) otherwise add an edge and a leaf, with edge label ‘S[i+
1]
3. if S[j..i] doesn't end at any node

(a) if the succeeding letter in the edge label is ‘S[i + 1],
done

(b) otherwise add an internal node right after (break into
two edges) and an edge adjacent with a leaf. label for
the new edge is ‘S[i + 1]’

e Analysis of Tricks 1 4+ 2 4+ 3 — amortized analysis:

— increment e to skip the first j* (from last phase) exten-
sions — why we can skip them?

— apply trick 1 to continue until trick 2 can be applied, say
at jt™" extension

set j* = j — 1 — update j* for next phase use

— next phase we can skip the first j* extensions ...
— every two consecutive phases overlap at most 1 index

— conclusion: in linear time
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Ukkonen's linear time construction (9) — example:

e S[1..6] = axazba:
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Lecture 16: Suffix Tree
Ukkonen's linear time construction (8) — example:

e S[1..6] = azazba:

o l:e ol
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Lecture 16: Suffix Tree

Ukkonen's linear time construction (10) — algorithm:
e Append $ to S and execute on T

e Correctness:
Every suffix is spelled out by some root-to-leaf path

no suffix is a prefix of some other suffix

e Generalized suffix tree for a set of strings — How?
— concatenate strings into one, by adding some extra letters
— build suffix tree for one string, then on top of it build for
another, then on top of it build for another, ...
e Applications:
1. exact pattern search

2. longest common substring (NOT longest common sub-

sequence)
3. tandem repeat
4. suffix array — a good tool to ...
5.
6.
7.
This list will be lengthened, by YOU ... :-)
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Lecture 16: Suffix Tree

Ukkonen's linear time construction — question:

e Going back to the beginning, why implicit suffix trees 777

Why not build the suffix tree directly 777

197

Lecture 17: Genome Rearrangements

Gene-level mutations vs genome-level mutations

e Gene-level mutations:
— single nucleotide/amino acid substitution
— single nucleotide/amino acid inser-/dele-tion (space)

— block of nucleotides/amino acids inser-/dele-tion (gap)

e Gene-level mutations reflect:
— how does a single gene evolve over the time

— how are a family of genes related to each other

e Genome-level (chromosome-level) mutations:
— duplication with modification

— reversal

transposition

— translocation (special cases: fusion and fission)

e Genome-level (chromosome-level) mutations reflect:

— evolution of the whole genome (might not be seen at the
gene-level comparisons)

— how do species diverge and relate to each other

— deeper evolutionary relationship
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Agenda:

e Introduction to genome-level mutations
e Reversals (or Inversions)

e Signed Reversals

Reading:

e Ref[JXZ, 2002]: chapter 6.
e Ref[Gusfield, 1997]: pages 492-498

e Hannenhalli & Pevzner. Transforming cabbage into
turnip: polynomial algorithm for sorting signed per-
mutations by reversals. Journal of the ACM, 46(1999),
1-27.
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Genome-level mutations: an example

Complete mitochondrial genomes:

gene name label

ND2 1

COX1 2

COX2 3

ATP8 4

ATP6 5

COX3 6

ND3 7

ND5 8

ND4 9

ND4L 10

ND6 11

CYTB 12

ND1 13
Anopheles gambiae (1,2, 3,4,5,6,7, 8,9, 10, 11, 12, 13)
Apis mellifera ligustica (1,2,3,4,5,6,7, 8,9, 10, 11, 12, 13)
Artemia franciscana (1,2, 3,4,5,6,7, 8,9, 10, 11, 12, 13)
Drosophila yakuba (1, 2,3,4,5,6,7,8,9, 10, 11, 12, 13)
Balaenoptera musculus (13,1, 2,3,4,5,6, 7, 10, 9, 8, 11, 12)
Balaenoptera physalus (13,1, 2, 3, 4,5,6, 7, 10, 9, 8, 11, 12)
Bos taurus (13,1, 2, 3,4,5,6, 7, 10, 9, 8, 11, 12)
Cyprinus carpio (13,1, 2, 3,4,5,6, 7, 10, 9, 8, 11, 12)
Didelphis virginiana (13,1, 2, 3, 4,5,6, 7, 10, 9, 8, 11, 12)
Halichoerus grypus (13,1, 2, 3,4,5,6, 7, 10, 9, 8, 11, 12)
Mus musculus (13,1, 2, 3, 4,5,6, 7, 10, 9, 8, 11, 12)
Phoca vitulina (13,1, 2, 3,4,5,6, 7, 10, 9, 8, 11, 12)
Xenopus laevis (13,1, 2,3,4,5,6, 7, 10, 9, 8, 11, 12)
Gallus gallus (13,1, 2,3,4,5,6, 7, 10, 9, 8, 12, 11)
Strongylocentrotus purpuratus (13, 1, 2, 10, 3, 4, 5, 6, 7, 9, 8, 11, 12)
Paracentrotus lividus (13,1, 2,10,3,4,5,6,7,9, 8, 11, 12)
Petromyzon marinus (12,13, 1,2,3,4,5,6, 7, 10, 9, 8, 11)

N
o
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The general problem:

e Assumptions:
— a same gene found from both species
— ignore the gene sequence difference — identical
— ignore multiple copies — use one copy
— label genes using integers

For example,

Anopheles gambiae (1, 2,3,4,5,6,7,8,9, 10, 11, 12, 13)
Gallus gallus (13, 1,2,3,4,5,6,7,10, 9, 8,12, 11)

e Question:

— how were these two genomes evolved from some common
ancestral genome?

(which also contains the same set of genes)
— equivalently, how was one genome evolved from the other?
e A reduction:

— assuming one species genome is the identity permutation

— how was a permutation evolved from the identity permu-
tation?

e Measurement:
Applying the parsimony rule:

Nature usually takes the path with least resistance, so the
scenario with the least amount of genome-level changes is
likely to be the most probable one,
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Genome rearrangements by reversals:

e Formal description of the problem:

— = (M1, T2, .+, Wi 1, Wiy Wi 1, - - -, W1, Ty W1, - - -, Tn) @ PEI=
mutation on (1,2,...,n)

— areversal r(i,5), 1 <i<j<m, on m makes « into

—
T = (T, T2y e ooy i1y | Ty Ty vev s Wi 1 T | WLy o v v )

— given any permutation, find a shortest series of reversals
that transforms = into the identity permutation Z.

e An example,

Anopheles gambiae (1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13)
Gallus gallus (13,1,2,3,4,5,6,7, 10, 9, 8, 12, 11)

(13,1, 2,3,4,5,6,7, 10, 9, 8, 12, 11) + R(9,11) —»
(13,1,2,3,4,5,6,7,8 9, 10, 12, 11) + R(12,13) —
(13,1, 2,3,4,5,6,7,8 9, 10, 11, 12) + R(2,13) —
(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) + R(1,13) —
(1,2,3,4,5,6,7,8,9, 10, 11, 12, 13)

Question 1: are 4 reversals really necessary?

Question 2: is it always possible to transform one permutation
into identity by reversals only?
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The concrete technical problems:
e genome rearrangements by reversals only
e genome rearrangements by transpositions only
e genome rearrangements by reversals and transpositions
e genome rearrangements by all mutations
e signed genome rearrangements by reversals only
e signed genome rearrangements by transpositions only
e signed genome rearrangements by reversals and transpositions

e etc.
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Genome rearrangements by reversals (2):

e Question 2: is it always possible to transform one permutation
into identity by reversals only?

Answer: yes.

e Question 1: are 4 reversals really necessary?

Let us see.

e Definition: a breakpoint in permutation w occurs between
numbers m; and w41, for 1 <i <mn, if and only if
|mi — miga| #= 1.

There is a breakpoint at the front of the permutation if 71 #
1; and there is a breakpoint at the end of the permutation if

T 7 M.

— Another way to define breakpoints is to add no = 0 and
T4+1 =n+ 1 to get a permutation on n 4+ 2 numbers.

e Key observation:

— a permutation without breakpoints if and only if it is the
identity

— new goal: reduce the number of breakpoints to 0

— every reversal reduces this number by at most 2

Theorem Let b(rw) denote the number of breakpoints in =. The number

b(m)

of reversals to transform = into the identity is at least -

204



Lecture 17: Genome Rearrangements Lecture 17: Genome Rearrangements

Genome rearrangements by reversals (3): Genome rearrangements by reversals (4):

e Designing an algorithm:
e The example (13, 1, 2, 3, 4, 5,6, 7, 10, 9, 8, 12, 11):

The number of breakpoints in it is 5. So, it requires at least
3 reversals.

Idea in designing an algorithm:

Try to find a segment that, by reversing it we can reduce the
number of breakpoints!!!

— definition: a strip is a maximal segment containing no
breakpoints inside

— the example (13, 1, 2, 3, 4, 5, 6, 7, 10, 9, 8, 12, 11)
contains 4 strips: (13), (1, 2, 3, 4, 5, 6, 7), (10, 9, 8),
(12, 11)

— definitions: decreasing / increasing strip

— reversal intervals should contain a full strip — otherwise
will be creating new breakpoints

(can be shown true precisely — can you ?77)

Lemma Whenever there is a decreasing strip, there is a reversal

which decreases b(w) by at least 1. Furthermore, the
reversal can be determined in linear time.

Proof.

— for the example (13, 1, 2, 3, 4, 5, 6, 7, 10, 9, 8, 12, 11),
the reversal is R(9,11)
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Genome rearrangements by reversals (5):

e Improve the above design:

idea 1: can we guarantee to reduce b(w) and, at the same time,

leave a decreasing strip?

idea 2: if we can’t, can we guarantee to reduce b(xw) by 27

— such that on average, every reversal reduces b(w) by
at least 1

e Search for the desired reversal:

— assuming there is a decreasing strip ...

— examine the smallest number, say =;, in any decreasing

strip
— try to remove the breakpoint involves m; and m; — 1
and leave a decreasing strip — if successful, we are done

— otherwise examine the largest number, say =;, in any de-
creasing strip

— try to remove the breakpoint involves =; and n; + 1
and leave a decreasing strip — if successful, we are done

— otherwise, we claim that
m— 1 m+ 1

|
I — 0

L]

0 1 j—1j i i+1lm

+1

— therefore, reversal R(j,i) reduces b(w) by 2

207

— need to consider the case where there is no decreasing
strips ...

easy —

when there is none, simply inverse an increasing strip (of
length > 2)
— pseudocode:
Algim
while (b(w) > 0) do
if (there is a decreasing strip) then
find the reversal to reduce b(w) by at least 1
else
inverse one increasing strip of length at least 2
— analysis:
1. two consecutive reversals reduce b(7) by at least 1
2. at most 2b(x) reversals transform = into identity

b
3. at least we need % reversals

Conclusion. Algl is a 4-approximation.
e Genome rearrangements by reversals is NP-hard.

e We answered Question 2 affirmatively:

Is it always possible to transform one permutation into identity
by reversals only?

206

Lecture 17: Genome Rearrangements

Genome rearrangements by reversals (6):

The above is a 2-approximation algorithm.

This is a look-ahead style algorithm:

Whenever you execute one step, you also prepare for the next
step ...

More carefully,

There is a 1.75-approximation algorithm for genome rear-
rangements by reversals.

When genes have directions — signed genome rearrange-
ments by reversals

Good news: polynomial time solvable (Hannenhalli & Pevzner)!
The speed has been improved to almost linear-time.

A closely related problem: Breakpoint graph decomposition
— 1.5-approximation

— 1.46...-approximation

— 1.42...-approximation

— 1.375-approximation
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Signed genome rearrangements by reversals (7):

Transforming the mitochondrial DNA of turnip into that
of cabbage by reversals.

B. oleracea e— f 4_HT|T
(cahbage) <
i = -5 : F .3 3
ol
—leeii -
1 5 4 3 a2
B. campestris e
(turnip) —_— - - .
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Genome rearrangements by reversals:

e Formal description of the problem:
= = (M1, T2,y ooy Tie 1, Wiy W1y« v oy Wi, T, Wjp1, -+ o, W) @ PEI-

mutation on (1,2,...,n)

— areversal 7(i,5), 1 <i< j <mn, on m makes « into

Y
= (W1, T2,y e ooy i1, | Ty Ty e o s Wi 15 T |y WLy -+ - )

— given any permutation, find a shortest series of rever-
sals that transforms =« into the identity permutation 7 =
(1,2,...,n—1,n).

e An example,

Anopheles gambiae (1, 2,3,4,5,6,7,8,9, 10, 11, 12, 13)
Gallus gallus (13, 1,2,3,4,5,6, 7, 10, 9, 8, 12, 11)

(13,1, 2,3,4,5,6,7, 10, 9, 8, 12, 11) + R(9,11) —
(13,1,2,3,4,5,6,7,8 9, 10, 12, 11) + R(12,13) —
(13,1,2,3,4,5,6,7,8 9, 10, 11, 12) + R(2,13) —
(13,12, 11,10, 9,8, 7,6, 5, 4, 3, 2, 1) + R(1,13) —
(1,2,3,4,5,6,7,8,9, 10, 11, 12, 13)

Question 1: are 4 reversals really necessary?
Still trying to answer ...

Question 2: is it always possible to transform one permutation
into identity by reversals only?

Yes.
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Agenda:
e More on reversals
e Transpositions

e Reversal & transpositions

Reading:
e Ref[JXZ, 2002]: Chap 6
e Ref[Pevzner, 2000]: pages 175-228

e A. Caprara. Sorting permutations by reversals and
Eulerian cycle decompositions. SIAM Journal on
Discrete Mathematics. 12(1999), 91-110.

e V. Bafna et al. Sorting permutations by transposi-
tions. Proceedings of SODA’95. Pages 614—623.

e Q. Gu et al. A2-approximation algorithm for genome
rearrangements by reversals and transpositions. The-
oretical Computer Science. 210(1999), 327—339.
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Breakpoint graph:

e Given a permutation 7 = (m,m,...,m), extend it to have
mo=0and mp41 =n-+1

e Definition: a breakpoint in permutation = occurs between
numbers m; and w41, for 0 <i <mn, if and only if

i — miga] 7= 1.
e Key observation:

— a permutation without breakpoints if and only if it is the
identity

— new goal: reduce the number of breakpoints to 0

— every reversal reduces this number by at most 2

Theorem Let b(r) denote the number of breakpoints in 7. Let d(x)

denote the minimum number of reversals to transform = into
Z. Then,

[G)

d(m) > =5

Theorem Genome rearrangement by reversals admits a 2-approximation
algorithm.
e Breakpoint graph G(x) of w:
— n 4 2 vertices {0,1,2,...,n,n4+ 1}
— a black edge connecting m; and ;41 for every i : 0 <i<n
— a gray edge connecting m; and =; if |m — ;| =1
x=(0,13,1,2,3,4,5,6,7,10,9,8,12,11,14) and n = 13:

o0 0 0 06 06 06 06 06 06 0 06 0 0o ¢
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Breakpoint graph (2):

e Breakpoint graph G(x) of «:
~=(0,13,1,2,3,4,5,6,7,10,9,8,12,11,14) and n = 13:

0 131 2 3 4 5 6 7 109 8 12 11 14

e Properties:

— every vertex is incident with the same number of black
and gray edges

— therefore, exists an Eulerian alternating cycle
— therefore, exists an alternating cycle decomposition

— c¢(w) — the maximum number of cycles in any alternating
cycle decomposition

e For the above example, besides the 1-cycles (number of black
edges therein), we have one more alternating cycle:

{h.....‘—/ﬁr\g\

131 2 3 4 5 6 7 109 8 12 11 14

Can show this is a maximum alternating cycle decomposition
— ¢(m) =10
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Further notes on genome rearrangement by reversals:

e For almost all biological instances, d(w) = (n+ 1) — c¢(7)
— also called Sorting by Reversals (SBR)
— NP-hard and Max SNP-hard
— the best-of-the-art approximation ratio 1.375
(claimed, prior to this the best is 1.5)
e An independent research problem Breakpoint Graph Decom-
position (BGD)
— (n!'— (n—5)!) instances out of n!: SBR = BGD
— NP-hard and Max SNP-hard

— the best-of-the-art approximation ratio is 1.4193
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Breakpoint graph (3):

e Breakpoint graph G(x) of
~=(0,13,1,2,3,4,5,6,7,10,9,8,12,11,14) and n = 13:
has ¢(m) = 10.

Lemma. For every permutation =, apply one reversal to transform it
into «’. Then, |e(7) — c(x')| < 1.

Proof. By distinguishing the cases where the two black edges
involved are in one cycle or two cycles in a maximum alter-
nating cycle decomposition.

e In other words: a reversal increases c(w) by at most 1.

e Observation: ¢(Z) =n+ 1.

Theorem. Let d(w) denote the minimum number of reversals to trans-

form = into Z. Then,
d(m) > (n+ 1) — ¢(n).

b(7
Note: (n+ 1) —c(w) > % — why 77?7

e For n=(0,13,1,2,3,4,5,6,7,10,9,8,12,11,14), c(x) = 10.
Therefore, d(x) > 14 — 10 = 4. So,
Question 1: are 4 reversals really necessary?

Yes. And thus that is an optimal series of reversals.
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Genome rearrangements by transpositions:

e Formal description of the problem:

— = (W1, s Ty Ty ooy T2, Wy o ooy W1, Ty - -, W) @ PEI-
mutation on (1,2,...,n)

— a transposition t(i,j,k), 1 <i<j <k <n-+1, on m makes
7 into
= (7717---77”71-,‘W/u---vﬂk—l AR ) |77Tk7---77rn)

— given any permutation, find a shortest series of transpo-
sitions that transforms = into the identity permutation
7Z=(1,2,...,n—1,n).

e Questions:

1. Can we always transform one permutation into identity
by transpositions only?
Yes. How 777

2. How to find a shortest series of transpositions 777
e The example (13, 1, 2, 3, 4, 5, 6, 7, 10, 9, 8, 12, 11):

e Breakpoint:
There is one breakpoint if m41 —m # 1, for 0 <i <n.
Note: different to the definition for reversal only
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Genome rearrangements by transpositions (2): Genome rearrangements by transpositions (3):

e Breakpoint graph G(x) of = the same as in the reversals only

case:
Try to find a segment and a position so that, by transposing )
the segment to that position, we can reduce the number of ©=(0,13,1,2,3,4,5,6,7,10,9,8,12,11,14) and n = 13:
breakpoints!!! has ¢(m) = 10.

e Idea in designing an algorithm:

— a strip is a maximal segment containing no breakpoints
inside (therefore, increasing)

Lemma. For every permutation =, apply one transposition to transform
it into «’. Then, |c(7) —c(n’)| =0 or 2.
— the example (13, 1, 2, 3, 4, 5, 6, 7, 10, 9, 8, 12, 11)
contains 7 strips: (13), (1, 2, 3, 4, 5, 6, 7), (10), (9),

(8), (12), (11) Proof. By distinguishing the cases where the two black edges
involved are in one cycle or two cycles in a maximum alter-
— transposition segments should contain a full strip and the nating cycle decomposition.
inserting position should be outside of any strip
— otherwise will be creating new breakpoints e In other words: a transposition can increase c(w) by at most
(can be shown true precisely — can you ?77) 2.
Lemma Every transposition reduces the number of breakpoints e Observation: ¢(Z) =n+ 1.

b(rw) by at most 3.

So, one lower bound is b(;f)_ Theorem. Let d(wx) denote the minimum number of transpositions to

transform « into Z. Then,
n+1)—clxr

e The example permutation (13,1, 2, 3, 4, 5, 6, 7, 10, 9, 8, 12, d(m) > %
11) can be transformed into the identity via 4 transpositions

, e For n=(0,13,1,2,3,4,5,6,7,10,9,8,12,11,14), c(x) = 10.
Its lower bound is [§] = 3. Therefore, d(r) > 451 = 2. So,
Question: is it optimal 777 Question: Is 4 optimal?
Sorry, we are unable to answer ...
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Further notes on genome rearrangement by transposi- [L)Jgssitcg%gﬁg.genome rearrangement by reversals and trans-

tions:
e For example permutation:

e Not known yet if it is NP-hard ... (13,1,2,3,4,5,6,7,10,9, 8, 12, 11) + #(9,12,14) —
(13,1, 2,3,4,5,6, 7,12, 11, 10, 9, 8) + #(1,2,9) —
(1, 2, 3, 4,5,6, 7,13, 12, 11, 10, 9, 8) + (8,13) —

— using the above theorem on the lower bound, there is a (1,2, 3 4,5, 6 7, 8 09 10, 11, 12, 13)

1.75-approximation 4 9 4 0,0, 0,06, I, ) . ,

e Approximation algorithms

e It's hard to have precise definition breakpoint, although it is

— improved to 1.5 still a breakpoint if

. . . Imi = miga| 7 1.
e There is NO signed genome rearrangement by transpositions

So, b(w) > 5.

Why 777 e Can still have the breakpoint graph:
— c(m)

You can never flip the sign of a gene by transpositions only. e Lower bounds:

— every operation decreases the number of the above special
breakpoints, bo(m), by <3

— every operation increases c(m) by <2

— every operation increases c,(m) by < 2, where ¢,(r) is the
maximum number of odd cycles in any alternating cycle
decomposition

Therefore,

TR CRESTTIG

2
e SO, at least we have a 1.5-approximation algorithm ...

e Is it hard 777
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Signed genome rearrangement by reversals and trans-
positions:

e Transforming signed into unsigned by:
+i— (20— 1,20)
—i — (2i,2i — 1)
and each of the pairs is not allowed broken

e There is a breakpoint if
|mi — mig1] #= 1.

In breakpoint graph, there is a black edge iff there is a break-
point; there is a gray edge iff the numbers differ by 1 and
their positions are not adjacent.

Note: different from the previous definitions
e Alternating cycles, and c(m)
e New goal: eliminating breakpoints and cycles
b(Z) =0 and ¢(Z) =0
e Lower bounds:
— every operation decreases b(w) by <3

— every operation decreasing b(w) by 3 also decreases c(m)
by 1
those 3 black edges belong to a 3-cycle

— can show: every operation decreases (b(m) —c(w)) by <2
Therefore,

b(r) — e(m)
d(m) > — s
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Agenda:
e Database & algorithms

Genetic/Genomic data (here genes & gene orders) —

evolutionary distance —

evolutionary tree (phylogeny)

Links:

by Alex Strilets
http://alpha.higsoft.com/genomerr/

by Ayman Ammoura
http://www.cs.ualberta.ca/"ayman/bio/

Ensembl Genome Browser
http://www.ensembl.org/

Arthropoda mitochondrial genomes
http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/6656.html

Sauropsida mitochondrial genomes
http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/8457 .html

Tree of life
http://tolweb.org/tree/phylogeny.html

Phylogeny : Phylip programs

http://bioweb.pasteur.fr/seqanal/phylogeny/phylip-uk.html

223

Lecture 18: Genome Rearrangements

Signed genome rearrangement by reversals and trans-
positions (2):

e By carefully examination, we will be able to find a series of at
most (b(w) — c¢(w)) operations which eliminate all breakpoints
(and thus all cycles) in .

Theorem. SBRT admits a 2-approximation algorithm.

e Further notes:
— believed to be NP-hard, no proof yet ...

— 2-approximation is the best guarantee so far

e One more operation — reversal transposition:
= = (M1, M1y Wy oy TGm1, Ty oy Th—15 Thy - -, W) @ PEI=
mutation on (1,2,...,n

— a reversal transposition rt(i,j,k), 1 <i<j<k<n+4+1,
on m makes 7 into

—
= (7717---77"'#1:‘7rjv---=7rk—1 IETEETIE R /N 1Y)

e Genome rearrangement by reversals, transpositions, and re-
versal transpositions

— hardness open
— the best-of-the-art: 1.75-approximation algorithm
e Transposition regarded as an exchangement

Another operation: double reversal rr(i, j, k):

M= (T oy Ty My ooy Tm1y Ty e ooy Whm 1, Ty - - -5 M) —

) —
= (w1, Tt [T, T | Ty -5 )

Th—15-+-,Tj

>
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Lecture 20: Protein Structure Prediction
Agenda:
e Overview of protein structure/function prediction
e Sequence homology (BLAST, PsiBLAST)
e Structure homology (fold recognition by threading)
Reading:
e Ref[JXZ, 2002]: chapters 16-18.
e D. Baker and A. Sali. Protein structure prediction
and structural genomics. Science. (2001) 294:5,

93-96.

e S. F. Altschul et al. Gapped BLAST and PSI-
BLAST: a new generation of protein database search
programs. Nucleic Acids Research. (1997) 25,
3389 — 3402.

e Y. Xu et al. An efficient computational method for
globally optimal threading. Journal of Computa-
tional Biology. (1998) 5, 597—614.
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A protein (3D or tertiary) structure:

See www.cmbi.kun.nl/gvteach/alg/infopages/proteins.shtml fOr a
detailed atomic decomposition.

Secondary structure involves a-helix, (-sheet, and (-

turn.
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NMR and X-ray crystallography:

e They are both experimental methods using knowledge from
biology, physics, chemistry, biochemistry, and mathematics
o NMR spectroscopy
— protein purification
— spectra generation
— peak picking
— peak assignment
— structural information extraction
— structure calculation
Requires nearly complete and accurate peak assignment, which
is hard
e X-ray crystallography
— crystal preparation
— X-ray diffraction collection
— structure calculation

Requires high quality crystal, which is hard too
e None of them is a high-throughput technology

e NMR can provide the structure in near physiological condition
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Structure prediction:

e Big reasons for prediction:
— a huge number of proteins (e.g., 300,000 human proteins)

— a small number of structures been experimentally deter-
mined

accurate (high resolution)

— experimental structure determination is very expensive
and slow

— not all protein structure necessarily determined experi-
mentally
e Roughly, 3 different approaches for prediction:
— NMR spectroscopy and X-ray crystallography
— comparative modeling
— De novo structure prediction

e 4 steps in structure modeling (including comparative modeling
and threading):

find related known structures — templates
— compute sequence-template alignment

— build structure model

assess the structure model
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Structure modeling:
e 4 steps:

— find related known structures — templates

— compute sequence-template alignment

build structure model

— assess the structure model

e Comparative modeling:

— templates can be found by
1. sequence comparison methods such as PSI-BLAST

2. structure comparison methods

— compute a sequence-structure alignment minimizing the
‘energy’:

1. using sequence alignment (homology search)
2. threading (next lecture)

— produce all-atom model
1. cores, loops, side-chains

2. approximate positions of the conserved atoms
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De novo prediction:

e No templates, predict from scratch

e Assumption: native structure is at the global free energy min-

imum

e Therefore, search limited to the conformational space with

low global free energy

Accuracy:
approach req. seq. identity model accuracy
NMR, X-ray - 1.0A
sequence | > 50% 1.55
comparative threading | > 30% 3.5A
threading | < 30% high error
de novo insignificant 4-8A
Applications:

e understand the functions/structure

e function repair, drug design

e etc.
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Sequence homology search tool — Psi-BLAST:

e Position-Specific-Iterated BLAST

e “http://www.ncbi.nim.nih.gov/BLAST /"

e One protein sequence:

>tetrahymenaOl: 378aa

MILFKKLLIQ KKVNYLSRLL
FNHNENRPQR VQKPRFKKVA
FQQEINTFYS FLELIKNFKT
TTETRNVLVE SARIARGEVK
NGTNFTVNSE VERVLREFHS
DNQDTPNKCW PHSEAINAAE
NGFTKFSTTF DGAGHLVNII
QYNRNNNNRR PRENNNENHE

e Items need to check:

MIARHILKLQ
IILSGCGVYD
QFQNIFLNQN
DITQLKGEDY
QKKPIGAMCI
TLGAQHFQRN
DQIVQGNSIK
QHHHHEQQ

— Psi-BLAST vs. BLASTp

NLAKTTPFFR FSEFNETESS
GSEVTEVVSL MVHLNKSHVS
RCFAPNQDQL HVVNHITGET
QAVLLPGGFG AAKNLSDYAV
SPLILAKVLQ NDNLNHHGRV
ADRFQVDFEN KIVTAPAMMF
LDTIGEKKHE NFDGERRPRG

— input protein sequence format: FASTA

— database selection

— score scheme

— # iterations

— score, Z-score, E-value

— seguence identity

— PSSM generating and using
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Protein function prediction:

e Through structure prediction

e Indirectly through structure prediction
— protein backbone structure prediction
via NMR, X-ray
— threading to predict function
— sequence similarity — homology search
— key functional region identification
1. de novo structure prediction

2. function motif recognition / learning

E.g., the basic EF-hand consists of two perpendicular
10 to 12 residue alpha helices with a 12-residue loop
region between, forming a single calcium-binding site
(helix-loop-helix). Calcium ions interact with residues
contained within the loop region. Each of the 12
residues in the loop region is important for calcium
coordination.

3. structure motif recognition / learning
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Protein threading:

e Knowledge-based force field

— statistics on a database of known proteins

— building a force field

— collecting a set of possible conformations for peptides of
length L

— measuring the energy for query protein (of length L) in
each conformation

— ranking the energy (the lowest on the top)

o Details:
— s — discrete distance between two atoms ¢ and d
— c and d — atoms from two amino acids a and b, at dis-
tance k
— the energy associated is

bd

TMap gzc (S)

T4+oma 1+ oma g-%s)
mg, — relative frequency of amino acid a and b at distance

EZ“'M(s) = —kTIn ,where

ac,bd

g, (s) — relative frequency of atoms ¢ and d at distance
S

g;"l(s) — relative frequency of atoms ¢ and d at distance
s averaged over all amino acid pairs
o — weight of observation pair a and b
k — Boltzmann’s constant
T =293
— energy in one conformation is:

E(S,C) = Z B (s;5), where
ij
S — query sequence

C — conformation
i,7 — indices of atoms ¢ and d, respectively
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threading (2):

e Lattice Monte Carlo model

global minimum (native structure) state is known in the
model

global minimum state on the potential surface

folding starts from random-coil state to a random semi-
compact globule

folding from semi-globule state to the native fold
complexity: 1016 — 10° — 103

calculate the energy for every possible state and output
the minimum
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Protein threading (4):

e Template/Sequence profile (GenThreader):

database consists of unique protein chains (templates)
from PDB

run each template on a much larger database to construct
a profile

pairwise align query sequence with a profile

evaluate the alignment using potentials:
1. pairwise potential:

bd
EM(s) = —kTn { 1 oma G (S)}
- =

1+oma  1+oma ¢@%s)
(you have seen this before)
2. solvation potential:
a
E¢ (r) =—RTIn (f—(r)
f@)
r — degree of residue a burial
f2(r) — frequency of occurrence amino acid a with
burial r
f(r) — frequency of occurrence all amino acids with
burial r

) ,where

— evaluation through a neural network:

1. input layer: pairwise energy, solvation energy, align-
ment score, alignment length, template length, query
sequence length

hidden layer

3. output layer: templates related, templates unrelated
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Protein threading (3):

e Comparative protein modeling (Modeller):

compose a database of proteins with known 3D structure

align the query sequence with “related” known 3D struc-
tures

derive the distance and dihedral angle constraints on the
query seguence

combine these constraints and energy terms into an ob-
jective function

optimize the objective function, for example by

1. non-linear optimization
2. molecular dynamics + simulated annealing

evaluate the fold

e Two steps of details

constraint deriving:
1. conditional probability summarized from the database

2. using least-square to fit into the histogram

optimization:
1. typically there are thousands of constraints

2. can model atoms from the sidechains as well

e Note: alignment is critical to the success of prediction
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Agenda:

e Protein threading — PROSPECT

Reading:

e Ref[JXZ, 2002]: chapters 17-18.

o Y.

Xu et al. An efficient computational method for

globally optimal threading. Journal of Computa-
tional Biology. (1998) 5, 597—614.

o Y.

Xu & D. Xu. Protein threading using PROSPECT:

design and evaluation. Proteins: Structure, Func-
tion, and Genetics. (2000) 40, 343—354.
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Protein threading — PROSPECT (2):

Lecture 21: Protein Fold Recognition

Protein threading (5) — PROSPECT:
e Main idea: divide-and-conquer e A schematic view:

e Details:

— again, thread query protein into template folds interactions

— find the fold achieving minimum free energy template
— computational recognition of native fold cores &l il % &l

— can be used to construct the structure

— mainly focus on backbone structure for function predic-

tion —— — — — —
sequence \
e Factors: — what are counted into the free energy ? [ gap
— singleton fitness (into the local environment) aligned portion

— pairwise interaction (non-adjacent close residues)

~ gaps Here, (secondary) core = a-helix or B-sheet.

How to compute:
. p e The goal:

— sequence-to-template alignment To compute an optimal partition of the query sequence such

that the corresponding sequence-to-template alignment achieves

— assume additive sum of energy terms =
the minimum free energy.

— no gaps inside cores

— divide-and-conquer
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Protein threading — PROSPECT (4):

Lecture 21: Protein Fold Recognition

Protein threading — PROSPECT (3):

e Singleton fitness: e Pairwise interaction:

Represents a residue’s local preference of the secondary struc- Measures the pairwise potential between spatially close non-
ture (helix, sheet, loop) and the solvent environment (the adjacent residues.
extent of exposure to solvent).

e Energy term:

e Energy term: M (aa1, aaz)

N ! epair(aa1, aa2) = —kT log <#> , where
(aa, ss, sol) Mg(aay,aaz)

Ng(aa, ss, sol)

esingle(aa, ss, sol) = —kT log ( ) ,where

aa1,aaz — amino acid types

aa — amino acid type

ss — secondary structure type

sol — extent of exposure to solvent
k — Boltzmann’s constant

T — temperature 295

N (aa, ss,sol) — # amino acid of type aa in secondary struc-
ture ss with extent sol of exposure to solvent, counted from
the database

Ng(aa, ss, sol) — expected # amino acid of type aa in sec-
ondary structure ss with extent sol of exposure to solvent,
counted from the database:
N(aa) x N(ss) x N(sol)

N2

Ng(aa, ss, sol) =

There are 3 types of solvent accessibility: buried (< 9.5%), in-
termediate (< 48.6%), and exposed (> 48.6%) — calculated
by ACCESS
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M (aay,aaz) — # of pairs of amino acid types aa; and aaz in
the database that interact

Mg(aay,aaz) — expected # of pairs of amino acid types aa;
and aa, in the database that interact:
M(aa1) x M(aaz)

Mg(aa1, aaz) = i

e Spatially close:

— for two non-adjacent residues
— the distance between their 8 carbon (Cs) atoms is < D

— D usually ranges from 7 A to 15 A
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Protein threading — PROSPECT (5):

e Mutation energy:

Describes the compatibility of substituting one amino acid
type by another during the evolution.

e Energy term:
Use PAM250
RIN[D[C[QIE[G[H[T[LIKIM[F[P[S[TMW]Y]V[B[Z]X]

>
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Protein threading — PROSPECT (7):

e The threading algorithm:
The base step — how to alignment a subsequence to a core

e Cutting a core out of the template creates a set of half-links
e Links represent the pairwise interaction

e For one half-link, need to get the information:
the amino acid that the half-link should connect to

e When computing the alignment, impose a constraint that the
half-link and its the other part can be connected together —
— meaning that both half-links should be assigned a same
amino acid

e The reason we only need to record amino acid type (not its
residual position) is:
Positional constraints are counted into the gap penalty ...

e Gaps are restricted to the loop area (and the tails of cores)

e Try all (in total linear number of) the possibilities and get the
optimal

—{oocooooo0oo0o000000F—
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Protein threading — PROSPECT (6):

e Gap penalty
Gap length is the length difference between a loop in the

template and its aligned (loop) region in the query sequence.
e Affine gap penalty:
egap = 10.8 4+ 0.6 x (gap_length — 1).

e Total energy:

FElotal = c1 X Fsingle + ¢2 X Epair + €3 X Emytation + ¢4 X Fgap

Need to learn coefficients ¢;: How 777
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Protein threading — PROSPECT (8):
e The threading algorithm:
Analysis of the base step, suppose
— core (tp, tq)
— half-link set X
— subsequence (si,s;) —j—i1>q—p
For every feasible assignment A for half-link set X, try all the
possible cutting point k:i <k <j— (¢ —p)
o((G-1--»)ag—n)
e The general recurrence:
When cutting a link, one half is open

— can be assigned with any amino acid and the pairwise
interaction energy is calculated;

The other half is closed

— again can be assigned any amino acid, but the energy is
4+ oo if it doesn’t agree with the residue that the link links to

Therefore, these force the link to link two residues with pair-
wise energy counted exactly once.

e Complexity:
— need to examine every possible cutting point — divide

— need to create the assignments for links cut during the
divide stage

— C — maximum # links being cut over all possible posi-
tions

©(Mn205¢ 4 mn20°)
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Protein threading — PROSPECT (9):

e Overall running complexity ©(Mn20"5¢ + mn20°), so far ...

. i i : n x nt5 4 mnn®
Overall running time now: ©(M 1.5¢1

Careful dividing strategy to minimize C' — preprocessing tem-
plates

Another observation for speed up:

No

gaps inside the cores

If two links linking to ¢, and ¢, within a same core, then they

ma
pai

y produce up to ©((j — i)), instead of ©(202), different
rs of half-links.

— merge them into one (half-)link, if both are open (or
closed).

Need careful dividing strategy to minimize this new parameter

c’

for every template ...

Can be done by Dynamic Programming (exponential time in
the template length)

preprocessing

once get the dividing strategy, use it forever in the future
threading

for most of the templates, ¢’ < 4
while some might be as high as 8

C'" increases with distance threshold D increases

"
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Agenda:

e More function prediction approach introduction

Reading:

e Ref[JXZ, 2002]: chapters 17-18.

e R. Lathrop et al. Global optimum protein thread-
ing with gapped alignment and empirical pair score

functions.

25

M.

Journal of Molecular Biology. (1996)
5, 641-665.

Deng et al. Prediction of protein function us-

ing protein-protein interaction data. IEEE CSB’'02.

Pa

ges 197-206.
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Protein threading — PROSPECT (10):

e Database construction:

collect more than 2,000 templates from FSSP/PDB (also
SCOP library)

secondary structure information
solvent accessibility information

preprocessing to compute the optimal dividing strategy
for every template

e Accepts additional information to assist threading

PSSM
secondary structure preference

solvent accessibility preference

e Execution details:

excluding pairwise interaction to speed up first-round thread-

ing

then enter the second round detail threading using pair-
wise interaction

output sequence-to-template alignment

assess the alignment through a neural network (confi-
dence)

alignment score, fitness score for every energy term, Z-
score, compact factor, structure construction using tem-
plate structure(s)
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Protein threading (6):

e Multiple sequence alignment:

a database of candidate structures (templates)

search for every template the similar structures in PDB
(pairwise structure alignment)

compute a multiple structure alignment out of these pair-
wise alignments

use the multiple alignment as a profile, compute the
sequence-structure alignment

e Some steps of details:

pairwise structure alignment

use the center star method to compose the multiple align-
ment (approximate)
threading (sequence-structure alignment):
N
score(a,c;) = Z s(a, cf), where
k=1
N — number of structures in the structure profile
c; — the ith column in the structure profile

cf? — the amino acid in the kth structure in the ith column
in the structure profile

s(-,-) — scoring scheme (PAM250)
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Protein threading (7): Protein threading (8) — more models:
e Branch-and-bound: e Hierarchical threading
— a database of templates, each consists of
1. core segments (Secondary Structures) e Hidden Markov models for homology detection

2. pairwise interaction

3. solvent accessibility e Machine learning approach(es)

— setting up for each core segment the region on the query by Brett Poulin
sequence it may map to
1. no gap in the core segments e Markov random field using pairwise/complex interaction data
2. affine or whatever gap penalty by John Shillington

3. score function

— estimate for every core segment the minimal possible en-
ergy

— sum the core segment energy up to be a lower bound of
the search space

— choose the mapping interval of the core segment reaching
the minimal energy to split into 3 subsets

— ending at a subset in which there is only one possible
assignment

e The achieving assignment reaches the minimal energy

e Score function:
— fitness energy for every amino acid: local environment
— pairwise interaction

e Note: branch-and-bound algorithm nature — exponential in
the worst case
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Lecture 23: Phylogeny Reconstruction Lecture 23: Phylogeny Reconstruction
Agenda: A phylogeny (also called evolutionary tree):
rodents: a branch r Rat
e Maximum parsimony L House Mouse
Cat
e Perfect phylogeny Harber Seal
. L Grey Seal
e Neighbor-joining — ) .
White Rhine
ferungulates Horse
Finback Whale
Reading: Blue Whale
. Cow
e Ref[Gusfield, 1997]: pages 447—-479 Gibbon
Gorill
e Ref[JXZ, 2002]: chapter 5. ortia
Human

primates .
Pygmy Chimpanzee

Chimpanzee

[ Orangutan
extinct species Sumatran Orangutan

e \What data?

Mitochondrial genomes
e Which method?

251 252



Lecture 23: Phylogeny Reconstruction

An example - Out of Africa Theory:
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Factors in phylogeny reconstruction:

e Data:

— character data — morphological features, aligned sequence
characters, polymorphic genetic features

— molecular sequence — DNA, RNA, protein

— distance — estimated (evolutionary) distance between
TAXA based on some model of evolution

e Methods:

— parsimony, compatibility, distance-based, maximum like-
lihood, quartet, phylogenetic root

e Rooted vs unrooted phylogeny:

A D

A B B C E

e Weighted vs unweighted phylogeny:
Weight gives the evolutionary distance between two TAXA
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Phylogenetic analysis from Cann et al., 1987, Nature,
based on restriction mapping of mitochondrial DNAs
(mtDNAs) of 147 people.
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Similar results have been obtained using polymorphisms
on Y chromosomes.
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Parsimony:

Input usually character data:

species | sitel 2 3 4 5 6
Aardvark C A G G T A
Bison C A G A C A
Chimp C G G G T A
Dog T G C A C T
Elephant T G C G T A
e How to evaluate a given tree? — minimum number of muta-

tions
e How to search the tree space?

Small Parsimony Problem: given the phylogeny with TAXA ar-
ranged at the leaves, compute the internal nodes to minimize the
total number of mutations.

C C cC T T

Aardvark Dog
Bison Chimp Elephant

1 mutation at site 1.

8 mutations at 6 sites.

256



Lecture 23: Phylogeny Reconstruction

Fitch’s algorithm for Small Parsimony:

Goal: to minimize the total number of mutations.
Consider sites separately.

For each internal node i and state s, c(i,s) is the minimum
number of changes required for the subtree rooted at i, if i is
given the state s;

Recurrence relation:

If 7 and k are the children of i,
(i, s)
min, ge(a,c.cry(e(d, p) +clk,q) + s(s,p) + s(s.q))

Traverse the tree in post order or bottom up to compute

o).

Time: O(|T|-|Z])
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The (Large) Parsimony Problem (2):

e Heuristics and approximations:

1. branch-and-bound:

— consider trees of increasing size;

— abort an extension if cost already exceeds current best.

To

Ty

2. local search (neighborhoods)

— nearest neighbor interchange (NNI)

-

— subtree transfer

AN

>
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Lecture 23: Phylogeny Reconstruction

The (Large) Parsimony Problem:

e We know how to evaluate a given tree ...

How to find a tree with the minimum cost?

For 20 leaves, there are 102! binary trees, 102* rooted trees

NP-hard
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The (Large) Parsimony Problem (3): A greedy method

e Species are represented by DNA sequences

e Assume a given multiple alignment — character data

1.

2.

3.

PHYLIP — DNAPARS

Arrange the sequences in some order.
Construct a phylogeny for the first two sequences.
repeat until all sequences are added:

Add the sequence at the head of the order to the current
phylogeny to achieve parsimony.

S1 S>
or or
S3
S1 S> S1 53 Sa S1 53 Sa
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Problem with the parsimony method: statistical incon-
sistency

anch attraction

True tree

ng branch attraction

(Felsenstein 1978)

Estimated tree
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Distance-based phylogeny reconstruction (1):
e The problem: for every pair of taxa i and j, define a distance
d(i,j). Construct an edge weighted tree such that the path
joining i and j has weight d(i, j).

e An example,

|A B C D E
A0

B|03 0

c|o7 08 0

D|11 12 06 0
E|09 10 04 04 O

e Getting distance — Jukes/Cantor’s distance model
1. input data: ungapped alignment of DNA sequences
how: treat each site as an independent random variable

3. assumption: every nucleotide has equal probability of mu-
tating one of the three other nucleotides

4. parameter: common point mutation rate m — expected
number of mutations per unit time. Hence, the expected
number of mutations within time At is mA¢.

5. Jukes/Cantor's model is Markovian:

AL

1 —mAtp G 1—-mAt
AL AL

1-maf mpap | 1-mA
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Perfect phylogeny:
e The parsimony problem taking binary state characters

e Requires at most 1 change for each character/site.

|1 2 3 4 5

2
All 1 0 0 O
B[O O 1 0 O 3
clo o o o0 1 5 A4
D|0O 1 0 0 O 1
E|0O 0O 0O 1 O

C E BD A

Definition: For any character i, let O; be the set of taxa with state
1 at character .

Theorem: A perfect phylogeny exists for the input, iff for any
i # j, either O;NO; =0, or O; C O;, or O; C O;.

Proof. “only if': Trivial.

“if": For any character ¢ incurring a state change, define a
bipartition (A, B), and draw an edge

@——-:~3
Repeat this process for other characters. The property of
the data guarantees that sets A and B will be subdivided
by further bipartitions. (If there are any unresolved nodes,
resolve them arbitrarily.)

Generalizations To more than 2 states, see [Gusfield, 1997].
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Distance-based phylogeny reconstruction (2):

e Jukes/Cantor’s distance model:

— assume mAt < 0.75, starting from state ¢, the probability
of ending up in a state j # i is:

1 AmAL .
Pr(gla.t) = (1- - 520%).
Letting At — 0O,
1 —4mt
Prglet) = 5 (1—e5m).
— hence, the probability of at least 1 mutation is

H — 3 —4mt
Pr(mutation|t) = 2 (1 —e3 ) s
since the sites are independent and identical processes
(iid).
— fraction of sites changed (letting f = 3 (1 - e*%"‘t)):

3 4
mt = 2 log(1 — §f) — — — mutation distance

e Kimura 2-parameter:

Replace m with transition and transversion rates.

e HKY /Felsenstein:
Unequal probability for individual nucleotide.
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Distance-based phylogeny reconstruction (3):

e Distance data d(i,j) is additive if there is an edge weighted
tree fully agreeing with the distances.

e (Buneman) Four Point Condition:
For any taxa A, B,C, D,

d(A, B) 4+ d(C, D)

max{ d(A,C) +d(B,D)

) +d(B,C)

d(A, B) +d(

= median{ d(A,C) +d(
d(

Theorem A distance data is additive if and only if it satisfies the four
point condition.

Proof.
1. “only if": Trivial.

2. “if": For any taxa A, B,C, D, the condition uniquely de-
termines,

z1 (for example)
B /3 TS\ D x; may be negative!

221 = d(A,C) + d(B, D) — d(A, B) — d(C, D),
x2 + 23 = d(A, B),

z4 + x5 = d(C, D),

z1 + x4+ x4 = d(A,C),

z1 + z3 + x5 = d(B, D),
z1 4 2+ x5 = d(A, D), ’ s
71 4 23 + 74 = d(B.C). redundant by 4 point condition
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Distance-based phylogeny reconstruction (4)
— Neighbor-Joining (NJ) by Saitou & Nei, 1987:
Given d(i,5),1 <i,j <n.

1. For each taxa i, compute net divergence
n
=y d(i,5).
=1

2. Compute rate-corrected distance

My = d(i, j) - =0

n—2
3. Let i and j be the taxa minimizing M;;.
Introduce a new taxa u, such that

= 20 4
Sju = d(%,7) — Siu
Ak, u) = d(i.k)+d(]2:k)7{1(i.])

4. If more than 2 edges unweighted, go to STEP 2.
Otherwise let sy, = d(k,u).

Notes on NJ:
e Perfect on additive distance data.
e Very popular heuristic in practice.

e Theoretical analysis by K. Atteson.
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Distance-based phylogeny reconstruction (4):
e The Theorem implies an O(n*) time algorithm. (How?)

e But, there are O(n?) time ones, such as Neighbor-Joining
(NJ) to be discussed.

e What if data is not additive / perfect?

— Edwards & Cavalli-Sforza try to find a weighted tree to

minimize
Z(Du - dy)?,
i.j

D;; — observed distan‘ce,
d;; — implied by tree.

— Fitch & Margoliash try to minimize

Z (Dij — dij)?
—.
i.j b
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Agenda:

e Maximum likelihood

e Quartet and quartet-based

Reading:

e Ref[JXZ, 2003]: pages 111 — 134
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Maximum Likelihood Methods:

Find a tree with maximum probability of generating data (se-
quences).

e Model:

A branching process describing how taxa/species diverge over
evolutionary time, and a sampling model (ignored).

max L(T|S,M) = Pr(S|T, M) (Bayesian)
M : Jukes/Cantor, Kimura, HKY

e For example,

A °*B °C
— t;; mutation distance (mAt)
- L=3">, PPy ta)-P(Alx,11)-P(Blz,t2)-P(Cly, ta)

— In a stochastic process, P(y) is the equilibrium probability
of y.

— The sum can be made nested.

e Maximum Likelihood gives confidence level

. but time consuming.
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Quartet-based phylogeny reconstruction (2)

Combining inferred quartet topologies is not easy in practice.
1. O(n*) quartets (huge data redundancy).

2. All existing phylogeny reconstruction methods sometimes in-
fer incorrect quartet topologies (quartet errors).

3. Quartet recombination methods are usually sensitive to quar-
tet errors.

4. It is NP-hard to find the largest set of compatible quartet
topologies, even if the input set of quartet topologies is com-
plete. [Steel, 1992; Berry et al., 1999]

5. Heuristics such as quartet puzzling [SH96] and Q* [BGI7],
etc. don't have guaranteed performance.

An alternative approach: Look for efficient algorithms that recon-
struct the tree correctly in presence of bounded number of quartet
errors in particular regions of the tree.

Such algorithms essentially “clean” errors in a given set of quartet

topologies, and are hence called quartet cleaning algorithms.
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Quartet-based phylogeny reconstruction (1)

e A quartet ¢ is a set of 4 distinct species in a tree T; the
subtree of T linking the species in ¢ is the quartet topology
for g relative to T'.

: e
<
e

T QQ W

C D
Assuming bifurcating events ...

e Each tree has a unique set of associated quartet topologies
(Buneman, 1971)

e Reconstruct tree by inferring topologies of all possible quar-
tets and then combining these topologies.
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Quartet-based phylogeny reconstruction (3)

A motivation: Felsenstein Zone

Maximum parsimony is one of the most popular methods in phy-
logeny reconstruction. But it is known to be statistically inconsis-
tent.

C C

D D

However, when the tree to be reconstructed is large, we can afford
to infer a few (strange shaped) quartet topologies incorrectly. Data

redundancy allow us to clean these errors.
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Quartet-based phylogeny reconstruction (4)

a
D —
c
Cej quartet
topology
f .
inference
sequence data method
> <o <o <4
true phylogeny T d £ d  set of
a>_<ba>_<dt>_<d inferred |cleaning
[¢ ec gc f  quartet
a ca t> € topologie
NatHhatwee
a da><c><e
c><ef e f quartet
a><bz>_<ez><e recombination
f d f f method
a e
determine root f

a e

assign edge weights c d
inferred phylogeny

inferred phylogeny topology
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Quartet cleaning (2)

1. Global Edge Cleaning

e Every edge (4, B) has at most (UL quartet errors.

e O(n*) time.

e Error bound is optimal.

2. Local Edge Cleaning
e Recovers an edge (A, B) if the number of quartet
across (A, B) is at most w.
e O(n®) time.

e Unresolved tree.

3. Hyper-Cleaning(m)
e Returns all bipartition (A, B) with

(A= D(ABI- 1)

[Qapy — QI <m >

e The bipartitions may not be all compatible.

e O(n” - f(m)) time.

errors
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Quartet cleaning (1)

e Quartet error bounds may be stated relative to quartet errors
across either vertices or edges:

A F
A F 1,2

B a,b, ¢ E

al b32c B 2 F

p o/ beNg

B E C A
3

C D D b,d E

Definition: A quartet error ¢ is across a vertex (an edge) in a tree T if
the joining path of the quartet topology associated with ¢ in
T includes that vertex (edge).

e Quartet error bounds may either be local (hold in individual
parts of the tree) or global (hold in all parts of the tree).

e 4 types of cleaning algorithms:
{global, local} + {edge, vertex} cleaning

e Local quartet cleaning preferable —
— all parts of tree may not satisfy a quartet error bound

— can still reconstruct part of the tree
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Quartet cleaning (3) — the limit

e Consider the following two trees T and T".

T T

e Observe that Qr and Qp differ by quartet topologies of the
form az|by, where z € X and y € Y. Hence,

|Qr — Qr| = (IX| - 1(Y]-1).

e Therefore, no algorithm can detect more than W

errors across edge e.
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Quartet cleaning (4) — local edge cleaning
Theorem There exists an O(n®) time algorithm that correctly recovers
all edges e of the tree satisfying

(4l = 1)(Bel = 1)

Q) — QI < >

e Proof.

Let S = {s1,52,...,8n}, Sk = {s1,82,...,s,}, and Q. the subset
of @ induced by Si. The idea is to recursively compute sets:

BP.y(Qr) ={(X,Y)|z € X, y € Y, and there is at most one
quartet error across (X,Y’) involving both z and y}.

BP,(Qr) = {(X,Y)|z € X and there are at most @ quartet
errors across (X,Y) involving x}.

BP(Qi) = {(X,Y)| there are at most W quartet er-

rors across (X,Y)}.
W)

Observe that the algorithm may leave some of edges of the
tree unresolved.
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Quartet cleaning (6) — global edge cleaning
1. Quartet error bound must hold for every edge in the tree.

2. For each edge inducing a bipartition (A, B) of S, we state the
bound relative to (A, B).

Theorem There1 exists a polynomial time algorithm with bound «-|A|-|B|
(a<3).

Theorem The following algorithm computes the correct tree if every
edge of the tree has at most (A=DUPED quartet errors in Q.

The algorithm can be implemented to run in O(n*) time, i.e.,
linear time.

The error bound is optimal.
e Algorithm Global-Clean(S, Q):
1. Let R:=S.
2. For every pair of rooted subtrees T; and 7> in R
(a) Let A denote the leaf labels of Ty and T».
(b) If |Q(A, S — A) — Q| < HAZDUSZAZY tpen
i. Create a new tree 7" with Ty and T» as its subtrees.
ii. Let R:=R—{T1,T>}U{T"}.
3. Repeat step 2 until |R| = 3.
4. Connect the three subtrees in R and output the resulting

(unrooted) tree.
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Quartet cleaning (5) — hypercleaning

e The local edge cleaning algorithm returns the set of biparti-
tions (A, B) incurring at most w quartet errors in Q.
These bipartitions are compatible with each other.

e What about bipartitions incurring more than
tet errors?

(AZDP-D) o

Theorem There exists an O(n’ f(m)) time algorithm that computes all
bipartitions (A, B) satisfying:

(Al -1)(B|-1)

[Qap) —Ql < mE—

— These bipartitions may not be compatible with each other!
— The maximum subset of compatible quartets (hard).

— Greedy searching.

o f(m) = 4m2(1+ 2m)*™ (in practice, m < 5).
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Quartet cleaning (7) — global edge cleaning (cont'd)
T T
: e
N NN

e Suppose the algorithm incorrectly joins subtrees 73 and T»
with label sets A and B. This implies that in the true tree T,
there is an edge e with bipartition (AU A", BU B’), |A'] > 1,
|B’| > 1, which separates Ty and T> in T. Similarly, there is an
edge ¢ in the reconstructed tree with bipartition (AUB, A/UB").
Let Q1 = Q(AUA,BUB’) and Q2 = Q(AU B, A’U B’) denote
the sets of quartets across e and €/, respectively.

e Consider the symmetric difference of Q1 and Q2 — |Q1 P Q2|
Observe the following:
— Q1 ® Q2| = |A||B||A"]| B
— @12 Q2 < Q1 —-QI+Q2—-Ql.

e As each edge in T satisfies the quartet-error bound,

01— Q| < AL+ 14 = 1)2((\B| +1BD-1)

However, as 71 and T> were joined by the algorithm,

(Al +1B) = D((AT+[B) - 1)
> .

Q2 — Q| <
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Quartet cleaning (8) — global edge cleaning (cont'd)
e The above two items imply

AIBIANB| < (AIHAD- DB+ BD-1)
4 QAR ED-1)
¢ ,

which is false for any |A|,|B|,|A'[,|B'| > 1.

[Al=1)(1B|-1)
2

e Error bound (¢ is optimal.

e Intuitions behind the Proof:

— Trees “separated” by minimum number of differences in
associated sets of quartet topologies.

— If quartet error bounds hold relative to true tree, can-
not accumulate enough quartet topologies to reconstruct
different tree under the cleaning algorithm.
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Quartet cleaning (10) — open problems

1. Improve the time efficiency of local edge cleaning and hyper-
cleaning algorithms.

2. Combine cleaning with maximum likelihood reconstruction of
quartet topologies.

3. Test the algorithms on real datasets.

4. Various ways of extracting a tree from the bipartitions found
by hypercleaning.

5. Extend the work to incomplete set of quartet topologies.
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Quartet cleaning (9) — simulation study

e Quartet cleaning is computationally expensive. Is it really
worth? If so, under what assumption?

e Two questions:
1. How often do quartet errors occur?

2. How often can quartet errors be cleaned, i.e., how often is
the number of quartet errors less than the bounds required
by known algorithms?

e Examine quartet errors in simulated datasets:

— Approach: Generate phylogeny; generate DNA sequence
dataset for phylogeny; infer quartet topologies relative
to sequence dataset; determine quartet errors relative to
phylogeny.

— Vary evolutionary rates on edges of phylogenies and lengths
of sequences in dataset.

— Quartets inferred using 3 popular methods: Maximum
Parsimony, Neighbor Joining, and Ordinal Quartet [Kear-
ney, 1997].
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Agenda:

e Phylogenetic root — a graph theory based approach

Reading:

e P.E. Kearney et al. Tree powers. Journal of Algo-
rithms, 29:111-131, 1998.

e G.-H. Lin et al. Phylogenetic k-root and Steiner
k-root. ISAAC 2000, LNCS 1969, pages 539-551,
2000.

e Z.-Z. Chen et al. Computing phylogenetic roots
with bounded degrees and errors. WADS 2001,
LNCS 2125, pages 377—388, 2001.
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Impacts:

e The estimated distances are not accurate

e Rather than using exact distance, use thresholds

two species are close if their estimated distance is within
some threshold ¢

in the phylogeny, their distance (the number of edges) is
within some bound k

285

Lecture 25: Phylogeny Reconstruction

The phylogenetic kth root problem (PRk):

e Given: a graph G (simple, undirected) and an integer k

Lecture 25: Phylogeny Reconstruction

The supposed phylogeny:

One approach to reconstruct:

Step 1. distance estimation

|A_ B C D E
A0

B|03 0

C|07 08 0

D11 12 06 0
E|09 1.0 04 04 0

Step 2. closeness graph (threshold ¢t = 0.8)

A D
C
B E

Step 3. phylogeny reconstruction (bound k = 3)

B C E

Lecture 25: Phylogeny Reconstruction

State-of-the-art (PRk):

— vertices represent species

— adjacency represent evolutionary closeness

e Output: a tree T (unrooted)

— leaf set of T = vertex set of G

— vertices are adjacent in G if and only if
they are connected by at most k£ edges in T

— internal nodes in T' have degree at least 3

A D A D
C

B E B C E
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e Solvable in polynomial time for k = 2,3,4 (2000)

e Remains unknown for k > 5

e Special cases: The PRk with constraint that the maximum

degree bounded by A is denoted by APRE

— solvable in linear time (2001)

e For today:
— an algorithm for PR3
— an algorithm for 3PR3
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Related Work:
e Graph power (easy) and its inverse (hard, 1994)
e Tree power (easy) and its inverse (easy, 1995, 1998)

e The optimization problems:

One graph might not have a phylogenetic (tree) root. Com-
pute a tree such that its kth phylogenetic (tree) power achiev-
ing the minimum edge difference from the input graph.

Called Closest Phylogenetic (tree) Root, CPRk (CTRk)
— CTREk is hard for k> 2 (1998)
— CPRE is hard too (2001)

e For today:

— key ideas in proving the hardness

e A variant of PRk to have degree-2 internal nodes:
1. solvable for k =2,3,4 (1999)
2. remains unknown for k£ > 5

3. optimization version unknown
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An algorithm for PR3:

e More facts:

— if graph G has a 3-root phylogeny, then it has a 3-root
phylogeny where every CC of GG is adjacent to exactly one
internal node.

which is called the representing node of the CC.

— if graph G has a 3-root phylogeny T, then representing
nodes for adjacent CCs are adjacent in T.

— if a critical clique CC is a singleton, then its representa-
tive must be deep internal (adjacent to at least 2 other
internals).

e Problem reduces to: Restricted 1-Root Steiner Phylogeny
Problem (RSR1)

Given a graph G = (V, E) and S C V, find a Steiner phylogeny
T of V such that every vertex in S is internal in T, and for
each pair of vertices v and v, w and v are adjacent in G iff
they are adjacent in T.
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Facts:

e Notions:
— chordal
— maximal clique

— critical clique (CC) K:
a maximal clique of vertices having a same set of neigh-
bors

e If a graph has a k-root phylogeny (tree), then it is chordal.
e Checking if a graph is chordal can be done in linear time.

e Computing all maximal cliques in a chordal graph can be done
in linear time.

e Critical cligues form a partition of the vertex set.

e Critical clique graph can be constructed in linear time.
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An algorithm for RSR1:

e Notations (G must be a tree):

1. S-vertex — vertices need to be internal in T" (degree O or
1in G)

2. Z-tree — a component tree of G containing > 2 S-
vertices

3. Y-vertex — an S-vertex inside some Z-tree
4. W-vertex — a degree-0 S-vertex
5. X-vertex — a vertex from each non-Z-tree (S-vertex pri-
ority)
e Algorithm:

— if | X| <2]Y|—=3(]Z] — 1) or |Z] even or |W|> |X|—2|Y|+
3|Z| — 3, no such phylogeny

— otherwise,

1. introducing (]Z| — 1)/2 Steiner nodes to collapse Z-
trees into one single Z-tree;

2. using 2 X-vertices to make a Y-vertex degree-2;

3. the remaining 1 Y-vertex and |X| - 2|Y|+4+3|Z| -1 X-
vertices can be made into a full Steiner tree (each
internal node has degree 3);

4. inserting W-vertices onto edges in the above full Steiner
tree.

e Special case: G is a non-trivial tree, has a root that is itself

(—)S:@
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An algorithm for APRE:

e Facts:
— the maximum size of a clique in G is at most

A(A — 1)k/2-1 if k is even
(A —1)EHD/2 _q if k is odd

— graph G is chordal and thus has a clique-tree-decomposition

D

e Algorithm — key ideas:

— perform a dynamic programming on a rooted version of
D

— DP starts at the leaves of D and proceeds upwards

— after the root of D is processed, a desired phylogeny of
G will be found if there is one
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NP-hardness of CPREk:

e Reduction from Fitting Ultrametric Tree problem:

Given an integer b and an n x n symmetric matrix M such
that M(4i,i) =0 for all 1 <i<mn and M(i,j) = 1 or 2 for all

1<i<j<n.
Is there a rooted tree T with 3 layers and the leaves are
numbered 1,2,...,n such that there are at most b pairs (i, 7)
with

M(i, j) # dr(i, 5)/27

e Key ideas:

— trying to associate the number of pairs violating matrix
constraint with the number of edge difference between
graph G and the phylogenetic power of T

— 1 try: V={1,2,...,n}, E={(i,5) | M(3,j) = 1}
sounds good but 7" might have degree-2 internal nodes!

— 2nd_try: duplicating the vertices

o Maxn Moo+ I
202 = | Musn +Tn Muxn

V={12,...,n,n+1,n+2,...,2n}
E={G,j)| M'(i,j) =1}
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The processing of a node « of D:

e U, — the set of vertices contained in the maximal cliques
associated with « and its descendants in D

e While processing «, compute a set of trees T,, such that T,
may possibly be a subtree of a desired phylogeny and each
vertex of U, is a leaf of T,

A b {A,B,C} ,
c \ ports of extension
B E {C,D,E} B C

e The essence

1. only those ports that close to the vertices of the maxi-
mal cliqgue associated with « are necessary, where ‘close”
means “at distance < k"

#(necessary ports in each T,) is O(k,A)

2. In each T,, only the necessary ports and the vertices of
the maximal clique associated with a are related to further
extension of T,.

3. Among all T, with the same necessary ports and structure

between ports, we only keep one of them in the dynamic
programming table.
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Open problems:
e What is the complexity of PRk for k > 57
e Does CPRk (k > 2) admit constant-ratio polynomial time
approximation algorithm?
Design such an algorithm.
e Same questions asked for ACPREk for k > 2.

e Same questions asked for CTRk and ACTREk for k> 2.

e What is the complexity of Closest Chordal Graph problem?
and its approximability?
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