Dynamic Programming Method for
Analyzing Biomolecular Sequences

Tao Jiang
Department of Computer Science
University of California - Riverside
(Typeset by Kun-Mao Chao)

E-mail: jiang@cs.ucr.edu
http://www.cs.ucr.edu/~jiang

Dynamic Programming

Dynamic programming is an algorithmic
method for solving optimization problems
with a compositional/recursive cost
structure.

Richard Bellman was one of the principal
founders of this approach.

Outline

The paradigm of dynamic programming

Sequence alignment — a general framework
for comparing sequences in bioinformatics

Dynamic programming algorithms for
sequence alignment

Techniques for improving the efficiency of
the algorithms

Multiple sequence alignment

Two key ingredients
e Two key ingredients for an optimization problem
to be suitable for a dynamic programming solution:

1. optimal substructures 2. overlapping subinstances

Subinstances are dependent.

Each substructure is optimal. (otherwise, a divide-and-conquer

(principle of optimality) approach is the choice.)
,

Three basic components Fibonacci numbers

 The development of a dynamic programming
algorithm has three basic components:
— A recurrence relation (for defining the value/cost
of an optimal solution);
— A tabular computation (for computing the value of
an optimal solution);

— A backtracing procedure (for delivering an
optimal solution).

The Fibonacci numbers are defined by the
following recurrence:

How to compute F, ?

Tabular computation

e Tabular computation can avoid redundant
computation steps.

ol [t 2 s o sl

Maximum sum interval

 Given a sequence of real numbers a,a,...a
find a consecutive subsequence with the
maximum sum.

9-317-1523-42-76-284-9

For each position, we can compute the maximum-sum
interval starting at that position in O(n) time. Therefore, a
naive algorithm runs in O(n?) time.

How functions grow?

100,000 -

(Assume one million operations per second.)

For large data sets, algorithms with a complexity
greater than O(n log n) are often impractical!

il

O-notation: an asymptotic upper bound

« f(n) = O(g(n)) iff there exist two positive
constant ¢ and n, such that 0 f(n) cg(n)
foralln n,

f(n)

Ng

For example, 5n + 108 = O(n) and 2n = O(nlog n).

10

Maximum sum interval
(the recurrence relation)

 Define S(i) to be the maximum sum of the
intervals ending at position i.

El
I | |

1f S(i-1) <0, concéfenating a; with its previous
interval gives less sum than g itself.

Maximum sum interval Maximum sum interval
(tabular computation) (backtracing)

931 7-1523-42-76-2 8 4 -9 931 7-1523-42-76-2 8 4 -9
S(i) 9 6714 -125 13-46 4 12(16) 7 S(i) 9 6714 -125 13-46 412(16) 7

The maximum sum The maximum-sum interval: 6 -2 8 4

Running time: O(n).

Defining scores (cont’d)

Defining scores for alignment columns

« phylogen [Stojanovic et al., 1999]

* infocon [Stojanovic et al., 1999] — columns are scored based on the evolutionary

— Each column is assigned a score that measures its relationships among the sequences implied by a
information content, based on the frequencies of the supplied phylogenetic tree.
letters both within the column and within the alignment.

CGGATCAT—GGA
CTTAACATTGAA

AGAACATAGTA

Two fundamental problems we solved
(joint work with Lin and Chao)

Given a sequence of real numbers of length
n and an upper bound U, find a consecutive
subsequence of length at most U with the
maximum sum --- an O(n)-time algorithm.

Uu=3

9—317—1523—42—76—2—9

Another example

Given a sequence as follows:
2,6.6,6.6,3,7,6,7,2
and L = 2, the highest-average interval is the

squared area, which has the average value
20/3.

2,6.6,6.6,37,6,7,2

Two fundamental problems we solved
(joint work with Lin and Chao)

Given a sequence of real numbers of length
n and a lower bound L, find a consecutive
subsequence of length at least L with the
maximum average --- an O(n log L)-time
algorithm. This has been improved to O(n)
by others later.

L=4
3214662026614 21

GC-rich regions

e Our method can be used to locate a region
of length at least L with the highest C+G
ratio in O(n log L) time.

ATGACTCGAGCTCGTCA Search for an

00101011011011010 - 'nterval of length
at least L with the

highest average.

Length-unconstrained version A naive algorithm

e Maximum average interval A simple shift algorithm can compute the

highest-average interval of a fixed length in
321466210266 1421 O(n) time

The maximum element is the answer. It can E@:l
be done in O(n) time.

e Try L, L+1, L+2, ..., n. Intotal, O(n?).

A pigeonhole principle Future Development

« Notice that the length of an optimal interval Best k (nonintersecting) subsequences?

is bounded by 2L, we immediately have an Max-average with both upper and lower
O(nL)-time algorithm. length bounds

General (gapped) local alignment with
length upper bound.
Measurement of goodness?

We can bisect a region of length >= 2L into two
segments, where each of them is of length >= L.

Longest increasing subsequence (LIS) A naive approach for LIS

* The longest increasing subsequence is to find a Let L[i] be the length of a longest increasing
longest increasing subsequence of a given subsequence ending at position i.
f distinct int a,a,...4a, . . .
sequence of distinct integers a,a,...a, L[] =1+ max ;. ,{L[]|a<a}

eg.9 2537 11 8 10 13 6 (use a dummy a, = minimum, and L[0]=0)

2 37 7 . . 92537 11 8 10 13 6
- are increasing subsequences.

J e Ll]1 12 2 3
o0 Ly — We want to find a longest one. il tt
9 7 11 7 H‘
3

[arenot increasing subsequences.
5 11 13-

A naive approach for LIS Binary Search

L[] =1+ max;_o ;i {LOI | a5<a} .
 Given an ordered sequence XX, ... X, Where
92]5 X, <X,< ... <X,, and a number y, a binary
Lil1 1223) search finds the largest x; such that x;<y in

ulp [LT O(log n) time.
The maximum length p ‘
n/2~ -
The subsequence 2, 3, 7, 8, 10, 13 is a longest ‘ E n/a |
ubsequer 1 g WH J %\,E

increasing subsequence.

This method runs in O(n?) time.

Binary Search

* How many steps would a binary search
reduce the problem size to 1?
n n/2 n/4 n/8 n/16 ... 1

How mahy steps? O(log n) steps.

An O(n log n) method for LIS

 Define BestEnd[k] to be the smallest end number
of an increasing subsequence of length k.

92537 11 8 10 13 6
[o][2][2][2]2]

For each position, we perform
a binary search to update
BestEnd. Therefore, the
running time is O(n log n).

An O(n log n) method for LIS

 Define BestEnd[k] to be the smallest end number
of an increasing subsequence of length k.
92537 11 8 10 13 6
«—— BestEnd
«~— BestEnd
«— BestEnd
«— BestEnd
« BestEnd
«~— BestEnd

Longest Common Subsequence (LCS)

A subsequence of a sequence S is obtained
by deleting zero or more symbols from S.
For example, the following are all
subsequences of “president”: pred, sdn,
predent.

The longest common subsequence problem

is to find a maximum length common
subsequence between two sequences.

1
2

[
[
[31
[
[
[

]
]

4]
5]
6

30

HON

For instance,
Sequence 1: president
Sequence 2: providence
Its LCS is priden.

president

| HEN

providence

How to compute LCS?

o Let A=a,a,...a,and B=b;b,...b, .
* len(i, j): the length of an LCS between
,,...3;and bb,...h;
e With proper initializations, len(i, j) can be
computed as follows.

LCS

Another example:
Sequence 1: algorithm
Sequence 2: alignment
One of its LCS is algm.

al
|

gor j t hm

ignment

a

procedure LCS-Length(A, B)
1. fori <—0tomdolen(i,0) =0
2. forj <-1tondolen(0,j)=0
3. fori <~1tomdo
4. forj <-1tondo
5.

L len(i, j) = len(i -1, j —1) +1
if & =b; then [prev(i. H=w
6. else if len(i—1, j) > len(i, j —1)
len(i, j) = len(i -1, j)
7 then [prev(i,) :"f "
8. else [Ien(l, .l).: A=
prev(i, j) ="<—"

9. return len and prev

Running time and memory: O(mn) and O(mn).

The backtracing algorithm

procedure Output-LCS(A, prev, i, j)
1 if i=0 or j=0 thenreturn
. - Output — LCS(A, prev,i-1, j-1)
2 if prev(i, j)=" & th
if prev(i, j)=" ®* then {print o
3 elseif prev(i,j):"f“ then Output-LCS(A, prev, i-1, j)
4 else Output-LCS(A, prev, i, j-1)

Dot Matrix

Sequence A : CTTAACT

Sequence B : CGGATCAT
C GG AT CA AT

10

Pairwise Alignment
Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B:

C---TTAACT —— Sequence A
CGGATCA--T «——Sequence B

Alignment (or Edit) Graph
Sequence A: CTTAACT

Sequence B: CGGATCAT
C G G AT CAT

C---TTAACT

Pairwise Alignment

Sequence A: CTTAACT
Sequence B: CGGATCAT

An allgnment of Aand B

“‘"'Insertion 'r“ (Deletion
N gp S N

A simple scoring scheme

e Match: +8 (w(x,y) =8, ifx=y)
e Mismatch: -5 (w(x, y) = -5, if x #y)
e Each gap symbol: -3 (w(-,x)=w(X,-)=-3)
(i.e. space)
C---TTAACT
CGGATCA--T
B 2

+8 - 3 +8 5 +8 3 -3 +8

11

Scoring Matrices

¢ Amino acid substitution matrices
-PAM
—BLOSUM

» DNA substitution matrices

—DNA is less conserved than protein
sequences

— Less effective to compare coding regions
at nucleotide level .

PAM,,

* PAM, = PAM*
E.g. PAM,g = PAM,%0
* PAM,, is a widely used scoring matrix.

Ala Arg Asn Asp Cys GIn Glu Gly His
A R D (o} E H
13

.
BRO WNUOANNG

1
1
8
3
3
3
[¢]
2
4

NRPO WNOA®

e Leu Lys ...
K ooo

PAM

e Point Accepted Mutation (Dayhoff, et al.)

e 1 PAM = PAM;, = 1% average change of all
amino acid positions

— After 100 PAMs of evolution, not every residue
will have changed

* some residues may have mutated several
times

* some residues may have returned to their
original state

* some residues may not changed at all

BLOSUM

 Blocks Substitution Matrix

« Scores derived from observations of the
frequencies of substitutions in blocks of
local alignments in related proteins

« Matrix name indicates evolutionary distance
— BLOSUMG62 was created using

sequences sharing no more than 62%
identity

12

The Blosum50 Scoring Matrix

elmiain]ol«/nl>

=l = H w2 R

Computing S;;

)
m.n)1

An optimal alignment
-- an alignment of maximum score
* Let A=a,a,...a,and B=b;b,...b, .
* §;j: the score of an optimal alignment between
3;,...8;and b;b,...b;
= With proper initializations, S;; can be computed
as follows.

Siy; +W(a;,-)
S; ; = max si'H+w(—, bj)
Si—l,j—l +W(ai!bj)

Initialization

13

CGGATCAT

8-5-5 18

Global Alignment vs. Local Alignment

=14

=
<
o
—
<
o
o
o

-5 +8 -3 +8

« global alignment:

* local alignment:

14

An optimal local alignment

* S;;: the score of an optimal local alignment ending

= With proper initializations, S;; can be computed
as follows.

Si-1,j +W(ai ’_)
S;; =maxys; ;, +w(-,b;)
Si-1,j-1 + W(ai 1 bj)

Match: 8 Iocal allgnment

Mismatch: -5
Gap symbol: -3

Match: 8
Mismatch: -5

Gap symbol: -3

local alignment

(€]
2]

[[[[=[=[=]=]<]

15

Affine gap penalties

Match: +8 (w(x,y) =8, ifx =y)

Mismatch: -5 (w(x, y) = -5, if x #Y)

Each gap symbol: -3 (w(-,x)=w(x,-)=-3)

E.g. each gap is charged an extra gap-open penalty: -4.
In general, a gap of length k should have penalty g(k)

Affine gap penalties

 Let D(i, j) denote the maximum score of any
alignment between a,a,...a;and b;b,...b;ending
with a deletion.
Let I(i, j) denote the maximum score of any
alignment between a,a,...a;and b;b,...b;ending
with an insertion.
Let S(i, j) denote the maximum score of any
alignment between a,a,...a;and byb,...b;.

Affine gap penalties

e A gap of length k is penalized x + k-y.

gap-openﬁ penalty

Three cases for alignment endings:
gap-symbol penalty

X - . .
fan aligned pair
| a deletion

1 q q
X an insertion

Affine gap penalties

D(i-Lj)-y
S(i-1,j)—-x-y

I, j-1)-y
S, j-D-x-y
S(I -1, j —1)+w(ai,bj)
S(i, j) = max D(, j)

I, j)

DG, j)= max{

I(i,j):max{

16

Affine gap penalties
(Gotoh’s algorithm)

k best local alignments

* Smith-Waterman

(Smith and Waterman, 1981; Waterman and Eggert, 1987)

— linear-space version : sim (Huang and Miller, 1991)

— linear-space variants : sim2 (Chao et al., 1995); sim3 (Chao et al., 1997)
* FASTA

(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)

— linear-space band alignment (Chao et al., 1992)

 BLAST

(Altschul et al., 1990; Altschul et al., 1997)
— restricted affine gap penalties (Chao, 1999)

k best local alignments

» Smith-Waterman
(Smith and Waterman, 1981; Waterman and Eggert, 1987)

e FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)

* BLAST
(Altschul et al., 1990; Altschul et al., 1997)

FASTA

Find runs of identities, and identify
regions with the highest density of
identities.

Re-score using PAM matrix, and keep top
scoring segments.

Eliminate segments that are unlikely to be
part of the alignment.

Optimize the alignment in a band.

17

FASTA

Step 1: Find runs of identities, and identify regions with
the highest density of identities.

\ \\\\
N\

N
AN

SN
SN
N
AR

FASTA

Step 3: Eliminate segments that are unlikely to be part of
the alignment.

AN

FASTA

Step 2: Re-score using PAM matrix, and
keep top scoring segments.

NN NN

~\\ AN

A\ AN
\\

N AN

FASTA

Step 4: Optimize the alignment in a band.

AN

18

BLAST

1) Build the hash table for sequence A (the
database sequence).

2) Scan sequence B for hits.
3) Extend hits.

BLAST

Step2: Scan sequence B for hits.

BLAST
Step 1: Build the hash table for sequence A. (3-tuple example)
For DNA sequences: For protein sequences:

Seq. A = AGATCGAT Seq. A = ELVIS
P A BT Add xyz to the hash table
AAC if Score(xyz, ELV) =T,
- Add xyz to the hash table
if Score(xyz, LVI) = T;
Add xyz to the hash table
if Score(xyz, VIS) = T;

BLAST

Step2: Scan sequence B for hits.

Step 3: Extend hits. —_
BLAST 2.0 saves
the time spent in

. | extension, and

< hit considers gapped

alignments.

Terminate if the‘g.
score of the

extension fades

VA

19

Remarks

* Filtering is based on the observation that a
good alignment usually includes short
identical or very similar fragments.

 The idea of filtration was used in both
FASTA and BLAST to achieve high speed

Two subproblems

% original problem size

Linear space ideas
Hirschberg, 1975; Myers and Miller, 1988

Four subproblems

Y4 original problem size

20

Time and Space Complexity

e Space: O(m+n)

e Time:

O(mn)*(ljr Yo+ Ya+) = O(mn)

2

Band Alignment in Linear Space

The remaining subproblems are no
longer only half of the original
problem. In worst case, this could
cause an additional log n factor in
time.

N

Band Alignment
(K. Chao, W. Pearson, and W. Miller)

Sequence A
[]

w
o)
o
c
)
>
o
@
w

Band Alignment in Linear Space

21

Multiple sequence alignment (MSA) How to score an MSA?

» The multiple sequence alignment problem is to e Sum-of-Pairs (SP-score)

simultaneously align more than two sequences. GC-TC)
Score
LA

Seql: GCTC GC-TC
(" GC-TC

(GC-TC)

Seq2: AC A---C P Score‘
Score = | G-ATC

Seq3: GATC G-ATC
_G-ATC/

+

J'A___C' \
Score ‘

(_G-ATC)

MSA for three sequences General MSA

 an O(n®) algorithm For k sequences of length n: O(n¥)
NP-Complete (Wang and Jiang)
The exact multiple alignment algorithms for
many sequences are not feasible.
Some approximation algorithms are given.
(e.g., 2- l/k for any fixed | by Bafna et al.)

Progressive alignment

* A heuristic approach proposed by Feng and Doolittle.
« It iteratively merges the most similar pairs.
* “Once a gap, always a gap”

The time for progressive
alignment in most cases is
roughly the order of the time
for computing all pairwise

alignment, i.e., O(k?n?) .

Concluding remarks

» Three essential components of the dynamic
programming approach:
— the recurrence relation
— the tabular computation
— the backtracing

e The dynamic-programming approach has
been used in a vast number of computational
problems in bioinformatics.

23

