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Outline

• The paradigm of dynamic programming
• Sequence alignment – a general framework 

for comparing sequences in bioinformatics
• Dynamic programming algorithms for 

sequence alignment
• Techniques for improving the efficiency of 

the algorithms
• Multiple sequence alignment

3

Dynamic Programming

• Dynamic programming is an algorithmic 
method for solving optimization problems 
with a compositional/recursive cost 
structure. 

• Richard Bellman was one of the principal 
founders of this approach. 

4

Two key ingredients

• Two key ingredients for an optimization problem 
to be suitable for a dynamic programming solution:

Each substructure is optimal.

(principle of optimality)

1. optimal substructures 2. overlapping subinstances

Subinstances are dependent.

(Otherwise, a divide-and-conquer 
approach is the choice.)
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Three basic components

• The development of a dynamic programming 
algorithm has three basic components:
– A recurrence relation (for defining the value/cost 

of an optimal solution);
– A tabular computation (for computing the value of 

an optimal solution);
– A backtracing procedure (for delivering an 

optimal solution). 
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Fibonacci numbers
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The Fibonacci numbers are defined by the 
following recurrence:
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How to compute F10？
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Tabular computation

• Tabular computation can avoid redundant 
computation steps.

553421138532110

F10F9F8F7F6F5F4F3F2F1F0
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Maximum sum interval

• Given a sequence of real numbers a1a2…an , 
find a consecutive subsequence with the 
maximum sum.

9 –3 1 7 –15 2 3 –4 2 –7 6 –2 8 4 -9

For each position, we can compute the maximum-sum 
interval starting at that position in O(n) time. Therefore, a 
naive algorithm runs in O(n2) time.

10

O-notation: an asymptotic upper bound

• f(n) = O(g(n)) iff there exist two positive 
constant c and n0 such that 0  f(n)    cg(n) 
for all n     n0

≤ ≤
≥

cg(n)

f(n)

n0

For example, 5n + 108 = O(n) and 2n = O(nlog n).
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How functions grow?

22 yr.3.0 days2.6 min.3.0 sec.100,000

4 x 1016 

yr.0.68 sec.0.26 sec.0.003 sec.0.003 sec.100

2n0.68n326n292n log n30n

For large data sets, algorithms with a complexity 
greater than O(n log n) are often impractical!

n

function

(Assume one million operations per second.)
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Maximum sum interval
(the recurrence relation)

• Define S(i) to be the maximum sum of the 
intervals ending at position i.

⎩
⎨
⎧ −

+←
0

)1(
max)(

iS
aiS i

ai

If S(i-1) < 0, concatenating ai with its previous 
interval gives less sum than ai itself.
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Maximum sum interval
(tabular computation)

9 –3 1  7 –15 2 3 –4 2 –7 6 –2  8  4 -9

S(i) 9  6 7 14  –1 2 5  1 3 –4 6  4 12 16  7

The maximum sum

14

Maximum sum interval
(backtracing)

9 –3 1  7 –15 2 3 –4 2 –7 6 –2  8  4 -9

S(i) 9  6 7 14  –1 2 5  1 3 –4 6  4 12 16  7

The maximum-sum interval: 6  -2  8  4

Running time: O(n).

15

Defining scores for alignment columns

• infocon [Stojanovic et al., 1999]
– Each column is assigned a score that measures its 

information content, based on the frequencies of the 
letters both within the column and within the alignment.

CGGATCAT—GGA
CTTAACATTGAA
GAGAACATAGTA
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Defining scores (cont’d)
• phylogen [Stojanovic et al., 1999]

– columns are scored based on the evolutionary 
relationships among the sequences implied by a 
supplied phylogenetic tree.

T
T
T
C
C T    T     T    C       C

C
T

T
T

T     T    T    C    C

T T

T
T

Score = 1 Score = 2
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Two fundamental problems we solved 
(joint work with Lin and Chao)

• Given a sequence of real numbers of length 
n and an upper bound U, find a consecutive 
subsequence of length at most U with the 
maximum sum --- an O(n)-time algorithm.

U = 3

9 –3 1 7 –15 2 3 –4 2 –7 6 –2 8 4 -9

18

Two fundamental problems we solved 
(joint work with Lin and Chao)

• Given a sequence of real numbers of length 
n and a lower bound L, find a consecutive 
subsequence of length at least L with the 
maximum average --- an O(n log L)-time 
algorithm. This has been improved to O(n)
by others later.

L = 4

3 2 14 6 6 2 10 2 6 6 14 2 1

19

Another example

Given a sequence as follows:
2, 6.6, 6.6, 3, 7, 6, 7, 2

and L = 2, the highest-average interval is the 
squared area, which has the average value 
20/3.

2, 6.6, 6.6, 3, 7, 6, 7, 2

20

GC-rich regions

• Our method can be used to locate a region 
of length at least L with the highest C+G 
ratio in O(n log L) time.

ATGACTCGAGCTCGTCA

00101011011011010

Search for an 
interval of length 
at least L with the 
highest average.
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Length-unconstrained version

• Maximum average interval

3 2 14 6 6 2 10 2 6 6 14 2 1

The maximum element is the answer. It can 
be done in O(n) time.

22

A naive algorithm

• A simple shift algorithm can compute the 
highest-average interval of a fixed length in 
O(n) time

• Try L, L+1, L+2, ..., n.  In total, O(n2).

23

A pigeonhole principle

• Notice that the length of an optimal interval 
is bounded by 2L, we immediately have an 
O(nL)-time algorithm.

We can bisect a region of length >= 2L  into two 
segments, where each of them is of length >= L.

24

Future Development

• Best k (nonintersecting) subsequences?
• Max-average with both upper and lower 

length bounds
• General (gapped) local alignment with 

length upper bound.
• Measurement of goodness?
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Longest increasing subsequence (LIS)
• The longest increasing subsequence is to find a 

longest increasing subsequence of a given 
sequence of distinct integers a1a2…an .

e.g. 9   2   5   3   7   11   8   10   13   6

2 3   7

5 7   10   13

9 7   11

3   5   11   13

are increasing subsequences.

are not increasing subsequences.

We want to find a longest one.

26

A naive approach for LIS
• Let L[i] be the length of a longest increasing 

subsequence ending at position i.
L[i] = 1 + max j = 0..i-1{L[j] | aj < ai}
(use a dummy a0 = minimum, and L[0]=0)

9   2   5   3   7   11   8   10   13   6
L[i]  1    1    2    2    3      4    ?

27

A naive approach for LIS

9   2   5   3   7   11   8   10   13   6
L[i]  1    1    2    2    3      4    4      5      6    3

L[i] = 1 + max j = 0..i-1 {L[j] | aj < ai}

The maximum length

The subsequence 2, 3, 7, 8, 10, 13 is a longest 
increasing subsequence.

This method runs in O(n2) time.
28

Binary Search

• Given an ordered sequence x1x2 ... xn, where 
x1<x2< ... <xn, and a number y, a binary 
search finds the largest xi such that xi< y in 
O(log n) time.

n ...n/2
n/4
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Binary Search

• How many steps would a binary search 
reduce the problem size to 1?
n   n/2   n/4   n/8   n/16  ...   1

How many steps? O(log n) steps.

ns
n s

2log
12/

=⇒
=
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An O(n log n) method for LIS

• Define BestEnd[k] to be the smallest end number 
of an increasing subsequence of length k.

9   2   5   3   7    11    8    10    13    6
9 2 2

5
2
3

2
3
7

2
3
7

11

2
3
7
8

2
3
7
8

10

2
3
7
8
10
13

BestEnd[1]

BestEnd[2]

BestEnd[3]

BestEnd[4]

BestEnd[5]

BestEnd[6]
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An O(n log n) method for LIS

• Define BestEnd[k] to be the smallest end number 
of an increasing subsequence of length k.

9   2   5   3   7    11    8    10    13    6
9 2 2

5
2
3

2
3
7

2
3
7

11

2
3
7
8

2
3
7
8

10

2
3
7 
8
10
13

2
3
6
8

10
13

BestEnd[1]

BestEnd[2]

BestEnd[3]

BestEnd[4]

BestEnd[5]

BestEnd[6]

For each position, we perform 
a binary search to update 
BestEnd. Therefore, the 
running time is O(n log n). 32

Longest Common Subsequence (LCS)

• A subsequence of a sequence S is obtained 
by deleting zero or more symbols from S. 
For example, the following are all 
subsequences of “president”: pred, sdn, 
predent.

• The longest common subsequence problem 
is to find a maximum length common 
subsequence between two sequences.



9

33

LCS

For instance,
Sequence 1: president
Sequence 2: providence
Its LCS is priden.

president

providence
34

LCS
Another example:

Sequence 1: algorithm
Sequence 2: alignment

One of its LCS is algm.

a l g o r i t h m

a l i g n m e n t

35

How to compute LCS?

• Let A=a1a2…am and B=b1b2…bn .
• len(i, j): the length of an LCS between 

a1a2…ai and b1b2…bj

• With proper initializations, len(i, j) can be 
computed as follows.

  ,
. and 0, if)),1(),1,(max(

 and 0, if1)1,1(
,0or  0 if0

),(
⎪
⎩

⎪
⎨

⎧

≠>−−
=>+−−

==
=

ji

ji

bajijilenjilen
bajijilen

ji
jilen
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   procedure LCS-Length(A, B) 
1. for i ← 0 to m do len(i,0) = 0 
2. for j ← 1 to n do len(0,j) = 0 
3. for i ← 1 to m do 
4.      for j ← 1 to n do 

5.           if ji ba =  then ⎢
⎣

⎡
=

+−−=
"       "),(

1)1,1(),(
jiprev

jilenjilen
 

6.                           else if )1,(),1( −≥− jilenjilen  

7.                                  then ⎢
⎣

⎡
=

−=
"      "),(

),1(),(
jiprev

jilenjilen
 

8.                           else ⎢
⎣

⎡
=

−=
"       "),(

)1,(),(
jiprev

jilenjilen
 

9. return len and prev 
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i j     0 1 
p 

2 
r 

3 
o 

4 
v 

5 
i 

6 
d 

7 
e 

8 
n 

9
c

10
e

0 0 0 0 0 0 0 0 0 0 0 0
1  p 0 1 1 1 1 1 1 1 1 1 1

2    r 0 1 2 2 2 2 2 2 2 2 2

3    e 0 1 2 2 2 2 2 3 3 3 3

4    s 0 1 2 2 2 2 2 3 3 3 3
5    i 0 1 2 2 2 3 3 3 3 3 3
6    d 0 1 2 2 2 3 4 4 4 4 4

7    e 0 1 2 2 2 3 4 5 5 5 5

8    n 0 1 2 2 2 3 4 5 6 6 6

9    t 0 1 2 2 2 3 4 5 6 6 6

 
 Running time and memory: O(mn) and O(mn).

38

 
 procedure Output-LCS(A, prev, i, j) 

1 if  i = 0  or  j = 0  then return 

2 if  prev(i, j)=”     “  then ⎢
⎣

⎡ −−−

ia
jiprevALCSOutput

print    
)1,1,,(

 

3 else if  prev(i, j)=”   “  then  Output-LCS(A, prev, i-1, j) 
4 else  Output-LCS(A, prev, i, j-1) 
 

The backtracing algorithm

39

 
 

i j     0 1 
p 

2 
r 

3 
o 

4 
v 

5 
i 

6 
d 

7 
e 

8 
n 

9
c

10
e

0 0 0 0 0 0 0 0 0 0 0 0
1  p 0 1 1 1 1 1 1 1 1 1 1

2    r 0 1 2 2 2 2 2 2 2 2 2

3    e 0 1 2 2 2 2 2 3 3 3 3

4    s 0 1 2 2 2 2 2 3 3 3 3
5    i 0 1 2 2 2 3 3 3 3 3 3
6    d 0 1 2 2 2 3 4 4 4 4 4

7    e 0 1 2 2 2 3 4 5 5 5 5

8    n 0 1 2 2 2 3 4 5 6 6 6

9    t 0 1 2 2 2 3 4 5 6 6 6

 

Output: priden 
40

Dot Matrix
Sequence A：CTTAACT

Sequence B：CGGATCAT
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T
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C---TTAACT
CGGATCA--T

Pairwise Alignment
Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B:

Sequence A
Sequence B

42

C---TTAACT
CGGATCA--T

Pairwise Alignment
Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B:

Insertion 
gap

Match Mismatch

Deletion 
gap

43

Alignment (or Edit) Graph
Sequence A: CTTAACT

Sequence B: CGGATCAT
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T

C---TTAACT
CGGATCA--T

44

A simple scoring scheme

• Match: +8  (w(x, y) = 8, if x = y)
• Mismatch: -5 (w(x, y) = -5, if x ≠ y)
• Each gap symbol: -3 (w(-,x)=w(x,-)=-3)

C - - - T T A A C T
C G G A T C A - - T
+8    -3    -3    -3   +8    -5   +8   -3    -3    +8  =  +12

alignment score

(i.e. space)
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Scoring Matrices

• Amino acid substitution matrices
– PAM
– BLOSUM

• DNA substitution matrices
– DNA is less conserved than protein 

sequences
– Less effective to compare coding regions 

at nucleotide level 46

PAM
• Point Accepted Mutation (Dayhoff, et al.)
• 1 PAM = PAM1 = 1% average change of all 

amino acid positions
– After 100 PAMs of evolution, not every residue 

will have changed
• some residues may have mutated several 

times
• some residues may have returned to their 

original state
• some residues may not changed at all

47

PAMX
• PAMx = PAM1

x

E.g. PAM250 = PAM1
250

• PAM250 is a widely used scoring matrix.
Ala  Arg Asn Asp  Cys Gln Glu Gly His  Ile  Leu Lys ...
A    R    N    D    C    Q    E    G    H    I    L   K  ...

Ala A    13    6    9    9    5    8    9   12    6    8    6   7  ...
Arg R     3   17    4    3    2    5    3    2    6    3    2    9
Asn N     4    4    6    7    2    5    6    4    6    3    2    5
Asp D     5    4    8   11    1    7   10    5    6    3    2   5
Cys C     2    1    1    1   52    1    1    2    2    2    1    1
Gln Q     3    5    5    6    1   10    7    3    7    2    3    5
...
Trp W     0    2    0    0    0    0    0    0    1    0    1    0
Tyr Y     1    1    2    1    3    1    1    1    3    2    2   1
Val V     7    4    4    4    4    4    4    4    5    4   15   10

48

BLOSUM

• Blocks Substitution Matrix 
• Scores derived from observations of the 

frequencies of substitutions in blocks of 
local alignments in related proteins

• Matrix name indicates evolutionary distance
– BLOSUM62 was created using 

sequences sharing no more than 62% 
identity
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The Blosum50 Scoring Matrix

50

An optimal alignment
-- an alignment of maximum score

• Let A=a1a2…am and B=b1b2…bn .
• Si,j: the score of an optimal alignment between 

a1a2…ai and b1b2…bj

• With proper initializations, Si,j can be computed
as follows.

⎪
⎩

⎪
⎨

⎧

+
−+
−+

=

−−

−

−

),(
),(
),(

max

1,1

1,

,1

,

jiji

jji

iji

ji

baws
bws

aws
s

51

Computing Si,j

i

j

w(ai,-)

w(-,bj)

w(ai,bj)

Sm,n 52

Initialization

-21

-12

-21

-18

-15

-9

-6

-3

-24-18-15-12-9-6-30
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T
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S3,5 = ？

1

-10

-21

-12

-21

-18

-15

?-5-202-9

-247-3035-6

-13-7-4-1258-3

-24-18-15-12-9-6-30
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T
54

S3,5 = ？

4

6

8

7

-4

1

-10

-21

6036-5-3-1-12

1468-3-14-12-10-21

39-20-11-9-7-18

5-213-8-6-4-15

9-15-5-202-9

-247-3035-6

-13-7-4-1258-3

-24-18-15-12-9-6-30
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T

optimal 
score

55

C T T A A C – T
C G G A T C A T

4

6

8

7

-4

1

-10

-21

6036-5-3-1-12

1468-3-14-12-10-21

39-20-11-9-7-18

5-213-8-6-4-15

9-15-5-202-9

-247-3035-6

-13-7-4-1258-3

-24-18-15-12-9-6-30
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T

8 – 5 –5  +8  -5  +8  -3 +8 = 14

56

Global Alignment vs. Local Alignment

• global alignment:

• local alignment:
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An optimal local alignment

• Si,j: the score of an optimal local alignment ending 
at  ai and bj

• With proper initializations, Si,j can be computed
as follows.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+
−+
−+

=

−−

−

−

),(
),(
),(

0

max

1,1

1,

,1

,

jiji

jji

iji

ji

baws
bws

aws
s

58

local alignment

?

2

3

5

0

3580000

0

0

0

115800020

135800350

28002580

00000000
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T

Match: 8

Mismatch: -5

Gap symbol: -3

59

local alignment

8

10

11

13

2

3

5

0

103580000

18101320350

713352580

82580000

115800020

135800350

28002580

00000000
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T

Match: 8

Mismatch: -5

Gap symbol: -3

the 
best 
score

60
8

10

11

13

2

3

5

0

103580000

18101320350

713352580

82580000

115800020

135800350

28002580

00000000
C     G     G     A     T     C     A     T

C

T

T

A

A

C

T

the 
best 
score

A – C - T
A T C A T
8-3+8-3+8 = 18

(not always at 
the corner)
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Affine gap penalties
• Match: +8  (w(x, y) = 8, if x = y)
• Mismatch: -5 (w(x, y) = -5, if x ≠ y)
• Each gap symbol: -3 (w(-,x)=w(x,-)=-3)
• E.g. each gap is charged an extra gap-open penalty: -4.
• In general, a gap of length k should have penalty g(k)

C - - - T T A A C T
C G G A T C A - - T
+8    -3    -3    -3   +8    -5   +8   -3    -3    +8  =  +12

-4 -4

alignment score: 12 – 4 – 4 = 4
62

Affine gap penalties

• A gap of length k is penalized x + k·y.
gap-open penalty

gap-symbol penalty
Three cases for alignment endings:

1. ...x
...x

2. ...x
...-

3. ...-
...x

an aligned pair

a deletion

an insertion

63

Affine gap penalties

• Let D(i, j) denote the maximum score of any 
alignment between a1a2…ai and b1b2…bj ending
with a deletion.

• Let I(i, j) denote the maximum score of any 
alignment between a1a2…ai and b1b2…bj ending
with an insertion.

• Let S(i, j) denote the maximum score of any 
alignment between a1a2…ai and b1b2…bj.

64

Affine gap penalties

⎪⎩

⎪
⎨

⎧ +−−
=

⎩
⎨
⎧

−−−
−−

=

⎩
⎨
⎧

−−−
−−

=

),(
),(

),()1,1(
max),(

)1,(
)1,(

max),(

),1(
),1(

max),(

jiI
jiD

bawjiS
jiS

yxjiS
yjiI

jiI

yxjiS
yjiD

jiD

ji
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Affine gap penalties
(Gotoh’s algorithm)

SI

D

SI

D

SI

D

SI

D

-y
-x-y

-x-y

-y

w(ai,bj)

66

k best local alignments
• Smith-Waterman

(Smith and Waterman, 1981; Waterman and Eggert, 1987)

• FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)

• BLAST
(Altschul et al., 1990; Altschul et al., 1997)

BLAST and FASTA are key genomic database search tools.

67

k best local alignments

• Smith-Waterman
(Smith and Waterman, 1981; Waterman and Eggert, 1987)

– linear-space version：sim (Huang and Miller, 1991)
– linear-space variants：sim2 (Chao et al., 1995); sim3 (Chao et al., 1997)

• FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)

– linear-space band alignment (Chao et al., 1992)

• BLAST
(Altschul et al., 1990; Altschul et al., 1997)

– restricted affine gap penalties (Chao, 1999)

68

FASTA
1) Find runs of identities, and identify 

regions with the highest density of 
identities.

2) Re-score using PAM matrix, and keep top 
scoring segments.

3) Eliminate segments that are unlikely to be 
part of the alignment.

4) Optimize the alignment in a band.

Its running time is O(n).
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FASTA
Step 1: Find runs of identities, and identify regions with 

the highest density of identities.

70

FASTA
Step 2: Re-score using PAM matrix, and

keep top scoring segments.

71

FASTA
Step 3: Eliminate segments that are unlikely to be part of 

the alignment.

72

FASTA
Step 4: Optimize the alignment in a band.
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BLAST

1) Build the hash table for sequence A (the 
database sequence).

2) Scan sequence B for hits.
3) Extend hits.

Also O(n) time.

74

BLAST
Step 1: Build the hash table for sequence A. (3-tuple example)

For DNA sequences:

Seq. A = AGATCGAT
12345678

AAA
AAC
..
AGA   1
..
ATC   3
..
CGA   5
..
GAT   2   6
..
TCG   4
..

TTT

For protein sequences:

Seq. A = ELVIS

Add xyz to the hash table
if Score(xyz, ELV) ≧ T;

Add xyz to the hash table
if Score(xyz, LVI) ≧ T;

Add xyz to the hash table
if Score(xyz, VIS) ≧ T;

75

BLAST
Step2: Scan sequence B for hits.

76

BLAST
Step2: Scan sequence B for hits.

Step 3: Extend hits.

hit

Terminate if the 
score of the 
extension fades 
away.

BLAST 2.0 saves 
the time spent in 
extension, and 

considers gapped 
alignments.
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Remarks

• Filtering is based on the observation that a 
good alignment usually includes short 
identical or very similar fragments.

• The idea of filtration was used in both 
FASTA and BLAST to achieve high speed

78

Linear space ideas
Hirschberg, 1975; Myers and Miller, 1988

m/2

(i) scores can be computed in O(n) space 
(ii) divide-and-conquer

S(a1…am/2,b1…bj) + 
S(am…am/2+1,bn…bj+1) 

maximized

j

79

Two subproblems
½ original problem size

m/2

m/4

3m/4

80

Four subproblems
¼ original problem size

m/2

m/4

3m/4
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Time and Space Complexity

• Space: O(m+n)

• Time:
O(mn)*(1+ ½ + ¼ + …) = O(mn)

2

82

Band Alignment
(K. Chao, W. Pearson, and W. Miller)

Sequence B

Sequence A

83

Band Alignment in Linear Space
The remaining subproblems are no 
longer only half of the original 
problem. In worst case, this could 
cause an additional log n factor in 
time.

84

Band Alignment in Linear Space
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Multiple sequence alignment (MSA)

• The multiple sequence alignment problem is to 
simultaneously align more than two sequences.

Seq1: GCTC

Seq2: AC

Seq3: GATC

GC-TC

A---C

G-ATC

86

How to score an MSA?

• Sum-of-Pairs (SP-score)

GC-TC

A---C

G-ATC

GC-TC

A---C

GC-TC

G-ATC

A---C

G-ATC

Score =

Score

Score

Score

+

+

87

MSA for three sequences

• an O(n3) algorithm

88

General MSA

• For k sequences of length n: O(nk) 
• NP-Complete (Wang and Jiang)
• The exact multiple alignment algorithms for 

many sequences are not feasible.
• Some approximation algorithms are given.

(e.g., 2- l/k for any fixed l by Bafna et al.)
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Progressive alignment

• A heuristic approach proposed by Feng and Doolittle.
• It iteratively merges the most similar pairs.
• “Once a gap, always a gap”

A       B   C  D     E

The time for progressive 
alignment in most cases is 
roughly the order of the time 
for computing all pairwise
alignment, i.e., O(k2n2) .

90

Concluding remarks

• Three essential components of the dynamic 
programming approach:
– the recurrence relation
– the tabular computation
– the backtracing

• The dynamic-programming approach has 
been used in a vast number of computational 
problems in bioinformatics.


