
1

Dynamic Programming Method for
Analyzing Biomolecular Sequences

Tao Jiang
Department of Computer Science

University of California - Riverside
(Typeset by Kun-Mao Chao)

E-mail: jiang@cs.ucr.edu
http://www.cs.ucr.edu/~jiang

2

Outline

• The paradigm of dynamic programming
• Sequence alignment – a general framework

for comparing sequences in bioinformatics
• Dynamic programming algorithms for

sequence alignment
• Techniques for improving the efficiency of

the algorithms
• Multiple sequence alignment

3

Dynamic Programming

• Dynamic programming is an algorithmic
method for solving optimization problems
with a compositional/recursive cost
structure.

• Richard Bellman was one of the principal
founders of this approach.

4

Two key ingredients

• Two key ingredients for an optimization problem
to be suitable for a dynamic programming solution:

Each substructure is optimal.

(principle of optimality)

1. optimal substructures 2. overlapping subinstances

Subinstances are dependent.

(Otherwise, a divide-and-conquer
approach is the choice.)

2

5

Three basic components

• The development of a dynamic programming
algorithm has three basic components:
– A recurrence relation (for defining the value/cost

of an optimal solution);
– A tabular computation (for computing the value of

an optimal solution);
– A backtracing procedure (for delivering an

optimal solution).

6

Fibonacci numbers

.for 21

11

00

−+−=
=
=

i>1iFiFiF
F
F

The Fibonacci numbers are defined by the
following recurrence:

7

How to compute F10？

F10

F9

F8

F8

F7

F7

F6

……

8

Tabular computation

• Tabular computation can avoid redundant
computation steps.

553421138532110

F10F9F8F7F6F5F4F3F2F1F0

3

9

Maximum sum interval

• Given a sequence of real numbers a1a2…an ,
find a consecutive subsequence with the
maximum sum.

9 –3 1 7 –15 2 3 –4 2 –7 6 –2 8 4 -9

For each position, we can compute the maximum-sum
interval starting at that position in O(n) time. Therefore, a
naive algorithm runs in O(n2) time.

10

O-notation: an asymptotic upper bound

• f(n) = O(g(n)) iff there exist two positive
constant c and n0 such that 0 f(n) cg(n)
for all n n0

≤ ≤
≥

cg(n)

f(n)

n0

For example, 5n + 108 = O(n) and 2n = O(nlog n).

11

How functions grow?

22 yr.3.0 days2.6 min.3.0 sec.100,000

4 x 1016

yr.0.68 sec.0.26 sec.0.003 sec.0.003 sec.100

2n0.68n326n292n log n30n

For large data sets, algorithms with a complexity
greater than O(n log n) are often impractical!

n

function

(Assume one million operations per second.)

12

Maximum sum interval
(the recurrence relation)

• Define S(i) to be the maximum sum of the
intervals ending at position i.

⎩
⎨
⎧ −

+←
0

)1(
max)(

iS
aiS i

ai

If S(i-1) < 0, concatenating ai with its previous
interval gives less sum than ai itself.

4

13

Maximum sum interval
(tabular computation)

9 –3 1 7 –15 2 3 –4 2 –7 6 –2 8 4 -9

S(i) 9 6 7 14 –1 2 5 1 3 –4 6 4 12 16 7

The maximum sum

14

Maximum sum interval
(backtracing)

9 –3 1 7 –15 2 3 –4 2 –7 6 –2 8 4 -9

S(i) 9 6 7 14 –1 2 5 1 3 –4 6 4 12 16 7

The maximum-sum interval: 6 -2 8 4

Running time: O(n).

15

Defining scores for alignment columns

• infocon [Stojanovic et al., 1999]
– Each column is assigned a score that measures its

information content, based on the frequencies of the
letters both within the column and within the alignment.

CGGATCAT—GGA
CTTAACATTGAA
GAGAACATAGTA

16

Defining scores (cont’d)
• phylogen [Stojanovic et al., 1999]

– columns are scored based on the evolutionary
relationships among the sequences implied by a
supplied phylogenetic tree.

T
T
T
C
C T T T C C

C
T

T
T

T T T C C

T T

T
T

Score = 1 Score = 2

5

17

Two fundamental problems we solved
(joint work with Lin and Chao)

• Given a sequence of real numbers of length
n and an upper bound U, find a consecutive
subsequence of length at most U with the
maximum sum --- an O(n)-time algorithm.

U = 3

9 –3 1 7 –15 2 3 –4 2 –7 6 –2 8 4 -9

18

Two fundamental problems we solved
(joint work with Lin and Chao)

• Given a sequence of real numbers of length
n and a lower bound L, find a consecutive
subsequence of length at least L with the
maximum average --- an O(n log L)-time
algorithm. This has been improved to O(n)
by others later.

L = 4

3 2 14 6 6 2 10 2 6 6 14 2 1

19

Another example

Given a sequence as follows:
2, 6.6, 6.6, 3, 7, 6, 7, 2

and L = 2, the highest-average interval is the
squared area, which has the average value
20/3.

2, 6.6, 6.6, 3, 7, 6, 7, 2

20

GC-rich regions

• Our method can be used to locate a region
of length at least L with the highest C+G
ratio in O(n log L) time.

ATGACTCGAGCTCGTCA

00101011011011010

Search for an
interval of length
at least L with the
highest average.

6

21

Length-unconstrained version

• Maximum average interval

3 2 14 6 6 2 10 2 6 6 14 2 1

The maximum element is the answer. It can
be done in O(n) time.

22

A naive algorithm

• A simple shift algorithm can compute the
highest-average interval of a fixed length in
O(n) time

• Try L, L+1, L+2, ..., n. In total, O(n2).

23

A pigeonhole principle

• Notice that the length of an optimal interval
is bounded by 2L, we immediately have an
O(nL)-time algorithm.

We can bisect a region of length >= 2L into two
segments, where each of them is of length >= L.

24

Future Development

• Best k (nonintersecting) subsequences?
• Max-average with both upper and lower

length bounds
• General (gapped) local alignment with

length upper bound.
• Measurement of goodness?

7

25

Longest increasing subsequence (LIS)
• The longest increasing subsequence is to find a

longest increasing subsequence of a given
sequence of distinct integers a1a2…an .

e.g. 9 2 5 3 7 11 8 10 13 6

2 3 7

5 7 10 13

9 7 11

3 5 11 13

are increasing subsequences.

are not increasing subsequences.

We want to find a longest one.

26

A naive approach for LIS
• Let L[i] be the length of a longest increasing

subsequence ending at position i.
L[i] = 1 + max j = 0..i-1{L[j] | aj < ai}
(use a dummy a0 = minimum, and L[0]=0)

9 2 5 3 7 11 8 10 13 6
L[i] 1 1 2 2 3 4 ?

27

A naive approach for LIS

9 2 5 3 7 11 8 10 13 6
L[i] 1 1 2 2 3 4 4 5 6 3

L[i] = 1 + max j = 0..i-1 {L[j] | aj < ai}

The maximum length

The subsequence 2, 3, 7, 8, 10, 13 is a longest
increasing subsequence.

This method runs in O(n2) time.
28

Binary Search

• Given an ordered sequence x1x2 ... xn, where
x1<x2< ... <xn, and a number y, a binary
search finds the largest xi such that xi< y in
O(log n) time.

n ...n/2
n/4

8

29

Binary Search

• How many steps would a binary search
reduce the problem size to 1?
n n/2 n/4 n/8 n/16 ... 1

How many steps? O(log n) steps.

ns
n s

2log
12/

=⇒
=

30

An O(n log n) method for LIS

• Define BestEnd[k] to be the smallest end number
of an increasing subsequence of length k.

9 2 5 3 7 11 8 10 13 6
9 2 2

5
2
3

2
3
7

2
3
7

11

2
3
7
8

2
3
7
8

10

2
3
7
8
10
13

BestEnd[1]

BestEnd[2]

BestEnd[3]

BestEnd[4]

BestEnd[5]

BestEnd[6]

31

An O(n log n) method for LIS

• Define BestEnd[k] to be the smallest end number
of an increasing subsequence of length k.

9 2 5 3 7 11 8 10 13 6
9 2 2

5
2
3

2
3
7

2
3
7

11

2
3
7
8

2
3
7
8

10

2
3
7
8
10
13

2
3
6
8

10
13

BestEnd[1]

BestEnd[2]

BestEnd[3]

BestEnd[4]

BestEnd[5]

BestEnd[6]

For each position, we perform
a binary search to update
BestEnd. Therefore, the
running time is O(n log n). 32

Longest Common Subsequence (LCS)

• A subsequence of a sequence S is obtained
by deleting zero or more symbols from S.
For example, the following are all
subsequences of “president”: pred, sdn,
predent.

• The longest common subsequence problem
is to find a maximum length common
subsequence between two sequences.

9

33

LCS

For instance,
Sequence 1: president
Sequence 2: providence
Its LCS is priden.

president

providence
34

LCS
Another example:

Sequence 1: algorithm
Sequence 2: alignment

One of its LCS is algm.

a l g o r i t h m

a l i g n m e n t

35

How to compute LCS?

• Let A=a1a2…am and B=b1b2…bn .
• len(i, j): the length of an LCS between

a1a2…ai and b1b2…bj

• With proper initializations, len(i, j) can be
computed as follows.

 ,
. and 0, if)),1(),1,(max(

 and 0, if1)1,1(
,0or 0 if0

),(
⎪
⎩

⎪
⎨

⎧

≠>−−
=>+−−

==
=

ji

ji

bajijilenjilen
bajijilen

ji
jilen

36

 procedure LCS-Length(A, B)
1. for i ← 0 to m do len(i,0) = 0
2. for j ← 1 to n do len(0,j) = 0
3. for i ← 1 to m do
4. for j ← 1 to n do

5. if ji ba = then ⎢
⎣

⎡
=

+−−=
" "),(

1)1,1(),(
jiprev

jilenjilen

6. else if)1,(),1(−≥− jilenjilen

7. then ⎢
⎣

⎡
=

−=
" "),(

),1(),(
jiprev

jilenjilen

8. else ⎢
⎣

⎡
=

−=
" "),(

)1,(),(
jiprev

jilenjilen

9. return len and prev

10

37

i j 0 1
p

2
r

3
o

4
v

5
i

6
d

7
e

8
n

9
c

10
e

0 0 0 0 0 0 0 0 0 0 0 0
1 p 0 1 1 1 1 1 1 1 1 1 1

2 r 0 1 2 2 2 2 2 2 2 2 2

3 e 0 1 2 2 2 2 2 3 3 3 3

4 s 0 1 2 2 2 2 2 3 3 3 3
5 i 0 1 2 2 2 3 3 3 3 3 3
6 d 0 1 2 2 2 3 4 4 4 4 4

7 e 0 1 2 2 2 3 4 5 5 5 5

8 n 0 1 2 2 2 3 4 5 6 6 6

9 t 0 1 2 2 2 3 4 5 6 6 6

 Running time and memory: O(mn) and O(mn).

38

 procedure Output-LCS(A, prev, i, j)

1 if i = 0 or j = 0 then return

2 if prev(i, j)=” “ then ⎢
⎣

⎡ −−−

ia
jiprevALCSOutput

print
)1,1,,(

3 else if prev(i, j)=” “ then Output-LCS(A, prev, i-1, j)
4 else Output-LCS(A, prev, i, j-1)

The backtracing algorithm

39

i j 0 1
p

2
r

3
o

4
v

5
i

6
d

7
e

8
n

9
c

10
e

0 0 0 0 0 0 0 0 0 0 0 0
1 p 0 1 1 1 1 1 1 1 1 1 1

2 r 0 1 2 2 2 2 2 2 2 2 2

3 e 0 1 2 2 2 2 2 3 3 3 3

4 s 0 1 2 2 2 2 2 3 3 3 3
5 i 0 1 2 2 2 3 3 3 3 3 3
6 d 0 1 2 2 2 3 4 4 4 4 4

7 e 0 1 2 2 2 3 4 5 5 5 5

8 n 0 1 2 2 2 3 4 5 6 6 6

9 t 0 1 2 2 2 3 4 5 6 6 6

Output: priden
40

Dot Matrix
Sequence A：CTTAACT

Sequence B：CGGATCAT
C G G A T C A T

C

T

T

A

A

C

T

11

41

C---TTAACT
CGGATCA--T

Pairwise Alignment
Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B:

Sequence A
Sequence B

42

C---TTAACT
CGGATCA--T

Pairwise Alignment
Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B:

Insertion
gap

Match Mismatch

Deletion
gap

43

Alignment (or Edit) Graph
Sequence A: CTTAACT

Sequence B: CGGATCAT
C G G A T C A T

C

T

T

A

A

C

T

C---TTAACT
CGGATCA--T

44

A simple scoring scheme

• Match: +8 (w(x, y) = 8, if x = y)
• Mismatch: -5 (w(x, y) = -5, if x ≠ y)
• Each gap symbol: -3 (w(-,x)=w(x,-)=-3)

C - - - T T A A C T
C G G A T C A - - T
+8 -3 -3 -3 +8 -5 +8 -3 -3 +8 = +12

alignment score

(i.e. space)

12

45

Scoring Matrices

• Amino acid substitution matrices
– PAM
– BLOSUM

• DNA substitution matrices
– DNA is less conserved than protein

sequences
– Less effective to compare coding regions

at nucleotide level 46

PAM
• Point Accepted Mutation (Dayhoff, et al.)
• 1 PAM = PAM1 = 1% average change of all

amino acid positions
– After 100 PAMs of evolution, not every residue

will have changed
• some residues may have mutated several

times
• some residues may have returned to their

original state
• some residues may not changed at all

47

PAMX
• PAMx = PAM1

x

E.g. PAM250 = PAM1
250

• PAM250 is a widely used scoring matrix.
Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys ...
A R N D C Q E G H I L K ...

Ala A 13 6 9 9 5 8 9 12 6 8 6 7 ...
Arg R 3 17 4 3 2 5 3 2 6 3 2 9
Asn N 4 4 6 7 2 5 6 4 6 3 2 5
Asp D 5 4 8 11 1 7 10 5 6 3 2 5
Cys C 2 1 1 1 52 1 1 2 2 2 1 1
Gln Q 3 5 5 6 1 10 7 3 7 2 3 5
...
Trp W 0 2 0 0 0 0 0 0 1 0 1 0
Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1
Val V 7 4 4 4 4 4 4 4 5 4 15 10

48

BLOSUM

• Blocks Substitution Matrix
• Scores derived from observations of the

frequencies of substitutions in blocks of
local alignments in related proteins

• Matrix name indicates evolutionary distance
– BLOSUM62 was created using

sequences sharing no more than 62%
identity

13

49

The Blosum50 Scoring Matrix

50

An optimal alignment
-- an alignment of maximum score

• Let A=a1a2…am and B=b1b2…bn .
• Si,j: the score of an optimal alignment between

a1a2…ai and b1b2…bj

• With proper initializations, Si,j can be computed
as follows.

⎪
⎩

⎪
⎨

⎧

+
−+
−+

=

−−

−

−

),(
),(
),(

max

1,1

1,

,1

,

jiji

jji

iji

ji

baws
bws

aws
s

51

Computing Si,j

i

j

w(ai,-)

w(-,bj)

w(ai,bj)

Sm,n 52

Initialization

-21

-12

-21

-18

-15

-9

-6

-3

-24-18-15-12-9-6-30
C G G A T C A T

C

T

T

A

A

C

T

14

53

S3,5 = ？

1

-10

-21

-12

-21

-18

-15

?-5-202-9

-247-3035-6

-13-7-4-1258-3

-24-18-15-12-9-6-30
C G G A T C A T

C

T

T

A

A

C

T
54

S3,5 = ？

4

6

8

7

-4

1

-10

-21

6036-5-3-1-12

1468-3-14-12-10-21

39-20-11-9-7-18

5-213-8-6-4-15

9-15-5-202-9

-247-3035-6

-13-7-4-1258-3

-24-18-15-12-9-6-30
C G G A T C A T

C

T

T

A

A

C

T

optimal
score

55

C T T A A C – T
C G G A T C A T

4

6

8

7

-4

1

-10

-21

6036-5-3-1-12

1468-3-14-12-10-21

39-20-11-9-7-18

5-213-8-6-4-15

9-15-5-202-9

-247-3035-6

-13-7-4-1258-3

-24-18-15-12-9-6-30
C G G A T C A T

C

T

T

A

A

C

T

8 – 5 –5 +8 -5 +8 -3 +8 = 14

56

Global Alignment vs. Local Alignment

• global alignment:

• local alignment:

15

57

An optimal local alignment

• Si,j: the score of an optimal local alignment ending
at ai and bj

• With proper initializations, Si,j can be computed
as follows.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+
−+
−+

=

−−

−

−

),(
),(
),(

0

max

1,1

1,

,1

,

jiji

jji

iji

ji

baws
bws

aws
s

58

local alignment

?

2

3

5

0

3580000

0

0

0

115800020

135800350

28002580

00000000
C G G A T C A T

C

T

T

A

A

C

T

Match: 8

Mismatch: -5

Gap symbol: -3

59

local alignment

8

10

11

13

2

3

5

0

103580000

18101320350

713352580

82580000

115800020

135800350

28002580

00000000
C G G A T C A T

C

T

T

A

A

C

T

Match: 8

Mismatch: -5

Gap symbol: -3

the
best
score

60
8

10

11

13

2

3

5

0

103580000

18101320350

713352580

82580000

115800020

135800350

28002580

00000000
C G G A T C A T

C

T

T

A

A

C

T

the
best
score

A – C - T
A T C A T
8-3+8-3+8 = 18

(not always at
the corner)

16

61

Affine gap penalties
• Match: +8 (w(x, y) = 8, if x = y)
• Mismatch: -5 (w(x, y) = -5, if x ≠ y)
• Each gap symbol: -3 (w(-,x)=w(x,-)=-3)
• E.g. each gap is charged an extra gap-open penalty: -4.
• In general, a gap of length k should have penalty g(k)

C - - - T T A A C T
C G G A T C A - - T
+8 -3 -3 -3 +8 -5 +8 -3 -3 +8 = +12

-4 -4

alignment score: 12 – 4 – 4 = 4
62

Affine gap penalties

• A gap of length k is penalized x + k·y.
gap-open penalty

gap-symbol penalty
Three cases for alignment endings:

1. ...x
...x

2. ...x
...-

3. ...-
...x

an aligned pair

a deletion

an insertion

63

Affine gap penalties

• Let D(i, j) denote the maximum score of any
alignment between a1a2…ai and b1b2…bj ending
with a deletion.

• Let I(i, j) denote the maximum score of any
alignment between a1a2…ai and b1b2…bj ending
with an insertion.

• Let S(i, j) denote the maximum score of any
alignment between a1a2…ai and b1b2…bj.

64

Affine gap penalties

⎪⎩

⎪
⎨

⎧ +−−
=

⎩
⎨
⎧

−−−
−−

=

⎩
⎨
⎧

−−−
−−

=

),(
),(

),()1,1(
max),(

)1,(
)1,(

max),(

),1(
),1(

max),(

jiI
jiD

bawjiS
jiS

yxjiS
yjiI

jiI

yxjiS
yjiD

jiD

ji

17

65

Affine gap penalties
(Gotoh’s algorithm)

SI

D

SI

D

SI

D

SI

D

-y
-x-y

-x-y

-y

w(ai,bj)

66

k best local alignments
• Smith-Waterman

(Smith and Waterman, 1981; Waterman and Eggert, 1987)

• FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)

• BLAST
(Altschul et al., 1990; Altschul et al., 1997)

BLAST and FASTA are key genomic database search tools.

67

k best local alignments

• Smith-Waterman
(Smith and Waterman, 1981; Waterman and Eggert, 1987)

– linear-space version：sim (Huang and Miller, 1991)
– linear-space variants：sim2 (Chao et al., 1995); sim3 (Chao et al., 1997)

• FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)

– linear-space band alignment (Chao et al., 1992)

• BLAST
(Altschul et al., 1990; Altschul et al., 1997)

– restricted affine gap penalties (Chao, 1999)

68

FASTA
1) Find runs of identities, and identify

regions with the highest density of
identities.

2) Re-score using PAM matrix, and keep top
scoring segments.

3) Eliminate segments that are unlikely to be
part of the alignment.

4) Optimize the alignment in a band.

Its running time is O(n).

18

69

FASTA
Step 1: Find runs of identities, and identify regions with

the highest density of identities.

70

FASTA
Step 2: Re-score using PAM matrix, and

keep top scoring segments.

71

FASTA
Step 3: Eliminate segments that are unlikely to be part of

the alignment.

72

FASTA
Step 4: Optimize the alignment in a band.

19

73

BLAST

1) Build the hash table for sequence A (the
database sequence).

2) Scan sequence B for hits.
3) Extend hits.

Also O(n) time.

74

BLAST
Step 1: Build the hash table for sequence A. (3-tuple example)

For DNA sequences:

Seq. A = AGATCGAT
12345678

AAA
AAC
..
AGA 1
..
ATC 3
..
CGA 5
..
GAT 2 6
..
TCG 4
..

TTT

For protein sequences:

Seq. A = ELVIS

Add xyz to the hash table
if Score(xyz, ELV) ≧ T;

Add xyz to the hash table
if Score(xyz, LVI) ≧ T;

Add xyz to the hash table
if Score(xyz, VIS) ≧ T;

75

BLAST
Step2: Scan sequence B for hits.

76

BLAST
Step2: Scan sequence B for hits.

Step 3: Extend hits.

hit

Terminate if the
score of the
extension fades
away.

BLAST 2.0 saves
the time spent in
extension, and

considers gapped
alignments.

20

77

Remarks

• Filtering is based on the observation that a
good alignment usually includes short
identical or very similar fragments.

• The idea of filtration was used in both
FASTA and BLAST to achieve high speed

78

Linear space ideas
Hirschberg, 1975; Myers and Miller, 1988

m/2

(i) scores can be computed in O(n) space
(ii) divide-and-conquer

S(a1…am/2,b1…bj) +
S(am…am/2+1,bn…bj+1)

maximized

j

79

Two subproblems
½ original problem size

m/2

m/4

3m/4

80

Four subproblems
¼ original problem size

m/2

m/4

3m/4

21

81

Time and Space Complexity

• Space: O(m+n)

• Time:
O(mn)*(1+ ½ + ¼ + …) = O(mn)

2

82

Band Alignment
(K. Chao, W. Pearson, and W. Miller)

Sequence B

Sequence A

83

Band Alignment in Linear Space
The remaining subproblems are no
longer only half of the original
problem. In worst case, this could
cause an additional log n factor in
time.

84

Band Alignment in Linear Space

22

85

Multiple sequence alignment (MSA)

• The multiple sequence alignment problem is to
simultaneously align more than two sequences.

Seq1: GCTC

Seq2: AC

Seq3: GATC

GC-TC

A---C

G-ATC

86

How to score an MSA?

• Sum-of-Pairs (SP-score)

GC-TC

A---C

G-ATC

GC-TC

A---C

GC-TC

G-ATC

A---C

G-ATC

Score =

Score

Score

Score

+

+

87

MSA for three sequences

• an O(n3) algorithm

88

General MSA

• For k sequences of length n: O(nk)
• NP-Complete (Wang and Jiang)
• The exact multiple alignment algorithms for

many sequences are not feasible.
• Some approximation algorithms are given.

(e.g., 2- l/k for any fixed l by Bafna et al.)

23

89

Progressive alignment

• A heuristic approach proposed by Feng and Doolittle.
• It iteratively merges the most similar pairs.
• “Once a gap, always a gap”

A B C D E

The time for progressive
alignment in most cases is
roughly the order of the time
for computing all pairwise
alignment, i.e., O(k2n2) .

90

Concluding remarks

• Three essential components of the dynamic
programming approach:
– the recurrence relation
– the tabular computation
– the backtracing

• The dynamic-programming approach has
been used in a vast number of computational
problems in bioinformatics.

