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Undecidability

Everything is an Integer
Countable and Uncountable Sets

Turing Machines
Recursive and Recursively 
Enumerable Languages
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Integers, Strings, and Other Things

Data types have become very 
important as a programming tool.
But at another level, there is only one 

type, which you may think of as 
integers or strings.
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Example: Text

Strings of ASCII or Unicode characters 
can be thought of as binary strings, 
with 8 or 16 bits/character.
Binary strings can be thought of as 

integers.
It thus makes sense to talk about “the i-th 

string”.
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Binary Strings to Integers

There’s a small glitch:
 If you think them simply as binary integers, 

then strings like 101, 0101, 00101, … all 
appear to represent 5.

Fix by prepending a “1” to the string 
before converting to an integer.
 Thus, 101, 0101, and 00101 are the 13th, 

21st, and 37th strings, respectively.
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Example: Images

Represent an image in (say) GIF.
The GIF file is an ASCII string.
Convert string to binary.
Convert binary string to integer.
Now we have a notion of “the i-th 

image”.
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Example: Proofs

A formal proof is a sequence of logical 
expressions, each of which follows from 
the ones before it.
Encode mathematical expressions of 

any kind in Unicode.
Convert expression to a binary string 

and then an integer.
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Proofs – (2)

But since a proof is a sequence of 
expressions, it would be convenient to
have a simple way to separate them.
Also, we need to indicate which 

expressions are given.
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Proofs – (3)

 Quick-and-dirty way to introduce new 
symbols into binary strings:

1. Given a binary string, precede each bit by 0.
 Example: 101 becomes 010001.

2. Use strings of two or more 1’s as the special 
symbols.
 Example: 111 = “the following expression is 

given”; 11 = “end of expression.”
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Example: Encoding Proofs

1110100011111100000101110101…

A given
expression
follows

An ex-
pression

End of
expression

Notice this
1 could not
be part of
the “end”

A given
expression
follows

Expression

End
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Example: Programs

Programs are just another kind of data.
Represent a program in ASCII.
Convert to a binary string, then to an 

integer.
Thus, it makes sense to talk about “the 

i-th program”.  
Hmm…There aren’t all that many programs.

Each (decision) program accepts one language.
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Finite Sets

Intuitively, a finite set is a set for 
which there is a particular integer that 
is the count of the number of members.
Example: {a, b, c} is a finite set; its 

cardinality is 3.
It is impossible to find a 1-1 mapping 

between a finite set and a proper 
subset of itself.
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Infinite Sets

Formally, an infinite set is a set for which 
there is a 1-1 correspondence between 
itself and a proper subset of itself.
Example: the positive integers {1, 2, 3, …} 

is an infinite set.
 There is a 1-1 correspondence 1<->2, 2<->4, 

3<->6,… between this set and a proper 
subset (the set of even integers).
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Countable Sets

A countable set is a set with a 1-1 
correspondence with the positive integers.
 Hence, all countable sets are infinite.

Example: All integers.
 0<->1; -i <-> 2i; +i <-> 2i+1.
 Thus, order is 0, -1, 1, -2, 2, -3, 3,…

Examples: set of binary strings, set of Java 
programs.
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Example: Pairs of Integers

Order the pairs of positive integers first 
by sum, then by first component:
[1,1], [2,1], [1,2], [3,1], [2,2], [1,3], 

[4,1], [3,2],…, [1,4], [5,1],…
Interesting exercise: Figure out the 

function f(i,j) such that the pair [i,j] 
corresponds to the integer f(i,j) in this 
order.
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Enumerations

An enumeration of a set is a 1-1 
correspondence between the set and 
the positive integers.
Thus, we have seen enumerations for 

strings, programs, proofs, and pairs of 
integers.
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How Many Languages?

Are the languages over {0,1}* countable?
No; here’s a proof.
Suppose we could enumerate all 

languages over {0,1}* and talk about “the 
i-th language.”
Consider the language L = { w | w is the 

i-th binary string and w is not in the i-th 
language}.
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Proof – Continued

Clearly, L is a language over {0,1}*.
Thus, it is the j-th language for some 

particular j.
Let x be the j-th string.
Is x in L?
 If so, x is not in L by definition of L.
 If not, then x is in L by definition of L.

Recall: L = { w | w is the
i-th binary string and w is
not in the i-th language}.

x

j-th

Lj
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Diagonalization Picture
Strings

1     2     3    4     5  …
1

12

3

4

5

…

Languages

0

111

1

0

00 …

…
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Diagonalization Picture
Strings

1     2     3    4     5  …
1

02

3

4

5

…

Languages

1

110

0

1

00 …

…

Flip each
diagonal
entry

Can’t be
a row –
it disagrees
in an entry
of each row.
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Proof – Concluded

We have a contradiction: x is neither in 
L nor not in L, so our sole assumption 
(that there was an enumeration of the 
languages) is wrong.
Comment: This is really bad; there are 

more languages than programs.
E.g., there are languages that are not

 accepted by any program/algorithm. 

jiang
Text Box
Recall languages are essentially decision problems and algorithms accepting the languages basically solve the decision problems.
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Hungarian Arguments

We have shown the existence of a 
language with no algorithm to test for 
membership, but we have no way to 
exhibit a particular language with that 
property.
A proof by counting the things that work 

and claiming they are fewer than all 
things is called a Hungarian argument.
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Turing-Machine Theory

The purpose of the theory of Turing 
machines is to prove that certain 
specific languages have no algorithm.
Start with a language about Turing 

machines themselves.
Reductions are used to prove more 

common questions undecidable.
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Picture of a Turing Machine

State

. . . . . .A B C A D

Infinite tape with
squares containing
tape symbols chosen
from a finite alphabet

Action: based on
the state and the
tape symbol under
the head: change
state, rewrite the
symbol and move the
head one square.
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Why Turing Machines?

Why not deal with C programs or 
something like that?
Answer: You can, but it is easier to prove 

things about TM’s, because they are so 
simple.
 And yet they are as powerful as any 

computer.
• More so, in fact, since they have infinite memory.
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Then Why Not Finite-State 
Machines to Model Computers?
In principle, you could, but it is not 

instructive.
Programming models don’t build in a 

limit on memory.
In practice, you can go to Fry’s and buy 

another disk.
But finite automata vital at the chip 

level (model-checking).
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Turing-Machine Formalism

 A TM is described by:
1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A tape alphabet (Γ, typically; contains Σ).
4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).
6. A blank symbol (B, in Γ- Σ, typically).
 All tape except for the input is blank initially.

7. A set of final states (F ⊆ Q, typically).
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Conventions

a, b, … are input symbols.
…, X, Y, Z are tape symbols.
…, w, x, y, z are strings of input 

symbols.
, ,… are strings of tape symbols.



28

The Transition Function

 Takes two arguments:
1. A state, in Q.
2. A tape symbol in Γ.

 δ(q, Z) is either undefined or a triple of 
the form (p, Y, D).
 p is a state.
 Y is the new tape symbol.
 D is a direction, L or R.
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Actions of the TM

 If δ(q, Z) = (p, Y, D) then, in state q, 
scanning Z under its tape head, the 
TM:

1. Changes the state to p.
2. Replaces Z by Y on the tape.
3. Moves the head one square in direction D.
 D = L: move left; D = R; move right.
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Example: Turing Machine

This TM scans its input right, looking 
for a 1.
If it finds one, it changes it to a 0, goes 

to final state f, and halts.
If it reaches a blank, it changes it to a 

1 and moves left.
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Example: Turing Machine – (2)

States = {q (start), f (final)}.
Input symbols = {0, 1}.
Tape symbols = {0, 1, B}.
δ(q, 0) = (q, 0, R).
δ(q, 1) = (f, 0, R).
δ(q, B) = (q, 1, L).
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  1  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  1  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  0  B  . . .

f

No move is possible.
The TM halts and
accepts.
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Instantaneous Descriptions of 
a Turing Machine

Initially, a TM has a tape consisting of a 
string of input symbols surrounded by 
an infinity of blanks in both directions.
The TM is in the start state, and the 

head is at the leftmost input symbol.
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TM ID’s – (2)

An ID is a string q, where  is the 
tape between the leftmost and 
rightmost nonblanks (inclusive).
The state q is immediately to the left of 

the tape symbol scanned.
If q is at the right end, it is scanning B.
 If q is scanning a B at the left end, then 

consecutive B’s at and to the right of q are 
part of .

jiang
Text Box
b
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TM ID’s – (3)

As for PDA’s we may use symbols ⊦ and 
⊦* to represent “becomes in one move” 
and “becomes in zero or more moves,” 
respectively, on ID’s.
Example: The moves of the previous TM 

are q00⊦0q0⊦00q⊦0q01⊦00q1⊦000f
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Formal Definition of Moves

1. If δ(q, Z) = (p, Y, R), then
 qZ⊦Yp
 If Z is the blank B, then also q⊦Yp

2. If δ(q, Z) = (p, Y, L), then
 For any X, XqZ⊦pXY
 In addition, qZ⊦pBY
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Languages of a TM

A TM defines a language by final state, 
as usual.
L(M) = {w | q0w⊦*I, where I is an ID 

with a final state}.
Or, a TM can accept a language by 

halting.
H(M) = {w | q0w⊦*I, and there is no 

move possible from ID I}.



43

Equivalence of Accepting and 
Halting

1. If L = L(M), then there is a TM M’ 
such that L = H(M’).

2. If L = H(M), then there is a TM M” 
such that L = L(M”).
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Proof of 1: Acceptance -> 
Halting

 Modify M to become M’ as follows:
1. For each final state of M, remove any 

moves, so M’ halts in that state.
2. Avoid having M’ accidentally halt.
 Introduce a new state s, which runs to the right 

forever; that is δ(s, X) = (s, X, R) for all symbols X.
 If q is not final, and δ(q, X) is undefined, let 
δ(q, X) = (s, X, R).



45

Proof of 2: Halting -> 
Acceptance

 Modify M to become M” as follows:
1. Introduce a new state f, the only final

 state of M”.
2. f has no moves.
3. If δ(q, X) is undefined for any state q and 

symbol X, define it by δ(q, X) = (f, X, R).
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Recursively Enumerable 
Languages

We now see that the classes of 
languages defined by TM’s using final 
state and halting are the same.
This class of languages is called the 

recursively enumerable languages.
Why?  The term actually predates the 

Turing machine and refers to another 
notion of computation of functions.

jiang
Text Box
AMB = {<G> | G is an ambiguous CFG}
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Recursive Languages

An algorithm  is a TM that is 
guaranteed to halt whether or not it 
accepts.
If L = L(M) for some TM M that is an 

algorithm, we say L is a recursive
(or decidable) language.
Why?  Again, don’t ask; it is a term with a 

history.

jiang
Text Box
Church-Turing Thesis: Halting Turing machines 
are equivalent to intuitive notion of algorithms.
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Example: Recursive Languages

Every CFL is a recursive language.
 Use the CYK algorithm.

Every regular language is a CFL (think 
of its DFA as a PDA that ignores its 
stack); therefore every regular 
language is recursive.
Almost anything you can think of is 

recursive.

jiang
Text Box
But not HALT = {<M> | M is a TM that halts on every input} 
or AMB = {<G> | G is an ambiguous CFG}
or EQCFG = {<G1,G2> | G1 and G2 are CFGs, L(G1) = L(G2)}



49

jiang
Text Box
An example non-recursive (undecidable) language:
ATM = { <M,w> | TM M accepts string w }

Proof. Suppose that ATM is recursive and decided by an algorithm (TM) H. Construct a TM D as follows:

     For any input <M> where M is a TM, run H on          <M,<M>>, and accept iff H  rejects. In other words, D accepts <M> iff M does not accept <M>.

What would D do on <D>?

It should accept <D> iff D rejects <D> !




