
1

Undecidability

Everything is an Integer
Countable and Uncountable Sets

Turing Machines
Recursive and Recursively
Enumerable Languages

2

Integers, Strings, and Other Things

Data types have become very
important as a programming tool.
But at another level, there is only one

type, which you may think of as
integers or strings.

3

Example: Text

Strings of ASCII or Unicode characters
can be thought of as binary strings,
with 8 or 16 bits/character.
Binary strings can be thought of as

integers.
It thus makes sense to talk about “the i-th

string”.

4

Binary Strings to Integers

There’s a small glitch:
 If you think them simply as binary integers,

then strings like 101, 0101, 00101, … all
appear to represent 5.

Fix by prepending a “1” to the string
before converting to an integer.
 Thus, 101, 0101, and 00101 are the 13th,

21st, and 37th strings, respectively.

5

Example: Images

Represent an image in (say) GIF.
The GIF file is an ASCII string.
Convert string to binary.
Convert binary string to integer.
Now we have a notion of “the i-th

image”.

6

Example: Proofs

A formal proof is a sequence of logical
expressions, each of which follows from
the ones before it.
Encode mathematical expressions of

any kind in Unicode.
Convert expression to a binary string

and then an integer.

7

Proofs – (2)

But since a proof is a sequence of
expressions, it would be convenient to
have a simple way to separate them.
Also, we need to indicate which

expressions are given.

8

Proofs – (3)

 Quick-and-dirty way to introduce new
symbols into binary strings:

1. Given a binary string, precede each bit by 0.
 Example: 101 becomes 010001.

2. Use strings of two or more 1’s as the special
symbols.
 Example: 111 = “the following expression is

given”; 11 = “end of expression.”

9

Example: Encoding Proofs

1110100011111100000101110101…

A given
expression
follows

An ex-
pression

End of
expression

Notice this
1 could not
be part of
the “end”

A given
expression
follows

Expression

End

10

Example: Programs

Programs are just another kind of data.
Represent a program in ASCII.
Convert to a binary string, then to an

integer.
Thus, it makes sense to talk about “the

i-th program”.
Hmm…There aren’t all that many programs.

Each (decision) program accepts one language.

11

Finite Sets

Intuitively, a finite set is a set for
which there is a particular integer that
is the count of the number of members.
Example: {a, b, c} is a finite set; its

cardinality is 3.
It is impossible to find a 1-1 mapping

between a finite set and a proper
subset of itself.

12

Infinite Sets

Formally, an infinite set is a set for which
there is a 1-1 correspondence between
itself and a proper subset of itself.
Example: the positive integers {1, 2, 3, …}

is an infinite set.
 There is a 1-1 correspondence 1<->2, 2<->4,

3<->6,… between this set and a proper
subset (the set of even integers).

13

Countable Sets

A countable set is a set with a 1-1
correspondence with the positive integers.
 Hence, all countable sets are infinite.

Example: All integers.
 0<->1; -i <-> 2i; +i <-> 2i+1.
 Thus, order is 0, -1, 1, -2, 2, -3, 3,…

Examples: set of binary strings, set of Java
programs.

14

Example: Pairs of Integers

Order the pairs of positive integers first
by sum, then by first component:
[1,1], [2,1], [1,2], [3,1], [2,2], [1,3],

[4,1], [3,2],…, [1,4], [5,1],…
Interesting exercise: Figure out the

function f(i,j) such that the pair [i,j]
corresponds to the integer f(i,j) in this
order.

15

Enumerations

An enumeration of a set is a 1-1
correspondence between the set and
the positive integers.
Thus, we have seen enumerations for

strings, programs, proofs, and pairs of
integers.

16

How Many Languages?

Are the languages over {0,1}* countable?
No; here’s a proof.
Suppose we could enumerate all

languages over {0,1}* and talk about “the
i-th language.”
Consider the language L = { w | w is the

i-th binary string and w is not in the i-th
language}.

17

Proof – Continued

Clearly, L is a language over {0,1}*.
Thus, it is the j-th language for some

particular j.
Let x be the j-th string.
Is x in L?
 If so, x is not in L by definition of L.
 If not, then x is in L by definition of L.

Recall: L = { w | w is the
i-th binary string and w is
not in the i-th language}.

x

j-th

Lj

18

Diagonalization Picture
Strings

1 2 3 4 5 …
1

12

3

4

5

…

Languages

0

111

1

0

00 …

…

19

Diagonalization Picture
Strings

1 2 3 4 5 …
1

02

3

4

5

…

Languages

1

110

0

1

00 …

…

Flip each
diagonal
entry

Can’t be
a row –
it disagrees
in an entry
of each row.

20

Proof – Concluded

We have a contradiction: x is neither in
L nor not in L, so our sole assumption
(that there was an enumeration of the
languages) is wrong.
Comment: This is really bad; there are

more languages than programs.
E.g., there are languages that are not

 accepted by any program/algorithm.

jiang
Text Box
Recall languages are essentially decision problems and algorithms accepting the languages basically solve the decision problems.

21

Hungarian Arguments

We have shown the existence of a
language with no algorithm to test for
membership, but we have no way to
exhibit a particular language with that
property.
A proof by counting the things that work

and claiming they are fewer than all
things is called a Hungarian argument.

22

Turing-Machine Theory

The purpose of the theory of Turing
machines is to prove that certain
specific languages have no algorithm.
Start with a language about Turing

machines themselves.
Reductions are used to prove more

common questions undecidable.

23

Picture of a Turing Machine

State

.A B C A D

Infinite tape with
squares containing
tape symbols chosen
from a finite alphabet

Action: based on
the state and the
tape symbol under
the head: change
state, rewrite the
symbol and move the
head one square.

24

Why Turing Machines?

Why not deal with C programs or
something like that?
Answer: You can, but it is easier to prove

things about TM’s, because they are so
simple.
 And yet they are as powerful as any

computer.
• More so, in fact, since they have infinite memory.

25

Then Why Not Finite-State
Machines to Model Computers?
In principle, you could, but it is not

instructive.
Programming models don’t build in a

limit on memory.
In practice, you can go to Fry’s and buy

another disk.
But finite automata vital at the chip

level (model-checking).

26

Turing-Machine Formalism

 A TM is described by:
1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A tape alphabet (Γ, typically; contains Σ).
4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).
6. A blank symbol (B, in Γ- Σ, typically).
 All tape except for the input is blank initially.

7. A set of final states (F ⊆ Q, typically).

27

Conventions

a, b, … are input symbols.
…, X, Y, Z are tape symbols.
…, w, x, y, z are strings of input

symbols.
, ,… are strings of tape symbols.

28

The Transition Function

 Takes two arguments:
1. A state, in Q.
2. A tape symbol in Γ.

 δ(q, Z) is either undefined or a triple of
the form (p, Y, D).
 p is a state.
 Y is the new tape symbol.
 D is a direction, L or R.

29

Actions of the TM

 If δ(q, Z) = (p, Y, D) then, in state q,
scanning Z under its tape head, the
TM:

1. Changes the state to p.
2. Replaces Z by Y on the tape.
3. Moves the head one square in direction D.
 D = L: move left; D = R; move right.

30

Example: Turing Machine

This TM scans its input right, looking
for a 1.
If it finds one, it changes it to a 0, goes

to final state f, and halts.
If it reaches a blank, it changes it to a

1 and moves left.

31

Example: Turing Machine – (2)

States = {q (start), f (final)}.
Input symbols = {0, 1}.
Tape symbols = {0, 1, B}.
δ(q, 0) = (q, 0, R).
δ(q, 1) = (f, 0, R).
δ(q, B) = (q, 1, L).

32

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

33

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

34

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

35

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 1 B . . .

q

36

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 1 B . . .

q

37

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 0 B . . .

f

No move is possible.
The TM halts and
accepts.

38

Instantaneous Descriptions of
a Turing Machine

Initially, a TM has a tape consisting of a
string of input symbols surrounded by
an infinity of blanks in both directions.
The TM is in the start state, and the

head is at the leftmost input symbol.

39

TM ID’s – (2)

An ID is a string q, where  is the
tape between the leftmost and
rightmost nonblanks (inclusive).
The state q is immediately to the left of

the tape symbol scanned.
If q is at the right end, it is scanning B.
 If q is scanning a B at the left end, then

consecutive B’s at and to the right of q are
part of .

jiang
Text Box
b

40

TM ID’s – (3)

As for PDA’s we may use symbols ⊦ and
⊦* to represent “becomes in one move”
and “becomes in zero or more moves,”
respectively, on ID’s.
Example: The moves of the previous TM

are q00⊦0q0⊦00q⊦0q01⊦00q1⊦000f

41

Formal Definition of Moves

1. If δ(q, Z) = (p, Y, R), then
 qZ⊦Yp
 If Z is the blank B, then also q⊦Yp

2. If δ(q, Z) = (p, Y, L), then
 For any X, XqZ⊦pXY
 In addition, qZ⊦pBY

42

Languages of a TM

A TM defines a language by final state,
as usual.
L(M) = {w | q0w⊦*I, where I is an ID

with a final state}.
Or, a TM can accept a language by

halting.
H(M) = {w | q0w⊦*I, and there is no

move possible from ID I}.

43

Equivalence of Accepting and
Halting

1. If L = L(M), then there is a TM M’
such that L = H(M’).

2. If L = H(M), then there is a TM M”
such that L = L(M”).

44

Proof of 1: Acceptance ->
Halting

 Modify M to become M’ as follows:
1. For each final state of M, remove any

moves, so M’ halts in that state.
2. Avoid having M’ accidentally halt.
 Introduce a new state s, which runs to the right

forever; that is δ(s, X) = (s, X, R) for all symbols X.
 If q is not final, and δ(q, X) is undefined, let
δ(q, X) = (s, X, R).

45

Proof of 2: Halting ->
Acceptance

 Modify M to become M” as follows:
1. Introduce a new state f, the only final

 state of M”.
2. f has no moves.
3. If δ(q, X) is undefined for any state q and

symbol X, define it by δ(q, X) = (f, X, R).

46

Recursively Enumerable
Languages

We now see that the classes of
languages defined by TM’s using final
state and halting are the same.
This class of languages is called the

recursively enumerable languages.
Why? The term actually predates the

Turing machine and refers to another
notion of computation of functions.

jiang
Text Box
AMB = {<G> | G is an ambiguous CFG}

47

Recursive Languages

An algorithm is a TM that is
guaranteed to halt whether or not it
accepts.
If L = L(M) for some TM M that is an

algorithm, we say L is a recursive
(or decidable) language.
Why? Again, don’t ask; it is a term with a

history.

jiang
Text Box
Church-Turing Thesis: Halting Turing machines
are equivalent to intuitive notion of algorithms.

48

Example: Recursive Languages

Every CFL is a recursive language.
 Use the CYK algorithm.

Every regular language is a CFL (think
of its DFA as a PDA that ignores its
stack); therefore every regular
language is recursive.
Almost anything you can think of is

recursive.

jiang
Text Box
But not HALT = {<M> | M is a TM that halts on every input}
or AMB = {<G> | G is an ambiguous CFG}
or EQCFG = {<G1,G2> | G1 and G2 are CFGs, L(G1) = L(G2)}

49

jiang
Text Box
An example non-recursive (undecidable) language:
ATM = { <M,w> | TM M accepts string w }

Proof. Suppose that ATM is recursive and decided by an algorithm (TM) H. Construct a TM D as follows:

 For any input <M> where M is a TM, run H on <M,<M>>, and accept iff H rejects. In other words, D accepts <M> iff M does not accept <M>.

What would D do on <D>?

It should accept <D> iff D rejects <D> !

