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Abstract

In this work, we work on a conjecture to construct locally testable non-malleable codes
against decision trees. We believe that this work will pave the way for a construction (based on
low-degree polynomials) of constant rate split state non-malleable codes with optimal error,
which is a big open problem. We describe our contributions, which are the categorization of
tampering of planes by decision trees and a significant progress towards showing that none
of these types of tampering is problematic: they either reduce to affine tampering, which we
can easily deal with or they are not even performing mauling attacks. We then give a detailed
explanation of the remaining work we have to do and explain why we believe our ideas are
powerful.

1 Introduction

A coding scheme is a pair (Enc,Dec) of functions Enc : Γk → Γn and Dec : Γn → Γk ∪ {⊥} such
that Dec

(
Enc(m)

)
= m. The quantity k/n is called the rate of the code. Given x,y ∈ Γn, the

distance between x and y is Pri∼[n]

[
xi 6= yi

]
. The distance of the code is the minimum distance

between any two distinct valid codewords. We say (Enc,Dec) is an error-correcting code [Ham50]
if there exists δ > 0 such that Dec(y) = m for all y which are within distance δ of some valid
codeword x = Enc(m). The state of the art today is codes with constant rate and which can decode
from a constant fraction of errors [RS60, Jus72].

Locally-testable codes (LTCs) [FS95, GS06] are a type of error correcting code that support a
very efficient, randomized test, which reads only a few symbols from the code and outputs a bit
indicating whether or not it thinks the codeword is valid. Intuitively, Test(x) = 1 for all valid
codewords x ∈ Γn; and if y is very far from being valid, then Test(y) = 0 should occur with high
probability. In addition to their obviously useful test feature, LTCs share many similarities with
probabilistically checkable proofs, and this connection proves useful in many cases. [ALM+98,
AS98].
∗Many thanks to Sourya Roy for his numerous contributions.
†UC Riverside. Email: iergu001@ucr.edu.
‡UC Riverside. Email: silas@cs.ucr.edu.
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As we have stated earlier, error correcting codes are very powerful objects. However, they
only provide security against a honest but noisy channel and they are not secure against active
adversarial behavior. Non-malleable codes (NMCs) [DPW18], on the other hand, provide security
against a channel which actively tampers codewords using a function f : Γn → Γn ,which is
called the tampering function. This model was initially motivated by applications to leakage and
tamper resilient cryptography [DPW18, AGM+15, CDM+20]. However, since then, it has been
immensely useful for many different applications, for example to secure protocol design [GPR16,
GR19], complexity theory [DJMW12], and pseudorandomness [CGL16, CZ16]. Given a message
m ∈ Γk and f : Γn → Γn, the tampering distribution outputs

(
Dec ◦ f ◦ Enc

)
(m) ∈ Γk ∪ {⊥}.

Roughly speaking, we say that (Enc,Dec) is non-malleable against a function family F ⊂
{
f :

Γn → Γn
}

if for all f ∈ F and m ∈ Γk, the tampering distribution either outputs m (the case
when there is no tampering present) or is statistically independent of m (the case when there is
tampering present).

Naturally, one would like to have non-malleable codes that are secure against all kinds of tam-
pering functions. However, this is not possible if the adversary has access to all bits of the encoded
message. Because the encoding and decoding procedures are efficient, the adversary can decode,
tamper and then encode. It is trivial to see that this tampering cannot be prevented or detected. So,
the primary goal becomes constructing non-malleable codes that are secure against stronger adver-
saries and the secondary goal is to keep the rate of the code as close to 1 as possible. There is an
obvious trade-off here as the length of the codeword increases, we can have more security (while
having decodability) because we can basically "hide" the message within the codeword more eas-
ily. So, in an ideal situation, we would like to keep the error of the code exponentially small while
having the rate constant.

Split-state non-malleable codes model is the most popular model (with a lot of useful ap-
plications [ADKO15, AKO17, BDSG+18, ADN+19, BGW19]), where security against arbitrary
behavior of the tampering function is achieved. In this model, the tampering function is actually
composed of two independent functions, each of which has access to a different half of the input.
There are many works done on this topic, which we describe in section 2.3. However, the work
done so far fails the construct the optimal codes in terms of security and rate. We aim to construct
codes that are optimal in terms of security against split-state tampering and rate.

2 Preliminaries and Conjecture

2.1 Locally Testable Codes and Non-Malleable Codes

Definition 1 (Locally Testable Code). Fix q ∈ N and ε > 0. We say that a code (Enc,Dec),
is a (q, ε)−locally testable code (LTC) if there exists a randomized algorithm Test which reads q
symbols of a supposed codeword y ∈ Γn (the symbols are indexed by I ⊂ [n] of size |I| = q) and
outputs a bit such that 1) Test(x) = 1 with probability 1 for all valid codewords x ∈ Γn, and 2)
there exists a constant c > 0 such that for all y ∈ Γn with dist(y) ≥ ε,

PrI

[
Test(y; I) = 0

]
≥ c · dist(y),

where dist(y) denotes the distance between y and the nearest valid codeword.
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We formally define non-malleable codes via non-malleable reductions [ADKO15]. Intuitively, a
non-malleable reduction from F to G guarantees that the tampering of codewords by functions
in F is captured by tampering messages by functions in G. The key feature of non-malleable
reductions is that they compose well. For example, if (EncF ,DecF) is a non-malleable reduction
from F to G and (EncG,DecG) is a non-malleable code against G, then

(
EncF ◦EncG,DecG ◦DecF

)
is a non-malleable code against F .

Definition 2 (Non-Malleable Reductions). Fix ε > 0 and tampering function families

F ⊂ {f : Γn → Γn} and G ⊂
{
g : Γk → Γk ∪ {⊥}

}
.

We say that a coding scheme (Enc,Dec) is an ε−non-malleable reduction from F to G if for all
f ∈ F there exists a distribution Gf on G such that ∆

(
(Dec ◦ f ◦ Enc)(m),Gf (m)

)
≤ ε for all

m ∈ Γk, where Gf (m) is the distribution which draws g ∼ Gf and outputs g(m) (∆ denotes
statistical distance). A non-malleable code is a non-malleable reduction to the family of “trivial”
tampering functions, containing only the identity and constants.

Tampering Function Families. We identify five types of tampering.

• Coordinate-Wise: In the coordinate-wise tampering model, the each symbol of the codeword
c ∈ Γn is tampered independently. Thus, {fi}i∈[n] ∈ Fcoord is a sequence of fi : Γ → Γ
which tampers via {fi}i : {ci} 7−→ {fi(ci)}.

• Decision Trees: The decision tree model is a generalization of the coordinate-wise tampering
model. Specifically, if {fi} ∈ F rdtree , then every fi is a decision tree of depth r. A decision
tree from this function family is a |Γ|−ary tree of depth r, whose leaves have labels from Γ
and its each non-leaf node has label i for some i ∈ [n]. Evaluating the decision tree is as
follows: for the node with label i, query ci and descend to the ci-th child of the node with
label i and continue until a leaf node is reached. The value in the resulting leaf node is the
output of that decision tree. So, the tampering distribution is

(Dec ◦ {fi}i ◦ Enc)(m) = Dec({fi(c)}i) = Dec({c̃i}i) = m̃.

• Affine: We say that T : Γ→ Γ is affine if ∃ (s,Φ0) ∈ F× Γ such that T(Φ) = s · Φ + Φ0.

• Split-State: In the split-state model, the tampering function is actually composed of two inde-
pendent functions (f,g), and each of these functions take (a fixed) half1 of the encoded mes-
sage as input and (f,g) tamper these parts independently. Formally, Fsplit = {(f, g) | f, g :
{0, 1}n → {0, 1}n}. So, the tampering distribution for (f, g) ∈ Fsplit and m ∈ {0, 1}k out-
puts: (Dec◦(f, g)◦Enc)(m) = Dec(f(L), g(R)) = Dec(L̃, R̃) = m̃where L,R ∈ {0, 1}n
and (L̃, R̃) = f(L), g(R).

1Functions (f, g) can take arbitrary number of bits as input, as long as their inputs are non-overlapping. For
simplicity, we will say that they take half of the encoded message as input.
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2.2 Sampler Graphs

For the sake of completeness, we added added some useful definitions about sampler graphs in this
paper, which are taken from [RR19] and we shortened the content. We encourage the reader to
read section 2 and 5 of [RR19].

Notations. For a finite set S, s ∼ S indicates that s is drawn uniformly from S. For a bipartite
graph (A ∪ B,E) and a ∈ A, B(a) denotes the uniform distribution on the neighborhood of a in
B: {b ∈ B : (a, b) ∈ E}. The neighborhood distribution A(b) for b ∈ B is defined analogously.
For all bipartite graphs used in this work, the edge relations are natural. For example, A might
be the set of lines in Fk (F a finite field), B the set of points in Fk, and the edge relation captures
incidence: (a, b) ∈ E iff b ∈ a. For this reason, we simplify notations by suppressing E and
denoting bipartite graphs as A/B instead of (A ∪B,E), and writing a ∼ b instead of (a, b) ∈ E.

Definition 3 (Biregularity). Let A/B be a bipartite graph and fix η > 0. We say that A/B
is η−biregular if the distribution which draws a ∼ A, b ∼ B(a), and outputs (a, b) is within
statistical distance η of the distribution which gives the same output by drawing b ∼ B, a ∼ A(b).2

Biregularity ensures that for any B′ ⊂ B of size |B′| = λ · |B|, the expectation (over a ∼ A) of
Prb∼B(a)[b ∈ B′] is close to λ. We say that A/B is sampling if a concentration bound holds.

Definition 4 (Sampler Graph [Zuc97]). Fix ε, δ > 0. We say that the bipartite graph A/B is
(ε, δ)−sampling if for all subsets B′ ⊂ B of size |B′| = λ · |B|,

Pra∼A

[∣∣∣Prb∼B(a)

[
b ∈ B′

]
− λ
∣∣∣ > ε

]
≤ δ.

Double Samplers. A triple (A,B,C) is called a double sampler if B/C is sampling and for all
c ∈ C, A(c)/B(c) is sampling. Double samplers have been used implicitly in several works prior
to their formalization in [DK17]. We use them implicitly in this work as well. The construction
in [DK17] is of a double sampler of linear size (i.e., |A| ≈ |B| ≈ |C|) based on high-dimensional
expanders. The double samplers used in this work are built from elementary means and are not
linear size (our double samplers have |A| � |B| � |C|). Importantly, a random object in our
parameter regime is a double sampler with good probability, while this is not true in the linear size
regime.

Fact 1 (Properties of Samplers). Fix ε, ε′, δ, δ′, η > 0. SupposeA/B/C are such thatB(a)
/
C(a)

is η−biregular and C(a, b) = C(b) for all a ∈ A and b ∈ B(a). The following hold.

1. If B/C is (ε′, δ′)−sampling and A/B is η−biregular, then A/C is (ε, δ)−sampling, where
δ ≥ ε−1 · (2η + ε′ + δ′).

2. If A
/
B is (ε′, δ′)−sampling and B

/
C is η−biregular, then A

/
C is (ε, δ)−sampling, where

ε ≥ 3ε′ + 2η and δ ≥ δ′/ε′.
2This is related to the usual notion of biregularity; specifically, if A/B is biregular in the usual sense, then it is

0−biregular in the sense of Definition 3.
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2.3 Prior Work

The split-state model for non-malleable codes was conceived in [DPW18], its existence is proved
with parameters n = O(k) and ε = 2−Ω(k) . Many explicit constructions followed and the state
of the art today is represented by two works [Li18, AO19]. Li constructs an [n, k, ε]NM -code with
n = O

(
k · logk

loglogk

)
, ε = 2−Ω(k); Aggarwal and Obremski get n = O(k) and ε = 2−k

α for a constant
0 < α < 1. Both constructions use the "alternating extraction" technique of [DP07], which is both
a very powerful method for proving non-malleability, and the source of the sub-optimalities. For
this reason, it seems as though substantially new ideas will be required in order to obtain optimal
split-state non-malleable codes.

Using low-degree polynomials comes to mind as they have been used in many influential works
on coding theory [RS60, Ric64, Jus72, WB86, Zuc97, Yek08, TS17], but not on non-malleable
codes due to its complex nature, at least until [RR19]. Richelson and Roy show that a Reed-
Muller type code, which is a code that is constructed by using low-degree polynomials, is non-
malleable against the family of coordinate-wise tampering functions. Although this work itself
is not sufficient to get optimal split-state non-malleable codes, it offers a fresh perspective on
constructing split-state non-malleable codes, which we build upon in this work.

2.4 Our Conjecture and Contributions

We work towards getting optimal split-state non-malleable codes by using low-degree polynomials,
just like [RR19] did. However, the tampering function family we work with is decision trees
function family, which is a natural generalization of the coordinate-wise tampering function family.
We conjecture that the techniques that are used to construct locally testable non-malleable codes
can also be used to construct constant rate split-state non-malleable codes. Our contributions are:

1. We categorize the types of tampering of planes that can be done by decision trees according
to how it tampers two planes intersecting at various surfaces.

2. We show that some of these tampering types are not actually mauling whereas the others
reduce to affine tampering.

3. We describe a complete and novel roadmap to come up with locally testable non-malleable
codes for decision trees and explain why our ideas are powerful.

3 Categorization of Plane Tampering

In this section, we give basic version of the code (which is a type of Reed-Solomon code) that was
shown to be non-malleable against coordinate-wise tampering in [RR19]. Then, we describe the
kinds of tampering that can be achieved by decision trees of depth 1 on this type of codes, and
show that these are either tampering in an affine fashion or not mauling. Note that we can have
non-malleability against affine tampering easily by composing this code with an inner code that is
non-malleable against affine tampering.
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3.1 The Code

Notation: Let F be a finite field and let t ≥ 4 and d ≥ 2 be the dimension and degree param-
eters respectively. Let A be the set of affine 3-planes and C = Ft. Let Γ be the set of t-variate
polynomials and ΓA be the set of 3-variate polynomials of degree at most d over F.

• Enc(m): For m ∈ F, draw Φ ∼ Γ such that Φ(0) = m and output {(a, α)}a∈A, where
α = Φ |a.

• Dec({(a, α)}a∈A): Find Φ ∈ Γ such that (a, α) = (a,Φ |a) for all a ∈ A. If such Φ exists,
output Φ(0). Otherwise, output ⊥.3

3.2 Types of Plane Tampering

Notation and context: Let A be the set of 3-planes in Ft, B1 the set of lines in Ft. Recall
that decision trees are actually a set of functions that tamper with the coordinates of the code
independently. Each function that is responsible for tampering with one coordinate of the code
can actually read as many bits as its depth. Here, we deal with decision trees of depth 1 and
the coordinates correspond to planes. Formally, the tampering function is in the following form:
{fa}a∈A. Each fa has access to a and another plane of its choosing. For the sake of simplicity, we
will use f : A → A to define the one and only decision tree that is responsible for tampering all
planes independently. We will also use tilde to denote that the corresponding geometric object is
tampered by the tampering function.

We perform a case analysis on the types of tampering on planes. We classify types of tampering
that can be done into four major groups according to how the decision tree affects the agreement of
two different planes. We give the high level classification here. Then, in the following sections, we
officially define these cases and show that these types of tampering not mauling or are tampering
in an affine way. Let b1 ∼ B1, a, a′ ∼ A(b1), meaning that a, a′ are two 3-affine planes such that
they intersect at a line. Depending on the surface of intersection of ã, ã′, we divide the types of
tampering into four categories.

1. Semi-constant case: This is the case when ã ∩ ã′ ∈ B2. The agreement of the planes
increases after being tampered, which can only mean that f is tampering in a semi-constant
fashion, which is described in section 4.

2. Affine case: This is the case when ã ∩ ã′ ∈ B1, meaning that amount of agreement is the
same after the planes are tampered. We work towards showing that tampering of this type
is actually tampering in an affine fashion in section 5 and we make significant progress.
However, this is the most complex case of this analysis and requires more work as described
in section 6.

3. Random case: This is the case when ã ∩ ã′ ∈ ∅. We conjecture that this is a simple case
and say that this type of tampering is not mauling as querying random planes will not let the
decision tree learn anything about the message.

3For the sake of brevity, we do not describe the test procedure as we will not be using it throughout this work.
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4 Increased Agreement

Notational Setup: Throughout this section, A denotes the set of 3−dimensional planes in Fk,
B2 denotes the set of 2−dimensional planes in Fk, B1 denotes the set of lines in Fk and C denotes
the set of points in Fk. For planes which have more than 3 dimensions in Fk, we use Gi to denote
i-dimensional planes, where i > 3. We slightly abuse notation and use f(a, a′) := a ∩ a′ and
f(a, a′, a′′) := a ∩ a′ ∩ a′′.

Here we analyze the cases where planes that get tampered with the tampering function intersect
more than they intersected before being tampered. We claim that whatever happens in this case,
we always end up in a "semi-constant" tampering situation, where the tampering function has very
low entropy. Towards that end, we prove Lemma 1, restated below in a quantitative form.

Lemma 1 (Restated). Suppose ε is a non-trivial fraction. Suppose f : A→ A is such that

Prb1,b2∼B1

a′∼A(b1,b2)

[
Pra∼A(b1)

a′′∼A(b2)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2

]
≥ ε2/64

]
≥ ε/8,

where (ã, ã′ã′′) = (f(a), f(a′), f(a′′)). Then, one of the following three cases occur:

A ) There exists a fixed p ∈ B2 such that Pra′
[
p ∈ ã′] ≥ ε∗.

B ) There exists a fixed V ∈ G4 and a line ` ⊂ V such that Pra′
[
` ∈ ã′ ∈ V] ≥ ε′′.

C ) There exists a fixed R ∈ G5 and a line t ⊂ R such that Pra′
[
t ∈ ã′ ∈ R] ≥ ε′.

Proof. We begin our proof with a case analysis. We break our initial assumption down into three
cases by categorizing on the relationship between ã and ã′′. Thus, we have with probability greater
than or equal to ε/8 over b1, b2 ∼ B1, a

′ ∼ A(b1, b2):

1. Pra∼A(b1)
a′′∼A(b2)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã = ã′′

]
≥ ε/192

2. Pra∼A(b1)
a′′∼A(b2)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B2

]
≥ ε/192

3. Pra∼A(b1)
a′′∼A(b2)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B1

]
≥ ε/192

We observe that if f is such that it maps two random 3-planes to the same plane, f is a constant
function with good probability, which is not mauling.
We now analyze the second and third cases and show correspondence between these cases and the
cases of the lemma. We start with the second case. By our starting assumption, we have

Prb1,b2∼B1

(a,a′′,a′)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B2

]
≥ ε3/1536,

where a′ ∼ A(b1, b2), a ∼ A(b1), a′′ ∼ A(b2). We further categorize this event into subcases
according to the relationship between f(a, a′) and f(a′, a′′):
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• Prb1,b2∼B1

(a,a′′,a′)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B2&f(a, a′) = f(a′, a′′)

]
≥ ε3/9216

• Prb1,b2∼B1

(a,a′′,a′)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B2&f(a, a′) 6= f(a′, a′′)

]
≥ ε3/3072

We first show the first subcase corresponds to the case A of Lemma 1.

Prb1,b2∼B1

a′∼A(b1,b2)

[
∃a ∼ A(b1), a′′ ∼ A(b2) s.t. ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B2&f(a, a′) = f(a′, a′′)

]
≥ Prb1,b2∼B1

(a,a′′,a′)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B2&f(a, a′) = f(a′, a′′)

]
≥ ε3/9216

We fix p = f(a, a′′) ∈ B2 and immediately see that Prb1,b2∼B1

(a,a′′,a′)

[
∃p ∈ B2 s.t. p ∈ ã′

]
≥ ε3/9216.

Now, we show the second subcase corresponds to case B of Lemma 1.

Prb1,b2∼B1

a′∼A(b1,b2)

[
∃a, a′′ s.t. ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B2&f(a, a′) 6= f(a′, a′′) 6= f(a, a′′)

]
≥ Prb1,b2∼B1

(a,a′′,a′)

[
ã ∩ ã′ ∈ B2&ã′ ∩ ã′′ ∈ B2&ã ∩ ã′′ ∈ B2&f(a, a′) 6= f(a′, a′′) 6= f(a, a′′)

]
≥ ε3/3072

We fix V = span(ã, ã′′), ` = f(a, a′, a′′) and note that since f(a, a′′) ∈ B2, V ∈ G4. Then, we
observe that

` = f(a, a′, a′′) = f(a, a′) ∩ f(a′, a′′)⇒ ` ∈ B1 ⇒ span(f(a, a′), f(a′, a′′)) ∈ A

⇒ ã′ = span(f(a, a′), f(a′, a′′)) ⊂ span(f(a), f(a′′)) = V.

For the first if statement, we used the fact that ` is the intersection of two 2-planes in a 3-plane,
hence a line (because f(a, a′) 6= f(a′, a′′)). Thus, we showed that

Pr(b1,b2,a′)

[
∃V ∈ G4, ` ∈ B1 s.t. ` ⊂ f(a′) ⊂ V

]
≥ ε3/3072.

Lastly, we need to show that the third case corresponds to case C of Lemma 1 to finish the proof.
We observe that the way used to show the correspondence between the second subcase of the
second case and case B of the lemma can also be used to show correspondence between the third
case and case C of the lemma. We fix R = span(ã, ã′′) and t = f(a, a′, a′′). The only detail that is
different is the dimension of R = span(ã, ã′′), which is 5 in this case, instead of 4. Thus, for the
third case, we have Pr(b1,b2,a′)

[
∃R ∈ G5, t ∈ B1 s.t. t ⊂ ã′ ⊂ R

]
≥ ε3/1536.

5 Global Agreement

This section is for showing that the tampering functions which preserve agreement of planes are
tampering in an affine fashion. The proof of this powerful statement has not been completed, yet
significant progress has been made. Here we prove the lemma stated below in a quantitative form
and we move from high error regime to low error regime. We refer the reader to section 6 for an
organized analysis of the remaining work.
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Lemma 2. Suppose ε ≥??4, ν =?? and fix parameters , η =??, δ =??, τ = τ(δ, ε, η, ν), Suppose
f : A→ A, h : C→ C are such that

Pra∼A
c∼C(a)

[
c̃ ∈ ã

]
= 6ε (1)

, and where (ã, c̃) =
(
f(a), h(c)

)
. Then there exists a set A′ ⊂ A of size at least |A′| ≥ 2ε · |A| and

a function g : B→ B such that: Pra∼A′
b∼B(a)

[
b̃ ∈ ã

]
≥ 1− ζ(η, τ, δ),

We begin by introducing the notation and ideas needed to prove Lemma 2 in Section 5.1. The
actual proof appears in Section 5.2, conditioned on two claims which we state in Section 5.1 and
prove in Section 5.3.

5.1 Proof Setup.

Notations. In this section, A denotes the set of 3−dimensional planes in Fk, B2 denotes the set
of 2−dimensional planes in Fk, B1 denotes the set of lines in Fk and C denotes the set of points in
Fk. We will take advantage of the sampling properties of the quadruple A/B2/B1/C.

We say that c is good if the following holds:

1. Pra∼A(c)

[
c̃ ∈ ã

]
≥ 4ε.

2. Ei := Prb∼Bi(c)
a,a′∼A(b)

[
c̃ ∈ ã ∩ ã′ ∈ Bi

]
≥ ε2, for i ∈ {1, 2} .

Local Functions. For c ∈ C, i ∈ {1, 2}, let gc : Bi(c)→ Bi be the randomized function that does
the following on input b ∈ Bi(c): It first draws a, a′ ∼ A(b) and then, it outputs b̃ = ã∩ ã′ if b̃ ∈ Bi

else outputs b̃ ∼ Bi.

Definition 5 (Excellent). Let η =??. We say that c ∈ C is excellent if c is good and the following
holds:

Prb∼Bi(c)
ai,a′i∼A(b) for i=1,2

[
ã1 ∩ ã′1 6= ã2 ∩ ã′2|c̃ ∈ ãi ∩ ã′i ∈ Bi

]
≤ η for i ∈ {1, 2}.

Claim 1. There exists a set C′ ⊂ c such that the following hold: 1) |C′| ≥ ε3|C|; 2) every c ∈ C′ is
excellent; 3)

Prc,c′∼C′

[
Pra∼A(c,c′)

[
c̃, c̃′ ∈ ã

]
≥ ε5

]
≥ 1− σ,

where σ = σ(δ, ε, η, ν).

The Global Function. Let g : B → B be the randomized function where g(b) draws c ∼ C′(b)
and outputs gc(b) The following is also proved in Section 5.3.

Claim 2. We have Prb∼B2
c1,c2∼C′(b)

[
b̃1 = b̃2

]
≥ 1−τ , where τ := 1−

(
4η ·ε−10 +2γ+δ

)
, b̃i = gci(b)

for i ∈ {1, 2}.
4Some parameters cannot be fixed yet as they depend on some future work. We leave them as ??.
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5.2 Proof of Lemma 2

Notational Convention.

Proof. Shorthand B := B2. Let A′ ⊂ A be the set of a ∈ A such that Prb,c,a′
[
c̃ ∈ ã ∩ ã′ ∈ B

]
≥ ε

where b ∼ B(a), c ∼ C′(b), a′ ∼ A(b). We have,

Ea∼A

[
Prb,c,a′

[
c̃ ∈ ã ∩ ã′ ∈ B

]]
≥ Ea∼A,c∼C′(a)

[
Prb∼B(c)

a′∼A(b)

[
c̃ ∈ ã ∩ ã′ ∈ B

]]
− δ

≥ Ec∼C′,a∼A(c)

[
Prb∼B(c)

a′∼A(b)

[
c̃ ∈ ã ∩ ã′ ∈ B

]]
− 2δ

≥ 4ε2 − 2δ ≥ 3ε2

Here, we have used sampling of B(a)/C(a) , A/C and the fact that c ∈ C′ are good. It follows that:
|A′| ≥ 2ε2|A|. Now, we show that the first property holds.

Pra∼A′
b∼B(a)

[
b̃ ∈ ã

]
= Pra∼A′

b∼B(a)
c∼C′(b)

[
b̃ ∈ ã | c̃ ∈ ã

]
≥ Pra∼A′

b∼B(a)
c∼C′(b)

[
b̃ = gc(b) ∈ ã | c̃ ∈ ã

]
≥ Pra∼A′

b∼B(a)
c∼C′(b)

[
gc(b) ∈ ã | c̃ ∈ ã

]
− Pra∼A′

b∼B(a)
c∼C′(b)

[
b̃ 6= gc(b) | c̃ ∈ ã

]
We now bound these two terms. We start with the second term.

Pra∼A′
b∼B(a)
c∼C′(b)

[
b̃ 6= gc(b) | c̃ ∈ ã

]
≤

Pra∼A′
b∼B(a)
c∼C′(b)

[
b̃ 6= gc(b)

]
Pra∼A′

c∼C′(b)

[
c̃ ∈ ã

] ≤ 1

ε
· Pra∼A′

b∼B(a)
c∼C′(b)

[
b̃ 6= gc(b)

]
≤ 1

ε
· Prb∼B

c∼C′(b)

[
b̃ 6= gc(b)

]
+ δ ≤ τ

ε
+ δ.

The second inequality follows from the definition of the set A′, the third inequality follows from
sampling of A/B and the last inequality follows from Claim 2.
Finally, we bound the first term and finish the proof.

Pra∼A′
b∼B(a)
c∼C′(b)

[
gc(b) ∈ ã | c̃ ∈ ã

]
= Pra∼A′

b∼B(a)
c∼C′(b)
a1,a′1∼A(b)

[
ã1 ∩ ã′1 ∈ ã | c̃ ∈ ã&c̃ ∈ ã1 ∩ ã′1 ∈ B

]
= Pra∼A′

b∼B(a)
c∼C′(b)
a1,a′1,a

′∼A(b)

[
ã1 ∩ ã′1 ∈ ã | c̃ ∈ ã ∩ ã′ ∈ B&c̃ ∈ ã1 ∩ ã′1 ∈ B

]
≥ Prc∼C′

b∼B(c)
a,a1,a′1,a

′∼A(b)

[
ã1 ∩ ã′1 ∈ ã | c̃ ∈ ã&c̃ ∈ ã1 ∩ ã′1 ∈ B&ã ∈ A′

]
− δ

≥ Pr (c,b)
(a,a′)

(a1,a′1)

[
ã1 ∩ ã′1 = ã ∩ ã′ | c̃ ∈ ã ∩ ã′&c̃ ∈ ã1 ∩ ã′1 ∈ B&ã ∈ A′

]
− δ

≥ 1− η

2ε2
− δ.
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The first inequality follows from the sampling of A/C, the last inequality follow definition of being
excellent and the fact that |A′| ≥ 2ε2|A|.

5.3 Proving the Claims

Claim 3. Prc∼C
[
c is excellent

]
≥ ε/2.

Proof. Let, C0 ⊂ C be the set of c’s such that Pra∼A(c)

[
c̃ ∈ ã

]
≥ 4ε. From the main assumption it

easily follows that |C0| ≥ 2ε|C|. Now for all c ∈ C0, i ∈ {1, 2}, we have,

Pr b∼Bi(c)
a,a′∼A(b)

[
c̃ ∈ ã ∩ ã′ ∈ Bi

]
≥ Pr b∼Bi(c)

a,a′∼A(b)

[
c̃ ∈ ã ∩ ã′

]
− Pr b∼Bi(c)

a,a′∼A(b)

[
c̃ ∈ ã ∩ ã′ /∈ Bi

]
≥ 16ε2 − Pr b∼Bi(c)

a,a′∼A(b)

[
c̃ ∈ ã ∩ ã′ /∈ Bi

]
where the second inequality follows from the definition of the set C0 and Jensen’s inequality. It
follows that :

Prc∼C0

[
Pr b∼Bi(c)

a,a′∼A(b)

[
c̃ ∈ ã ∩ ã′ ∈ Bi

]
≤ ε2

]
≤ Prc∼C0

[
Pr b∼Bi(c)

a,a′∼A(b)

[
c̃ ∈ ã ∩ ã′ /∈ Bi

]
> ε2

]
≤ Ec∼C0

[
Pr b∼Bi(c)

a,a′∼A(b)

[
c̃ ∈ ã ∩ ã′ /∈ Bi

]]
· ε−2

≤ ν/ε2

For the last two inequalities we have used Markov and entropy assumption(?). Thus, it follows
that

Prc∼C
[
c is good

]
≥ 2ε− 2ν/ε2 ≥ ε.

Finally, we have,

Prc∼C
[
c is excellent

]
≥ Prc∼C

[
c is good

]
−
∑
i=1,2

Prc∼C

[
Pr b∼Bi(c)

ai,a′i∼A(b)

[
ã1 ∩ ã′1 6= ã2 ∩ ã′2|c̃ ∈ ãi ∩ ã′i ∈ Bi

]
> η

∣∣c is good
]

≥ ε−
∑
i=1,2

Prc∼C0

[
Pr b∼Bi(c)

ai,a′i∼A(b)

[
ã1 ∩ ã′1 6= ã2 ∩ ã′2 & c̃ ∈ ãi ∩ ã′i ∈ Bi

]
> η · ε2

]
≥ ε−

∑
i=1,2

Ec∼C0

[
Pr b∼Bi(c)

ai,a′i∼A(b)

[
ã1 ∩ ã′1 6= ã2 ∩ ã′2 & c̃ ∈ ãi ∩ ã′i ∈ Bi

]]
· (ηε2)−1 ≥ ε/2

For the second inequality we use the fact that c is a good point. For the last inequality we use
Markov and entropy assumption(?).
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Claim 1 (Restated). There exists a set C′ ⊂ c such that the following hold: 1) |C′| ≥ ε3|C|; 2)
every c ∈ C′ is excellent; 3)

Prc1,c2∼C′

[
Pra∼A(c1,c2)

[
c̃1, c̃2 ∈ ã

]
≥ ε5

]
≥ 1− σ.

where σ = 2δ · ε−6 + 4(η + ν) · ε−12

Proof. By Claim 3, it suffices to construct a large subset of C′o :=, the set of excellent points, such
that the third property holds. For this purpose, we equip C′0 with a graph structure: c1, c2 ∈ C′0
are adjacent if q(c1, c2) := Pra∼A(c1,c2)

[
c̃1, c̃2 ∈ ã

]
≥ ε2. Our final set will be the neighborhood,

N(c) := {c ∈ C′0 : q(c, c′) ≥ ε2} of some c′ ∈ C′0. In order for this to work, c′ should satisfy:
1) |N(c′)| must be large; 2) Prc1,c2∼N(c′)

[
q(c1, c2) < ε5

]
must be small. We show there exists such

c′ ∈ C′0. Specifically, we prove

1. Ec,c′∼C′
0

[
q(c, c′)

]
≥ 3ε2; and

2. Pr c′∼C′
0

c,c′′∼N(c′)

[
q(c1, c2) ≥ ε5 | |N(c′)| > ε3|C|

]
≥ 1− σ.

It follows from the first point that Prc′∼C′
0

[
|N(c′)| ≥ ε3|c|

]
> ε2 (using |C′0| ≥ ε|c|). Thus,

the two points together guarantee the existence of some c′ ∈ C′0 such that |N(c′)| ≥ ε3|c| and
Prc,c′′∼N(c′)

[
q(c, c′′) ≥ ε5

]
≥ 1− σ. Setting c′ = N(c′) for such a c′ ∈ C′0 completes the proof. So

it remains to establish the above two bounds.

E
c,c′∼C′

0

[
q(c, c′)

]
≥ E

a∼A

[
Prc∼C′

0(a)

[
c̃ ∈ ã

]2]− δ ≥ E
a∼A

[
Prc∼C′

0(a)

[
c̃ ∈ ã

]]2

− δ

≥ E
c∼C′

0

[
µc

]2 − 3δ ≥ 16ε2 − 3δ ≥ 3ε2.

We have used the sampling of A
/

C2, Jensen’s inequality, the sampling of A
/

C, and the fact that
µc ≥ 4ε for all c ∈ C′0. Now, we show the second bound. Towards that end, we fix c ∼ C′0, c1, c2 ∼
N(c) (by fixing these, we fix bi ∈ B1, for i=1, 2 such that bi is the line containing the points (c, ci))
and define four quantities, shorthanded as val1, val2, val3, val4;

• val1 := |Pra∼A(c1,c2)

[
c̃1, c̃2 ∈ ã

]
− Pra∼A(c,c1,c2)

[
c̃1, c̃2 ∈ ã

]
|;

• val2 := |Pra∼A(c)

[
c̃ ∈ ã

]
− Pra∼A(c,c1,c2)

[
c̃ ∈ ã

]
|;

• val3 :=
∑2

i=1 Prai,a′i∼A(bi)

[
c̃ ∈ ãi ∩ ã′i & ãi ∩ ã′i 6= b̃i

]
• val4 :=

∑2
i=1 Pr a∼A(c1,c2,c)

ai∼A(bi)

[
c̃ ∈ ã ∩ ãi & ãi ∩ ã 6= b̃i

]
Where b̃i = gc(bi). We show that each vali is very small with very high probability over (c, c1, c2).
These bounds will be used in the computation which follows.

Pr(c,c1,c2)

[
val1 > δ

]
≤ ε−3 · max

c1,c2∈C

{
Prc∼C

[∣∣∣Ea′∼A(c,c1,c2)

[
f1(a′)

]
− Ea′∼A(c1,c2)

[
f1(a′)

]∣∣∣ > δ

]}
,
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where f1(a′) = 1 if c̃1, c̃2 ∈ ã′, 0 otherwise. Thus, Pr(c,c1,c2)

[
val1 > δ

]
≤ δ/ε3, by the sampling

of A(c1, c2)/C for all c1, c2 ∈ C. Similarly, Pr(c,c1,c2)

[
val2 > δ

]
≤ δ/ε6, follows from the same

reasoning using the sampling of A(c)/C2 and the function f2(a′) = 1 if c̃ ∈ ã′.
Now, we bound val3 and val4. For val3, we have

Prc,c1,c2
[
val3 > ε6

]
≤ ε−6 · Ec,c1,c2

[
2 · Pra1,a′1∼A(b1)

[
c̃ ∈ ã1 ∩ ã′1 & ã1 ∩ ã′1 6= b̃1

]]
≤ 2ε−12 · E c∼C′

0
b1∼B1(c)

[
Pra1,a′1∼A(b1)

[
c̃ ∈ ã1 ∩ ã′1 & ã1 ∩ ã′1 6= b̃1

]]
≤ 2ε−12 ·

(
Pr c,b1

a1,a′1

[
ã1 ∩ ã′1 6= b̃1|c̃ ∈ ã1 ∩ ã′1 ∈ B1

]
+ Pr c,b1

a1,a′1

[
c̃ ∈ ã1 ∩ ã′1 /∈ B1

])
≤ 2ε−12 · (η + ν)

Where the second last probability is over c ∼ C′0, b1 ∼ B1(c), a1, a
′
1 ∼ A(b1). The argument for

val4 works identically as above. Now, we have:

q(c1, c2) ≥ Pra∼A(c,c1,c2)

[
c̃1, c̃2 ∈ ã

]
− val1

≥ Pr a∼A(c,c1,c2)
ai,a′i∼A(bi), i=1,2

[
c̃, c̃i ∈ ãi ∩ ã′i & ãi ∩ ã′i = gc(bi) & ã ∩ ãi = gc(bi) & c̃ ∈ ã

]
− val1

≥ Pr a∼A(c,c1,c2)
ai,a′i∼A(bi), i=1,2

[
c̃ ∈ ã & c̃, c̃i ∈ ãi ∩ ã′i

]
− (val3 + val4 + val1)

≥ Pra∼A(c,c1c2)

[
c̃ ∈ ã

]
·
(

Pra1,a′1∼A(c,c1)

[
c̃, c̃1 ∈ ã1 ∩ ã′1

])2

− (val3 + val4 + val1)

≥ 4ε5 − (val1 + val2 + val3 + val4)

The result follows:

Pr c′∼C′
0

c,c′′∼N(c′)

[
q(c, c′′) ≥ ε5 | |N(c′)| > ε3|C|

]
≥ Prc0,c1,c2

[
val1 + val2 + val3 + val4 ≤ 3ε5

]
≥ 1− σ.

Claim 2 (Restated). Let C′ be the set as in claim 1. We have, Pr b∼B2
c1,c2∼C′(b)

[
b̃1 = b̃2

]
≥ 1 − τ ,

where τ := 1−
(

4η · ε−10 + 2γ + δ
)

.

Proof. We will use B to denote B2. For any c1, c2, the event E holds if:

Prb∼B2(c1,c2)

[
Pra,a′∼A(b)

[
c̃1, c̃2 ∈ ã ∩ ã′ ∈ B2

]
≥ ε10

]
≥ 1− γ

. Now, we have,

Pr b∼B
c1,c2∼C′(b)

[
b̃1 = b̃2

]
≥ Prc1,c2∼C′

b∼B(c,c′)

[
b̃1 = b̃2

]
− δ ≥ Prc1,c2∼C′

[
E
]
· Prc1,c2∼C′

b∼B(c,c′)

[
b̃1 = b̃2

∣∣E]− δ
≥ Ec1,c2∼C′

[
Prb∼B(c,c′)

[
b̃1 = b̃2

]∣∣∣E]− γ − δ
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The first inequality follows from sampling of C2/B. The last inequality follows from fact 2. We
bound the inner probability of the first term above. For any c1, c2 such that E holds we have,

Prb∼B(c1,c2)

[
b̃1 = b̃2

]
≥ Prb∼B(c1,c2)

[
∃a, a′ ∼ A(b) s.t. b̃1 = ã ∩ ã′ = b̃2 & c1, c2 ∈ ã ∩ ã′

]
≥ Prb∼B(c1,c2)

a,a′∼A(b)

[
b̃1 = ã ∩ ã′ = b̃2

∣∣c1, c2 ∈ ã ∩ ã′ ∈ B2

]
− γ

≥ 1− (val1 + val2 + γ).

where vali := Prb,a,a′
[
b̃i 6= ã ∩ ã′ | c1, c2 ∈ ã ∩ ã′ ∈ B2

]
for i = 1, 2. In the second line, we

have used the fact that event E holds. We finish by bounding the terms val1; bounding val2 works
identically. We have,

val1 ≤
Pr b∼B(c1,c2)

a,a′∼A(b)

[
b̃1 6= ã ∩ ã′ | c1 ∈ ã ∩ ã′ ∈ B2

]
Pr b∼B(c1,c2)

a,a′∼A(b)

[
c̃1, c̃2 ∈ ã ∩ ã′ ∈ B2

] ≤ η

ε10 · (1− γ)
≤ 2η · ε−10

The last inequality follows from the excellence of c1 and fact 2. The claims then follows.

Fact 2. If C′ ⊂ C be the set such that: Prc1,c2∼C′

[
Pra∼A(c1,c2)

[
c̃1, c̃2 ∈ ã

]
≥ 3ε5

]
≥ 1− σ, then we

have

Prc1,c2∼C′

[
Prb∼B2(c1,c2)

[
Pra,a′∼A(b)

[
c̃1, c̃2 ∈ ã ∩ ã′ ∈ B2

]
≥ ε10

]
≥ 1− γ

]
≥ 1− γ

Where γ = max{δ +
√

(δ + ν) · ε−10, σ +
√

(δ + ν) · ε−10}

Proof. We will use B to denote B2. For c1, c2 ∈ C′, let A′ ⊂ A(c1, c2) be set of a ∈ A(c1, c2) such
that c̃1, c̃2 ∈ ã. From sampling of A(c1, c2)/B(c1, c2), we have,

Prb∼B(c1,c2)

[∣∣∣Pra∼A(b)

[
ã ∈ A′

]
− Pra∼A(c1,c2)

[
ã ∈ A′

]∣∣∣ > δ

]
≤ δ

It follows that: Prc1,c2∼C′

[
Prb∼B(c1,c2)

[
Pra,a′∼A(b)

[
c̃1, c̃2 ∈ ã∩ ã′

]
≥ 4ε10

]
≥ 1−δ

]
≥ 1−σ. Now,

Prc1,c2,b

[
Pra,a′

[
c̃1, c̃2 ∈ ã ∩ ã′ /∈ B

]
> ε10

]
≤ Ec1,c2,b

[
Pra,a′

[
c̃1, c̃2 ∈ ã ∩ ã′ /∈ B

]]
· ε−10

≤
(
E c1∼C′

b∼B(c1)

[
Pra,a′∼A(b)

[
c̃1, c̃2 ∈ ã ∩ ã′ /∈ B

]]
+ δ
)
· ε−10

≤ (δ + ν) · (ε−10)

The second line uses Markov and sampling of C/B. The last inequality follows from the Entropy
assumption(?). It follows,

Prc1,c2∼C′

[
Prb∼B(c1,c2)

[
Pra,a′∼A(b)

[
c̃1, c̃2 ∈ ã ∩ ã′ ∈ B

]
≥ ε10

]
≥ 1− γ

]
≥ 1− γ

Where γ = max{δ +
√

(δ + ν) · ε−10, σ +
√

(δ + ν) · ε−10}
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6 Future Work

In this section, we describe the remaining parts of our conjecture.

6.1 The entropy assumption from section 5

Throughout section 5, we assume that the function h : C → C possesses significant entropy and
use this assumption multiple times in our proofs. Formally, the assumption is:[

Pr b∼B1
a,a′∼A(b)

c∼C

[
c̃ ∈ ã ∩ ã′ /∈ Bi

]]
≤ ν

The reason why we believe that this assumption holds is the following. We first fix a, a′, thus also
fix ã, ã′. We then draw c, thus fix c̃, which is a random point that is not any way related to ã or ã′. In
addition, since ã and ã′ are affine planes, they can agree on at most point if they do not agree on a
bigger surface. Thus, ã and ã′ intersect a point and not at a line5, the probability that the randomly
picked c̃ being that point of intersection is O(|F|).

6.2 Show linearity in section 5

So far, we have showed that if incidence preserving property holds with non-trivial probability,
namely Pra∼A

c∼C(a)

[
c̃ ∈ ã

]
= 6ε, there is a non-trivial subset of 3-planes where this incidence pre-

serving property holds with very high probability. This is not enough to show that the tampering
functions that keep the amount of agreement the same are affine. We plan to use a form of funda-
mental theorem of projective geometry, which is defined and proved in [NR20], which basically
states that if a function preserves incidences with high probability, then the function acts in a linear
fashion. 6

6.3 Finishing the proof

Even though we strongly believe that constant and random cases are not mauling, we still have
to show that this is the case formally. We also might want to prove a master theorem that shows
equivalence between tests consisting of planes of different sizes. For example, we want to show
equivalence between situations where a, a′ ∈ A, a ∩ a′ ∈ B1&ã ∩ ã′ ∈ B2 and a, a′ ∈ B2, a ∩ a′ ∈
C&ã ∩ ã′ ∈ B1, and categorize both of this situations as increased agreement. This way, it would
be easier for us connect different parts of our proof.

6.4 Dealing with tampering of polynomials

So far, we have not considered the case where polynomials get tampered and we focused only
on tampering of planes. However, we are optimistic the functions that tamper with the planes

5Any bigger surface is not considered since we are in the case where tampering functions keep agreement the same
6Going from linear to affine is trivial, so we use those terms interchangeably.



15

are independent of the polynomials and the job we have done so far about tampering of planes is
legitimate. But we still need to work on the cases where polynomials get tampered. We are again
optimistic about dealing with cases about tampering of polynomials because polynomials are more
powerful objects compared to planes and we believe that it will be easier to deal with the tampering
of them.

6.5 Using a locking scheme to improve security

The code (or the type of codes) given in section 3 is not non-malleable against decision trees
because the decision trees can choose to query a plane going through the origin (and the corre-
sponding 3-variate polynomial) and recover the message. But if decision trees are given random
access to the codeword, then decision trees learn nothing about the underlying message, except
with probability O(|F|−1), which is the probability of that random plane going through the origin.
Towards this end, [KPT97] describes a method to randomize the access patterns to the code by
composing it with an outer code, called a locking scheme. Using the locking scheme, we "lock"
each symbol of the code so that if the "key" is known, the underlying symbol can be recovered
with a few queries and if the key is not known, the underlying symbol cannot be obtained from
the locked symbol. If we combine this type of locking scheme with a random permutations π of
planes A, namely if the decision tree asks to query the polynomial at location a, it receives instead
the key for the symbol π(a).

6.6 Designing an improved locking scheme

The locking scheme described in the previous section is sufficient for proving zero-knowledge.
However, non-malleability is a stronger notion than zero-knowledge. Thus, we will have to design
a new locking scheme that is suitable for our needs. We expect to be able to design the locking
scheme by directly modifying [KPT97]’s locking scheme. If that does not work, we might use
techniques from the area of non-malleable commitments [DDN, GRRV14, GPR16].

6.7 Showing non-malleability against decision trees

In this section, we give the big picture of what we have done so far and what we plan to do. So
far, we have categorized the tampering of planes and finished working on one of the cases, which
is the case when tampering increases agreement of planes. We also have accomplished significant
amount of work on the hardest case, which is the one where agreement stays the same after tam-
pering, and reduced that problem to basically fundamental theorem of projective geometry. We
also have some intuition about the remaining two cases.
We first need to finish the proof of plane tampering case analysis by proving the remaining parts.
We still need to deal with possible polynomial tampering but we believe that it is going to be sim-
pler than plane tampering as polynomials are stronger objects. We also need to come up with a
locking scheme that is tailored to our needs. Finally, we will compose these codes together and we
will get a locally testable non-malleable code against decision trees with depth d ≥ n1/4−o(1),
which is better than the current state-of-the-art for non-malleable codes against decision trees
[BGW19].
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7 Discussion

We believe that there is either a direct connection between decision tree tampering and split-state
tampering or we can use the methods we used to get locally testable non-malleable codes against
decision trees to get constant-rate split-state non-malleable codes. The reason for our optimism
is because our construction is a fresh perspective on split-state non-malleable codes that use low-
degree polynomials and linearity tests instead of randomness extractors, which are functions which
convert a non-uniform source of randomness that possesses a certain amount of entropy into a
random variable. The methods that use randomness extractors for constructing split-state non-
malleable codes put a restriction on the tampering functions: they cannot possess a lot of entropy.
It is proven in [RR19] that a tampering function that tampers with the type of code in section
3 in a coordinate-wise fashion is actually tampering in an affine fashion. This is a much stronger
restriction than the restriction imposed by not possessing a lot of entropy. Non-malleability against
decision tree tampering is one step further down this road and we believe that if we can achieve
non-malleability against decision trees, it will lead us to construct constant-rate split state non-
malleable codes. Moreover, we believe that it will also give us a new construction, called non-
malleable PCPs by using a known connection between locally testable codes and PCPs. We will
further explore this path and possible applications of this new concept.
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