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ABSTRACT
Data sources, such as social media, mobile apps and IoT sensors,

generate billions of records each day. Keeping up with this influx

of data while providing useful analytics to the users is a major

challenge for today’s data-intensive systems. A popular solution

that allows such systems to handle rapidly incoming data is to rely

on log-structured merge (LSM) storage models. LSM-based systems

provide a tunable trade-off between ingesting vast amounts of data

at a high rate and running efficient analytical queries on top of that

data. For queries, it is well-known that the query processing perfor-

mance largely depends on the ability to generate efficient execution

plans. Previous research showed that OLAP query workloads rely

on having small, yet precise, statistical summaries of the underlying

data, which can drive the cost-based query optimization.

In this paper we address the problem of computing data statistics

for workloads with rapid data ingestion and propose a lightweight

statistics-collection framework that exploits the properties of LSM

storage. Our approach is designed to piggyback on the events (flush

and merge) of the LSM lifecycle. This allows us to easily create an

initial statistics and then keep them in sync with rapidly changing

data while minimizing the overhead to the existing system.We have

implemented and adapted well-known algorithms to produce vari-

ous types of statistical synopses, including equi-width histograms,

equi-height histograms, and wavelets. We performed an in-depth

empirical evaluation that considers both the cardinality estimation

accuracy and runtime overheads of collecting and using statistics.

The experiments were conducted by prototyping our approach on

top of Apache AsterixDB, an open source Big Data management

system that has an entirely LSM-based storage backend.
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1 INTRODUCTION
The sheer number of data sources producing data at ever-increasing

volumes creates an unprecedented challenge for modern analytical

data-processing systems. The problem is exacerbated by the high

rate at which producers generate new records. Such systems often

seek an engineering trade-off between their abilities to ingest large

amounts of rapidly incoming data and running complex analytical

queries on top of it. A popular design that has gained popularity

in recent years, addresses this challenge by using log-structured

merge trees (LSM-trees) [40] as a storage backend. Initially adopted

by NoSQL systems [3, 4, 7, 22] LSM-trees later appeared in a new

generation of relational database systems [5, 8]. In the LSM model,

ingested records are batched in memory into components, amortiz-

ing the cost of a single insert. Whenever a memory buffer fills up

the batch gets persisted (f lushed) to the disk at once, requiring only
one sequential I/O operation. Flushed components are immutable

and their number keeps growing until the system triggers amerдe
operation that consolidates multiple components into a single file

and reconciles deleted and updated entries; this in turn decreases

the amount of I/O needed to perform a lookup query.

Reducing the number of I/Os is not the only technique that im-

proves query performance. Numerous research works have shown

that in OLAP setups, the quality of execution plans plays a much

bigger role in decreasing the total execution time. The ability to

pick a plan with a smaller runtime overhead by estimating the

intermediate result cardinality and feeding it to a cost model is a

discriminative characteristic of a good query optimizer. However,

recent research [37] showed that correct cardinality estimation

provides substantial benefits in comparison to fine-tuned optimizer

cost models. Thus in this paper we concentrate on building statisti-

cal data summaries, known as data synopses, which are compressed,

yet accurate, representations of the underlying data distributions.

Despite the rapid growth in data volumes, the approaches to

collect statistical synopses have not significantly changed over the

past decades. The common way to obtain data synopses in most

commercial DBMSs, as well as research prototypes, is to launch

a background job that will rescan all disk-resident datasets and

produce appropriate data summaries. However this naïve approach

has multiple drawbacks. Firstly, it suffers from the high I/O intro-

duced by repeated data scanning. This overhead is further exacer-

bated by the data volume in Big Data analytics systems. Moreover,

scheduling such heavy-weight bulk operations becomes a prob-

lem itself because it could easily detract from the performance of

currently executing user queries. This is especially perceptible in

the context of multi-tenant elastic cloud deployments where such

“noisy-neighbor” might cause significant spikes in query latency.

The problem of prohibitive I/O costs is often solved by sampling,

which considers only a portion of records from each disk page and

skips some pages altogether. Once obtained, samples could be used

as a data summary on their own [29], or serve as inputs to regular
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synopsis-building algorithms [24]. Nevertheless, the accuracy of

sampling-based methods is bounded by the fact that they do not

see all the records and could miss important items that “fly under

the radar” for a given query predicate. Sophisticated stratified es-

timators have been proposed to overcome the problem of biased

sampling [25, 33], but they heavily depend on the ability to iden-

tify appropriate stratas in the whole dataset, which often relies

on knowing the query workload profiles. Moreover in LSM-based

systems collecting the sample is further exacerbated by the fact that

physical records in the sample might not represent the most recent

version of a corresponding logical record. Despite the considerable

progress in calculating samples in partitioned distributed systems

[18, 28] we are not aware of algorithms which allow unbiased esti-

mates to be obtained in an LSM setting where deleted and inserted

records can appear in any component.

Regardless of the use of sampling, data synopses produced by an

offline statistics computation can pretty quickly grow out-of-date,

especially for continuous ingestion workloads. An ideal solution

would require an incremental synopsis maintenance in combina-

tion with identifying which records were updated since the last

time statistics were collected. Unfortunately, such synopsis mainte-

nance algorithms inevitably introduce errors that over time lead to

decreasing accuracy and require periodically recalculating statis-

tics from scratch depending on some heuristic. Designing a robust

policy that specifies when such a recomputation should take place

is on its own a difficult problem [29].

In this paper, we propose a lightweight approach for collecting

statistics in data-intensive systems that does not suffer from the

aforementioned problems. Our solution is based on the LSM storage

model and avoids doing unnecessary I/O operations by computing

synopses on-the-fly. The nature of the LSM component lifecycle

implies that at some point in time each record is an input to some

LSM-event (flush, merge). Because the data summary generation is

bound to these events, our statistics collection algorithms observe

all of the data items, in contrast to sampling-based methods. Finally,

in the LSM storage model new data is periodically persisted by

flushing contents of in-memory components to the disk. This allows

our synopsis-gathering algorithms to keep statistics up-to-date with

dynamically changing datasets. Furthermore, this piggybacking

also eliminates the need for a specific mechanism to identify newly

updated records.

The proposed statistics collection framework operates on the

data storage critical path; hence building the data summary with

a low runtime overhead is an essential property. This would ef-

fectively eliminate synopses-collecting algorithms with high as-

ymptotic complexity (like V-optimal histograms [35]). Instead, in

this paper we generate synopses only on indexed (primary or sec-

ondary) attributes, and hence use the sorted order imposed by the

indexes to devise efficient synopsis-gathering algorithms. We leave

calculating statistics for unsorted attributes within this framework

as future work.

Since the statistics are generated for each LSM component in-

dividually, all component synopses must be queried to obtain the

overall cardinality estimate. For a large number of components

this might incur significant query time overhead. An alternative is

to combine individual synopses into a single statistical summary

that is kept in addition to the individual synopses. An incoming

query will be served by the merged synopsis; the merge synopsis

is re-calculated from the individual ones as new components are

flushed or existing components are merged. This however requires

the synopsis data structure to be inherently mergeable. Synopsis
mergeability is also critical in shared-nothing setups where datasets

are partitioned across distributed nodes in a cluster. Among the im-

plemented statistical synopses, equi-width histograms and wavelets

support merging while equi-height histograms do not. We show

experimentally how the synopsis mergeability property directly

influences the trade-offs in accuracy, query time overhead, and

space allocated to the synopses.

We prototyped and evaluated our design on Apache AsterixDB

[2], an open source system that uses the LSM-based storage [12].

Currently, AsterixDB relies on a heuristic-based optimizer, so in-

troducing statistics into that system could be the first step towards

building a full-fledged cost-based optimizer. Our main contributions

can be summarized as:

• We propose a lightweight statistics collection approach that

alleviates the high cost of building synopses on disk-resident

data by incorporating the statistics accumulation into the

common LSM-based database storage layer lifecycle events.

• We implement streaming algorithms for building equi-width

and equi-height histograms and introduce a streaming ver-

sion of the prefix-sum wavelet decomposition algorithm.

• We prototype our solution on top of Apache AsterixDB, a

full open source Big Data management system, and carefully

assess the overheads introduced by the proposed framework,

both while collecting statistics during ingestion and when

using them during query optimization.

• Through extensive experimental evaluation, we examine

the accuracy of cardinality estimation for different types of

synopses, parameters, and workloads.

• We explore how synopsis mergeability influences the trade-

offs between accuracy, query time overhead, and space allo-

cated for synopses.

The remainder of the paper is structured as follows: Section

2 discusses related work and emphasizes how our approach is

different from earlier research. Section 3 outlines the design of our

statistics collection framework. Section 4 presents the experimental

evaluation of the proposed methods. Finally, Section 5 provides our

conclusions and discusses our plans for future work.

2 RELATEDWORK
Determining query cardinality is a classic problem in relational

database systems. The seminal work on query optimization [43] de-

scribes how statistics can be used by the optimizer to calculate the

predicate selectivity, which, in turn, allows an optimizer to infer the

total query cardinality and choose an appropriate execution plan.

In contrast to the query optimization problem, where statistical

synopses are only used as an auxiliary structure, approximate query
processing (AQP) systems [10, 11, 42] are using data summaries as

a primary data source to provide approximate answers to ad-hoc

exploratory queries. Cormode et al. [26] thoroughly surveys cardi-

nality estimation methods and their application to the problems of

query optimization and approximate query processing.



While calculating cardinality estimates, early systems made a

number of assumptions (e.g., data uniformity, attribute indepen-

dence) that were introduced to simplify the cost models. These

strong assumptions, however, often led to approximation errors.

Ioannidis et al. [34] showed that even slight estimation errors may

lead to severe (several orders of magnitude) performance degrada-

tion, thus emphasizing the importance of estimation accuracy.

Poosala et al. [41] studied various types of histograms and pro-

vided a taxonomy and evaluation framework for different types

of histogram-based synopses. They identified that the V-optimal

and MaxDiff histograms provide superior accuracy compared to

canonical equi-width or equi-height synopses. However, the in-

creased accuracy comes at a price. The algorithms creating these

more specialized histograms either are based on dynamic program-

ming (V-optimal), hence have increased time complexity, or require

multiple passes over the sorted data (MaxDiff), which can not be

achieved in a streaming environment.

Matias et al. [38] proposed the first work that used wavelet-based

synopsis for query cardinality estimation. Their approach relied

on performing a wavelet decomposition over the input dataset and

choosing the most significant coefficients to form a wavelet syn-

opsis. Wavelet-based methods demonstrated substantial accuracy

improvements while having other significant advantages over his-

tograms like alleviating the curse of dimensionality and allowing

for synopsis mergeability. Wavelets have been also successfully ap-

plied in dynamic synopsis maintenance [39], computing statistics

over data streams [27] and approximate query processing [21].

Arguably the most popular approach to AQP is to sample the

input data. Sampling is very robust and applies to a wide variety of

queries. An approximate answer is obtained by applying a specifi-

cally designed estimator that evaluates the query over a sample and

“scales up” the result in an unbiased manner to return a final answer.

The simplest way of producing a uniform sample is a sequential

scan, which has prohibitively large I/O. Alternatively one can pick

only a subset of disk pages and then perform page-level sampling

within those. This design needs careful tuning between keeping a

sample uniform and the amount of random I/O required to produce

it [24]. Gibbons et al.[29] proposed a way to maintain a sample for

a dynamically evolving (in time) dataset. However, this mechanism

requires allocating additional memory for a backing sample, which

builds up memory pressure on local nodes that must simultane-

ously perform memory-intensive processing. Brown and Haas [18]

introduced a sampling algorithm that can obtain samples in a par-

titioned environment, whereas Gemulla et al. [28] generalized it

to process streams with insertions and deletions. However both of

these approaches consider the case when partitions contain records

with non-overlapping keys, which does not hold for systems based

on the LSM storage abstraction. To the best of our knowledge there

is no algorithm which solves the problem of producing unbiased

samples in a setting similar to LSM storage.

Traditionally, databases rely on DBAs to manually launch a

special RUN ANALYZE job that collects statistical data summaries.

This approach remains still popular in various Big Data analytics

systems, including Impala [17], HAWQ [23] and Hive [47]. Since

these systems are targeting OLAP workloads, which tend to read

all or a large part of the data, their statistics collection is based

on sequential scanning and producing histogram-based synopses.

On the other hand, systems that focus on a broader sets of use

cases tend to rely on sampling and choose uniform samples as

a statistical data summary [20, 36]. Some warehousing systems

provide optimizations on top of their regular statistics-gathering

method, such as automatically triggering the recomputation of

statistics [6] or skipping recomputation if a non-significant number

of records were modified [1]. To the best of our knowledge, there are

no systems which are using the specific properties of LSM storage

to do any kind of statistics computation.

An alternative, self-tuning workload-based approach that does

not involve I/O operations to create a statistical summary has been

followed by [9, 19, 44, 45]. These methods are based on analyzing

the result cardinality of a given query workload and building his-

tograms that rely solely on that feedback information. Histograms

are consecutively refined as more queries are issued against a par-

ticular range of the dataset. While this approach introduces a low-

overhead way of computing histograms, it heavily depends on the

properties of the query workload and makes strong uniformity

assumptions about “unexplored” ranges of the dataset.

The idea of using indexes for creating statistical synopses was

first introduced by Barbara et al. [16] and is based on the observa-

tion that the upper levels of balanced indexes like B-Trees produce

a bucketization of the value domain, thus essentially creating a

hierarchical equi-height histogram. However, it was noted [14] that

adopting an index for selectivity estimation would require storing

additional entries in the index nodes. From a software engineering

perspective, decoupling the synopsis data structure from the infor-

mation stored in index pages allows statistics to be easily serialized

and transported to a place where they can be consumed, which

in a shared-nothing cluster-based environment is often a remote

machine.

To summarize, our distinction from the related work lies in

the fact that we are re-using the already-existing LSM dataflow

to collect statistical summaries instead of building a separate I/O-

intensive statistics collection pipeline. This allows us to cut back on

additional I/O operations, yet without relying on a query workload

as is typical in self-tuning approaches. However, this design restricts

us to use only linear-time synopsis-collecting algorithms. We imple-

mented histogram-based synopses and wavelets, but choose not to

use sampling-based summaries because of the high memory costs

associated with maintaining samples. Although our approach is

based on using indexes, we are not altering their data structures, but

are instead keeping synopses separate to mitigate the distributed

workflow of collecting, storing, and consuming statistics.

3 AN LSM-BASED STATISTICS COLLECTION
FRAMEWORK

We proceed with the design of the statistics collection framework.

The main idea behind this design is to compute statistical synopses

on-the-fly, piggybacking on the events of the LSM-framework. In

our framework, statistics are always in sync with the underlying

data because their computation is an ongoing part of the storage

lifecycle.While doing this we ignore the statistics on the in-memory

component because its size is relatively small with respect to an



overall persisted dataset. Eliminating the need for statistics recom-

putation also lifts the burden of determining statistics staleness and

creates an “always on” user experience.

An overview of the LSM storage model appears in Appendix A.

In our prototype implementation we adopted Apache AsterixDB

since it uses the LSM model for storing both its main records as

well as secondary indexes [13]. Its LSM-framework is created as a

layer around the conventional implementations of various indexes,

and thus provides a unified LSM-ified abstraction for all index types

supported by the system (B-Tree, R-Tree and inverted indexes).

3.1 Local statistics collection
In order to achieve on-the-fly statistics-gathering, our approach

should incur low overhead during data ingestion. The time complex-

ity of synopsis-building algorithms is often dominated by sorting

the records on attributes for which the statistics are to be com-

puted. Given a tight latency budget, we restrict ourselves to only

building synopses on primary keys (PK) or on secondary keys (SK)

of index components. Disk operations in the LSM-framework can

be generalized by a single bulkload() routine [13] that receives a
stream of records R = r1, ..., rn ordered by ⟨PK⟩ in case of primary

index components, or pairs ⟨SK , PK⟩ for secondary index compo-

nents. We define our synopsis-computing algorithm as a function

S(R) that computes a statistical summary of the aforementioned

stream of records. While algorithms that compute comparison-

based synopses (i.e. histograms) can operate on any totally ordered

record stream, approaches based on hierarchical transformations

(i.e. wavelets) require stream entries to be drawn from a fixed-size

universewhose size is a power of 2. To provide a common ground for

various synopsis-building algorithms we define the function S only

over arguments of fixed-length integer numeric types (int8, int16,

int32 and int64) supported by the AsterixDB data model [12]. Note

that any value from a fixed-length domain could be padded with

0’s to the length of the nearest power of 2, while variable-length

types, e.g. strings, can leverage dictionary-encoding to reduce them

to the former problem.

To validate our framework, in this paper we concentrate on one-

dimensional synopses, thus calculating statistics only on B-Tree

indexes with non-composite keys. However, all of the synopses-

constructing algorithms that we implement potentially could be

extended to multiple dimensions [49, 50]; we leave computing sta-

tistics on composite keys and spatial data as future work.

3.2 Streaming synopsis-building algorithms
In the context of this paper we describe implementations of the

following synopses:

• Equi-width histograms

• Equi-height (aka equi-depth) histograms

• Wavelets

The construction algorithms each produce a synopsis with a prede-

fined number of elements (bucket/coefficient budget) that is speci-

fied in the system’s configuration file. An individual synopsis ele-

ment is a single bucket, defined by its right border and the number

of records that fell into that bucket, for histograms; it is a normal-

ized wavelet decomposition coefficient, defined by the index in the

error tree and its value, for wavelet-based synopsis. In both cases

a synopsis element occupies the same amount of space, so we can

directly and fairly compare the storage cost for different synopsis

types.

The algorithm for creating an equi-width histogram is straight-

forward: first we calculate the histogram invariant — bucket width,

depending of the total bucket budget and domain size of the indexed

field. After that buckets can be populated left-to-right as the records

are received from the sorted input stream. Building an equi-height

histogram is done in a similar manner, but with the exception that

it is parameterized with the total number of records in the input

stream to calculate its invariant — bucket height. In case of the

LSM-flush operations, the total number can be easily obtained by

keeping a counter for the records in the flushing component; for

LSM-merge it is composed of the number of records in the merged

components, while a bulkload receives this information from a sort

operator at the bottom of the execution plan.

Unlike the trivial algorithms which compute histogram-based

synopses, producing a wavelet requires to perform awavelet decom-

position on the input data. This algorithm is well-known – and is

primarily used in signal and image processing. The interested reader

can find a detailed example of the wavelet decomposition process

in Appendix B. The classical version of this algorithm requires allo-

cating large arrays containing partial results of the decomposition

process. This overhead is often neglected when wavelets are used

for image or signal processing, as the maximum resolution of the

images or signals is on the order of thousands. In contrast, when

used for tuple frequency estimation for a large domain, e.g., 64-bit

wide integers, this approach will quickly run into space problems.

On top of that, in cardinality estimation the input frequency signal

is often sparse, so the allocated arrays will largely consist of zeros;

this results in wasted CPU-cycles during the decomposition pro-

cess. Both of these issues presented an opportunity to optimize the

computation of wavelet decomposition in our setting.

To avoid sparsity in the incoming data, instead of using “raw” tu-

ple frequencies we compute on-the-fly prefix sum of the input signal

(i.e. convert it to a one-dimensional datacube [48]). Our preliminary

experiments showed that using a “dense” prefix sum as an input

for the wavelet decomposition significantly improves the accuracy

of range-sum queries. A streaming version of the discrete Haar

wavelet decomposition algorithm that avoids excessive memory

allocation was first proposed by Gilbert et al. [30]. The algorithm

uses a priority queue to store the B most significant coefficients and

an axillary array of loдN straddling coefficients, which are used to

track the current root-to-leaf path in the error tree. However this

algorithm is restricted to work only on a “raw” data or requires an

additional pass to precompute a prefix sum. Note that in a latter

case a significant overhead will be caused not only by scanning the

input twice, but by running the wavelet decomposition for each

entry in the datacube, which is proportional to the domain length.

Algorithm 1 builds on the approach by Gilbert et al. [30] and

presents a streaming version of the discrete Haar wavelet decom-

position algorithm that encodes a “dense” prefix sum signal. For

simplicity it omits the coefficient normalization, but we perform all

appropriate transformations in our implementation. The algorithm

keeps a bounded priority queue, but replaces a fixed-size array of

straddling coefficients with a stack to store the average coefficients

on different levels. The main loop of the algorithm repeatedly calls



Algorithm 1 Streaming wavelet decomposition algorithm

1: procedure waveletTransform(stream)

2: prefix← 0, tuplePos← 0

3: avgStack← emptyStack(), priorityQueue← emptyQueue()

4: for all tuple in stream do
5: transformTuple(tuple.pos ,prefix,tuple.value)
6: prefix← prefix + tuple.value

7: if lastTuple.pos , domainEnd then
8: transformTuple(domainEnd,prefix,0)

9: priorityQueue.add(avgStack.pop())

10: waveletSynopsis← priorityQueue.items
11: return createBinaryPreOrder(waveletSynopsis)

12:

13: procedure transformTuple(tuplePos,prefix,tupleVal)
14: transPos← getTransformPos(avgStack.peek())

15: calcDyadicIntervals(tuplePos,transPos,prefix)

16: pushToStack(newCoeff(tuplePos,0,prefix + tupleVal))

17:

18: function getTransformPos(coeff)

19: if coeff.level < 0 then
20: return domainStart

21: else if coeff.level == 0 then
22: return coeff.key + 1

23: else
24: return ((coeff.key + 1) << (coeff.level))−

1 << (maxLevel − 1)

25:

26: procedure calcDyadicIntervals(tuplePos, transPos, prefix)
27: while tuplePos != transPos do
28: topCoeff← avgStack.peek()

29: dyadicCoeff ← newCoeff(topCoeff.key +

1,topCoeff.level ,prefix)
30: while dyadicCoeff.covers(tuplePos) do
31: dyadicCoeff ← newCoeff(topCoeff.key * 2 +

1,dyadicCoeff.level - 1,prefix)
pushToStack(dyadicCoeff)

32: transPos← getTransformPos(dyadicCoeff)

33:

34: procedure pushToStack(newCoeff)

35: while !avgStack.isEmpty && avgStack.peek().level ==

newCoeff.level do
36: topCoeff← avgStack.pop()

37: newCoeff← average(newCoeff,topCoeff)

38: avgStack.push(newCoeff)

39:

40: function average(coeff1,coeff2)

41: avgCoeff.key ← coeff1.key >> 1

42: avgCoeff.level ← coeff1.level + 1

43: avgCoeff.value ← (coeff1.value + coeff2.value)/2
44: detailCoeff← avgCoeff

45: detailCoeff.value ← (coeff1.value - coeff2.value)/2
46: priorityQueue.add(detailCoeff)

47: return avgCoeff

the transformTuple procedure for each tuple from the incoming

stream while simultaneously calculating a prefix sum of tuple val-

ues. After the whole stream is consumed this procedure is called

once more to compute the total average, unless the last processed

tuple’s position is the end of the value domain (line 8). Because the

main average is also a valid wavelet coefficient, it is added to the

priority queue along with all detail coefficients. Finally, we create a

wavelet synopsis based on all coefficients left in the priority queue,

and reorder them using a binary tree pre-order that would allow to

efficiently answer range-sum queries.

The gist of the streaming transform algorithm lies in its trans-

formTuple procedure (line 13) that performs an individual step

of the transform. The procedure first calls the function getTrans-

fromPos to determine the point in the domain where the wavelet

transform has currently stopped. This position is determined by

examining the top coefficient on the stack and saved into transPos
(line 14).

Due to the sparsity of the incoming signal there can be a “gap”

between the current transform position transPos and the position

of the processed tuple tuplePos. Figure 1 shows an example of pro-

cessing the gap between tuples x2 = 2 and x6 = 1 from the input

sequence X = [0 0 2 0 0 0 1 0]. Because we are performing a trans-

form over the prefix sum of the signal (i.e. X = [0 0 2 2 2 2 3 3]),

this gap must be “filled” with appropriate wavelet coefficients

so that the sum of the subtree values under these coefficients

adds up to a current prefix (i.e. x2 = 2). In the wavelet trans-

form each coefficient represents a dyadic interval (i.e., interval
[k ∗ 2

(logD)−l
; (k + 1) ∗ 2

(logD)−l − 1] for k = 0, ..., 2l − 1) on some

resolution level l = 0, ..., logD in the value domain, where D is

the length of the domain. The process of filling the gap is analogous

to representing it as a series of non-overlapping dyadic intervals

where the beginning of one interval is the end of the previous. The

procedure calcDyadicIntervals computes this set of intervals in a

greedy approach: it starts with dyadicCoeff that is a sibling (i.e., has

the same level, but the coefficient’s key is incremented by 1) of the

current top of the avgStack. We repeatedly try a smaller dyadicCoeff
until its support interval stops covering the current tuple’s position

tuplePos. This process is pictured in Figure 1c where a newly added

sibling coefficient is converted to a6 = 2 (blue arrow). On each iter-

ation of the loop (line 30) the sibling coefficient’s support interval

in decreased by 2 while its value is multiplied by 2. After that, the

calculated dyadicCoeff is pushed to the avgStack and the position

transPos is “advanced” according to the new coefficient on the top

of the stack (line 32).

Note that the avgStack has an important property: its coefficients

appear in strictly descending order of their levels because they rep-

resent current averages on each level of the transform. Pushing a

new coefficient might violate this invariant. When this happens

the algorithm pops the current top of the stack topCoeff, calculates
the average between topCoeff and a new coefficient newCoeff. The
process is repeated until the stack constraint is no longer violated,

possibly triggering a “domino” effect. In the end the averaged coeffi-

cient is pushed on to the stack. Figures 1a and 1b depict exactly this

situation when pushing tuple x3 = 2 to the stack leads to a series of

averaging (showed as red arrows) and puts the final average a2 = 1

on the top of the avgStack. The average procedure calculates and
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Figure 1: Example of the Algorithm 1 executing on the input X = [0 0 2 0 0 0 1 0]. Figure shows intermediate steps in filling the
gap between tuples x2 = 2 and x6 = 1 (i.e. adding tuples x3 = x4 = x5 = 2 and x6 = 3 to the prefix sum transform). (a) illustrates
the state after entry x3 = 2 is pushed to the stack; (b) shows the result of averaging, triggered by pushing coefficient on to the
stack; (c) depicts the step after covering interval [x4;x5] with coefficient a6 = 2 and adding final tuple x6 = 3 .

returns an average between two input coefficients while saving a

detail coefficient in a priority queue. The input coefficients should

always have the same level and the calculated average coefficient’s

level is the children’s level + 1.

After the gap is filled with dyadic intervals and transPos is equal
to tuplePos, a new coefficient is pushed on the top of the avgStack
(line 16 and Figure 1c). Because this new coefficient represents a

new item on the bottommost level of the error tree it has level = 0

and value prefix+tupleVal.

3.3 Incorporating anti-matter into statistics
A distinctive characteristic of the LSM-based storage is that newer

components can potentially have anti-matter records that offset

records in earlier immutable disk components. While there is work

on dynamically maintaining histogram and wavelet synopses [29,

39], we chose to address this issue in a synopsis-agnostic way by

keeping a separate and explicit “anti”-synopsis. This data summary

contains statistics on all anti-matter records that were encountered

in the input stream. Moreover, this generic approach allows us to

easily handle the case when a distribution of anti-matter records is

significantly different from the distribution of regular entries.

When computing the total estimate E we issue a query to both

the regular synopsis S and its “anti”-twin S, which gives estimates

ES and E
S
respectively. The total cardinality is then reported as

ES − ES .

3.4 Collecting statistics in a distributed cluster
Zooming out from the local statistics computed at each node, we

now consider the process of obtaining statistics in a distributed

cluster. AsterixDB uses the popular shared-nothing design, where a

single master node coordinates job scheduling and the execution of

queries on a set of slave nodes. Each LSM-framework event creates

a local synopsis which is sent over the network to the master node;

synopsis is persisted in the system catalog, so that it can be used

during query optimization. In order to prevent rapid catalog growth,

statistics from different nodes could be merged together; however

as Section 3.5 discusses, not every synopsis type can be combined

and, moreover, there is an inherent trade-off between the space

occupied by a synopsis and its accuracy.

3.5 Synopsis mergeablity
The proposed statistics-collection framework benefits greatly from

piggybacking on LSM lifecycle events, but this also creates an addi-

tional challenge when it comes to extracting estimates from statis-

tical synopses. In this design, each individual synopsis captures the

statistics only for the records in a particular flushed/merged/bulk-

loaded component. So, after some ingestion, the algorithm ends up

creating multiple synopses, each summarizing only a part of the

overall data distribution. Moreover, this partialness is exacerbated

by the fact that statistics-gathering is executed in a distributed

system where each node computes statistics only for the subset of

data stored on a particular machine. Thus, estimates from various

synopses should be combined together to get the overall result.

Alternatively, querying each synopsis separately will create an

overhead during query optimization which could take a significant

portion of the total runtime for short queries.

Given these restrictions, it seems more desirable to combine sep-

arate statistics into a single synopsis and use it later for cardinality

estimation. However, not all types of synopses presented in Section

3.2 can be easily merged. For example, equi-height histograms can-

not be combined due to their varying bucket borders. At the same

time, wavelets allow merging, but lose some accuracy along the

way due to the thresholding process. Finally, equi-width histograms

can naturally be combined.

Since statistics are saved in the system catalog, the amount of

space occupied by the metadata can become another factor that we

should consider while building the statistics collecting framework.

Because of the approximate nature of creating synopses, there is

an inherent data loss associated with this process. If we consider

two synopses A and B, in the general case an estimate EA + EB
calculated from treating these synopses separately has a greater

accuracy than an estimate EA⊕B obtained from a combined synop-

sis (where ⊕ designates a synopsis merge operation). Thus, there

is a natural trade-off between the total space allocated for statis-

tics on a particular dataset and the estimation accuracy. Since we

are primarily focused on using statistics for query optimization,

where a slight mis-estimation could lead to significant errors [34],

we choose to keep all statistics, even mergeable ones, as separate

entries in the catalog.



Algorithm 2 Algorithm for computing total cardinality estimate

of a range query for a particular attribute

1: function rangeQueryEstimate(queryAttribute ,ranдe)
2: total_estimate ← 0

3: if mergeable then
4: merдed_synopsis ← retrieveFromCache()

5: merдed_anti_synopsis ← retrieveFromCache()

6: if isStale(merдed_synopsis) && is-

Stale(merдed_anti_synopsis) then
7: merдed_synopsis ← NULL
8: merдed_anti_synopsis ← NULL
9: else
10: return getEstimate(merдed_synopsis ,ranдe) -

getEstimate(merдed_antimatter_synopsis ,ranдe)

11: for all synopsis in getSynopses(queryAttribute) do
12: estimate ← getEstimate(synopsis ,ranдe)
13: if synopsis is anti-matter then
14: estimate ← estimate ∗ (−1)

15: total_estimate ← total_estimate + estimate
16: if mergeable then
17: if synopsis is anti-matter then
18: Merge(merдed_anti_synopsis, synopsis)
19: else
20: Merge(merдed_synopsis, synopsis)

21: if mergeable then
22: Cache(merдed_synopsis)
23: Cache(merдed_anti_synopsis)

24: return total_estimate

Maintaining synopses separately is a valid approach to manage

statistics on the Cluster Controller when we want to obtain an

aggregate cardinality estimate. However, when computing local

statistics during an LSM-merges we choose to create new synopses

from scratch directly on the newly merged component, discarding

earlier statistics altogether. This alleviates the propagation of es-

timation errors during a long chain of merge operations, where

a multiplier effect could be triggered. In addition, this decision

does not change any of our streaming algorithms, as the input

stream created by a merge cursor provides a unified sorted record

stream abstraction over the individual record streams of merged

components. Lastly, this enables a universal method of creating

statistics during an LSM-merge, given that not all synopsis types

are inherently mergeable (e.g., equi-height histograms).

To amortize the cost of computing estimates during query opti-

mization, we periodically merge appropriate synopses (i.e., wavelets

and equi-width histograms) and cache the produced synopsis on

the Cluster Controller side where the query rewriter can access

them. Similar to the case when merging components, we recom-

pute a whole combined synopsis whenever a new piece of statistics

is received from a storage node rather than maintaining it incre-

mentally, and we invalidate the previous merged version at that

time.

3.6 Estimating query cardinality
Once the synopses are computed, transferred over the network, and

persisted in the catalog, they are available to drive query optimizer

decisions. Since our statistics-collection algorithm relies on having

a B-Tree index on a particular field f , we focus here on estimating

the cardinality of range queries which could potentially use this

index, i.e. queries Q like

SELECT * FROM T

WHERE T.f >= x AND T.f <= y

Cardinality information and computed estimates could be used in

the following scenarios during the query optimization process:

(1) Skipping low selectivity index probes

(2) Deciding whether to use an indexed nested-loop join

Algorithm 2 describes how we compute the total cardinality

estimate for a given range query. Procedure getSynopses retrieves

all synopses for a particular query attribute from a system catalog

(line 11). The main loop of the algorithm uses these synopses to

compute total_estimate , by combining estimates of each individual

component. An estimate produced by a component’s synopsis is

simply added to the total estimate, unless it comes from an anti-

matter synopsis, in which case it is substracted. While calculating

the total estimate the algorithm also computes a merged synop-

sis for equi-width histograms and wavelets (line 16). In the end,

procedure Cache saves a merged version of the synopses on the

Cluster Controller. Queries can then obtain it from cache using

procedure retrieveFromCache (line 4) and can thus skip fetching

statistics from the catalog. Procedure isStale compares timestamps

of retrieved synopses (both regular and anti-matter) and invalidates

them if they are stale; otherwise it obtains the estimate directly

from the merged synopsis (line 10).

For histogram-based synopses, the дetEstimate() trivially re-

turns the sum of all buckets that are located between borders [x ;y]
of the range. For partially overlapped buckets we use a continuous-
value assumptionwhich expects that the values within a bucket have
a uniform distribution. For a wavelet-based synopsis дetEstimate()
obtains a cardinality estimate for query Q by reconstructing the

wavelet’s value at two border points: EQ = Wy −Wx . Due to

construction the wavelet signal at a given point p stores a prefix
sum of the records’ frequencies, rather than their raw frequencies:

Wp =
∑p
i=0

f (i), where f (i) is a raw tuple frequency. Reconstruct-

ing valueWp does not require to perform a full wavelet decomposi-

tion in reverse order, but instead is computed by a single root-to-leaf

path traversal in the error tree corresponding to this wavelet.

4 EXPERIMENTAL EVALUATION
4.1 Experimental setup
In the following section we experimentally evaluate the implemen-

tation of our statistics framework from the perspectives of (i) the

overhead caused by the statistics collection algorithms, and (ii) the

accuracy of the produced statistics. We ran all experiments using a

modified version of AsterixDB v0.9.1 on a small cluster with 4+1

nodes (slaves+master), connected by a Gigabit Ethernet network,

each running CentOS Linux. Each machine is equipped with a dual-

core AMD Opteron CPU, 8 GB of main memory, and two 1 TB



drives. All NCs have two data partitions to leverage I/O parallelism,

thus creating a cluster with 8 partitions.

The experimental pipeline consists of several disjoint stages:

• Preparatory data definition language (DDL) statements for

creating types, datasets and indexes.

• Data ingestion, during which data is loaded into the system

and statistics are collected as a by-product of the LSM-based

loading process.

• Querying the loaded data and measuring the accuracy of the

resulting cardinality estimates.

4.1.1 Datasets. To evaluate various data distributionswe adopted
the experimental framework proposed by Poosala et al. [41]. This

framework describes a synthetic data distribution used for query

cardinality evaluation in terms of two independent parameters:

• Frequency set: a set of numbers, where each defines the

number of records having a particular value of the secondary
key.

• Value set: a set of numbers, where each defines the position of
secondary keys in the key domain (e.g., 32-bit wide integers).

The domain distance between two neighboring values is

called the value set’s spread.
In our experimental evaluation we considered several synthetic

spread distributions, which in turn define value sets for our datasets:

• Uniform: All spreads have the same length, calculated from

the total domain length and the number of generated values.

• Zipf: Spreads have skewed lengths drawn from a Zipfian

distribution with skew coefficient α = 1 and ordered in a

decreasing manner.

• ZipfIncreasing: Same as above, but ordered from shortest to

largest spread.

• ZipfRandom: Same as above, but randomly ordered.

• CuspMin: Two-sided skewed distribution where the first half

of the values follow a Zipf distribution and the second half

follow a Zipf Increasing distribution.

• CuspMax: Same as above, but the first half obeys a Zipf In-

creasing distribution, while the second half follows a regular

Zipf distribution.

The values for the frequency set were obtained similarly from

the Uniform, Zipf and ZipfRandom distributions.

Note that since the contents of the frequency and value sets are

independent, one could consider all possible correlations between

them, e.g., positive (the first record in the value set corresponds to

the first entry in the frequency set), negative, and random. How-

ever, given that some of the value set distributions are inherently

symmetric (Uniform, CuspMax, CuspMin) and some are mirror

image of each other (Zipf and ZipfIncreasing) we did not find a

significant difference between positive and negative correlations.

On the other hand, random correlation (irrespectively from value

set distribution) produces results similar to positively correlated

ZipfRandom. Given the space limitations and similarity of these

results we present data only for the positive correlation between

the frequency and value sets.

To evaluate the performance of data ingestion, we used a built-

in feature of AsterixDB called data feeds [32] that allowed us to

create a continuous channel though which records are inserted into
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Figure 2: Total execution time of ingesting 50M records (a)
using a bulkload operation, which produces a single compo-
nent, and (b) through a continuous data feed channel, which
creates multiple LSM components. Both experiments are
performed for 3 types of synopses (equi-width histograms,
equi-height histograms andwavelets) and for a baseline case
when the statistics collection is turned off (NoStats).

the system. In the synthetic experiments we emulated a Twitter

Firehose-like external data source to ingest generated records re-

sembling real Tweets. We utilized two types of data feed sources:

a push-based feed that uses a TCP socket and a file feed with a

pull-based model that reads records from local files. The size of

each generated record was around 1 KB, while each of the gen-

erated datasets contained 50 million records. In addition to the

regular tweet fields (such as username, message, location, etc) each

record was augmented with a special integer field with value that

was drawn randomly from the synthetic distributions described

above. To enable statistics gathering for this field, we have defined

a secondary B-Tree index on it.

Finally, in addition to synthetically generated data we experi-

mented with a real-life dataset consisting of web server log entries

collected during World Cup 1998 [15]. The dataset contains 1.35

billion preprocessed 20-byte records, each containing four 32-bit

integer fields and four 8-bit byte fields. After excluding fields where

almost all the values are duplicates (i.e. fieldsmethod and type) we
created a secondary index for each of the remaining fields.

4.1.2 Query workload. To evaluate the accuracy of the proposed
framework we experimented with several types of range queries:

• Fixed length: These are range queries with a predefined

distance between the starting and ending points. The starting

point position is drawn randomly from the value domain.

• Half open: Range queries where one of the borders of the

range, e.g., the starting point (ending point respectively), is

drawn randomly, while the other is the maximum (minimum

respectively) point in the domain.



• Random: Range queries where both the starting point and

the ending point are drawn randomly from the domain.

• Point: Degenerate range queries where the starting and end-

ing points are the same randomly drawn domain point.

For the accuracy experiments we executed 1000 queries of a

particular type, recorded their true cardinalityC , and computed the

statistical estimate Ĉ . For each querywe calculated the absolute error
and normalized it by dividing it by the total number of records in

the dataset N = 50M : eabs = |C−Ĉ |N . To compute the final accuracy

across all queries we used the L1 (average) metric:

∑
1000

i=1

eabsi
1000

.

4.2 Overhead Evaluation Experiments
To determine the overhead introduced by collecting and storing the

statistics, we have measured the execution time of the ingestion

stage of the experimental pipeline for all three statistical synopses

types and, as a control case, for a configuration where no statistics

are captured. Each measurement was repeated 3 times and the

average value is reported.

In AsterixDB data can be persisted in two different ways: by

bulkloading a dataset upfront or by performing DML insert/up-

date/delete statements. Figure 2a presents the bulkloading execu-

tion times for the case when EquiHeight, EquiWidth histograms or

Wavelets synopses are produced as the bulkloading is performed,

and for the baseline case when no synopses are calculated. During

bulkload the dataset is populated in a bottom-up fashion, producing

a single large LSM component, so it does not utilize all the possi-

ble events of the LSM lifecycle. To isolate the effect of statistics-

gathering in this experiment we were using pre-sorted datasets, so

the bulkloading process included only partitioning and building an

upper level of a B-Tree index (thus excluding expensive external

sorting which is not involved in computing statistics). Bulkloading

was done in a partitioned parallel manner on all 4 cluster nodes to

minimize the load time.

Figure 2b shows the case when a data feed is used to populate

the dataset. A feed populates the dataset’s storage structure incre-

mentally, in a top-down manner, thus triggering the full spectrum

of LSM lifecycle events. We experimented with 2 different types of

feeds available in AsterixDB: a socket-based feed, where the records

were received via a network socket from an external source, and a

file-based feed, where the source of the records were local files.

For both graphs in Figure 2, the values for different synopsis

types vary slightly due to measurement error; however there is no

significant overhead introduced by any of the statistics-gathering al-

gorithms, as compared to the baseline case when synopses are not

produced. The same results were observed with the real-world

WorldCup dataset. These allow us to affirm that the proposed

statistics-collection framework indeed does not interfere with the

normal LSM-based storage workflow in AsterixDB.

4.3 Accuracy Evaluation Experiments
Due to the large size of the parameter space, we began our evalua-

tion by fixing some of the variables for the experimental procedure.

4.3.1 Varying the synopsis size. Figure 3 depicts the accuracy
results while we increase the size of the synopsis for a FixedLength
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Figure 3: Estimation accuracy results, while varying the size
of the synopsis for datasets with (a) Uniform, (b) Zipf and
(c) ZipfRandom frequency distributions. Submitted queries
have a fixed range length of 128. The sizes of synopses are
increased from 16 to 1024 elements.
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Figure 4: Estimation accuracy results for 4 different types of
queries and a dataset with Zipf frequencies.
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Figure 5: Estimation accuracy results for FixedLength
queries and a dataset with Zipf frequencies for varying
query sizes.

query workload with range length of 128. In the case of the his-

togram synopses, we vary the number of histogram buckets, whereas

for wavelets the number of wavelet coefficients is increased. Note

that the amount of storage allocated to synopses is the same in

both cases, because the space taken by one histogram bucket is the

same as the space allocated for a single wavelet coefficient. In this

experiment we have increased the size of synopses from 16 to 1024

elements (buckets or wavelet coefficients).

Figure 3a shows that estimation errors for datasets with Uniform

frequencies are close to 0 in all of the cases except for the ZipfRan-

dom spread distribution. The same result can be seen for Uniform

spreads in Figure 3b. In all of these cases, the data distribution cre-

ates a smooth CDF that can be easily estimated even with a small

number of synopsis elements.

In contrast, in all the other cases in Figures 3b and 3c, as well

as the ZipfRandom spread distribution in Figure 3a, the random

permutation of spreads creates distributions with much more com-

plex CDFs and makes estimation more complicated. Generally, for

these we see a common trend that the cardinality estimation error

is negatively correlated with the synopsis size. However, there are

few exceptions for the histogram-based synopses, namely the Zipf,

ZipfIncreasing, CuspMin and CuspMax datasets, where increasing

the synopsis size does not significantly improve their accuracy. The

poor histogram accuracy on these datasets can be explained by

the fact that the dataset is skewed: in the Zipf distribution, some

of the frequencies are so large that they exceed the height of the

equi-height’s histogram bucket. In contrast, wavelets demonstrate

the expected behavior, supporting previous research findings that

wavelets on average provide better accuracy [38].

Among these results, the synopsis with 256 elements provides

excellent accuracy, so we will fix this parameter throughout the

rest of the evaluation section.

4.3.2 Varying the query type. We proceed with exploring how

the properties of the query workload influence estimation accuracy.

Again, we present the datasets with Zipfian frequencies here, but

the data drawn from other distributions behaved similarly.

Figure 4 shows the accuracy for all query types mentioned in

Section 4.1.2. We can see that, for all distributions, Point queries

produce smaller errors than FixedLength queries, which in turn are

smaller than HalfOpen and Random queries. Note that the error

scale on this graph is logarithmic to emphasize that larger queries

introduce noticeably larger than those elsewhere in our results.

This can be explained by the fact that the number of tuples that

fall into a wider range now represent a larger fraction of the total

dataset and L1 absolute error metric emphasizes that difference.

Figure 5 presents similar measurements, but specifically for fixed-

length queries with the length parameter varied from 8 to 256. We

can see that the trend is preserved in this experiment, as the error

keeps growing as the query range is increasing. Because fixed-

length queries allow us to increase the number of returned tuples

in a controllable manner, we will use them with the range size of

128 as the query type of choice for the following experiments.

4.3.3 Varying the number of LSM components. To study how

the number of individual synopses affects the overall estimation

accuracy, we now control the number of LSM components pro-

duced during the data insertion stage by utilizing the Constant LSM

merge policy that is available in AsterixDB. As its name implies,

this merge policy allows one to have only a predefined number of

LSM disk components per partition across a cluster. We also alter

the individual synopsis size here, with respect to the increasing

number of produced components, so that the total space allocated

for statistics remains the same.

Figure 6a depicts the accuracy measurements, while Figure 6b

considers the overhead during the querying stage of the experiment

for various synopses types, spread distributions and component

numbers. As we can see, increasing the total number of components

does slightly increase the estimation error, as each component’s

synopsis contains fewer elements, inevitably deteriorating the esti-

mation performance. At the same time, the overhead during query

optimization increases, but not significantly.
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Figure 6: Experiments for 3 types of synopses, while varying the total number of produced LSM components for a dataset with
Uniform frequency distribution. The number of components is increased from 8 to 128. (a) depicts the normalized L1 absolute
error, whereas (b) shows the query optimization overhead of obtaining statistics during the same experiment.

4.3.4 Workload with varying percentage of anti-matter. In all

previous experiments, we considered cases where the input data

workload was insert-only. In the next set of graphs we study how

the estimation accuracy changes if we add updates and deletes into

the ingested mix to trigger anti-matter records. For this purpose,

we used a special kind of AsterixDB data feed, called a changeable
feed, which allowed us to mark incoming data records so that they

will perform a regular insert, update an already inserted record,

or delete an existing record. To make sure that the updates and

deletes do actually generate anti-matter, as opposed to their just

being silently deleted (from the perspective of statistics) within in-

memory components, we broke the ingestion process up into stages.

As each stage is processed, we forced a flush operation, which puts

all previously ingested records on disk. After that, all updates and

deletes that reference records in the previously processed stages will

generate anti-matter records. Note that because AsterixDB enforces

update and delete constraints (i.e., it does not allow updating or

deleting a record unless it already exists), the maximum ratio of

each operation type in the insert/update/delete mix cannot exceed

0.33 (assuming that each record is updated only once).

Figure 7 illustrates the accuracy measurements for the dataset

with ZipfRandom frequencies, while the ratio of the updates and

deletes in the data workload is gradually increased from 0 to 0.3.

We observe that increasing the fraction of anti-matter records does

not degrade the accuracy of cardinality estimation for all types of

synopses. This demonstrates that our approach for dealingwith anti-

matter records, which is based on persisting and querying them

separately, performs well. Note that the approach also provides

a synopsis-agnostic way (in contrast to specialized maintenance

algorithms) of dealing with changeable workloads while increasing

the synopsis storage cost by only a constant factor (of 2).

4.3.5 Synopsis mergeability. Figure 8 further studies how the

number of LSM components influences the query optimization

EquiHeight

Uniform Zipf ZipfIncreasing CuspMin CuspMax ZipfRandom
0

2

4
10

-3

U=0,D=0 U=0.1,D=0.1 U=0.2,D=0.2 U=0.3,D=0.3

EquiWidth

Uniform Zipf ZipfIncreasing CuspMin CuspMax ZipfRandom
0

2

4

N
o

rm
a

liz
e

d
 L

1
 A

b
s
o

lu
te

 E
rr

o
r

10
-3

U=0,D=0 U=0.1,D=0.1 U=0.2,D=0.2 U=0.3,D=0.3

Wavelet

Uniform Zipf ZipfIncreasing CuspMin CuspMax ZipfRandom
0

2

4
10

-3

U=0,D=0 U=0.1,D=0.1 U=0.2,D=0.2 U=0.3,D=0.3

Figure 7: Estimation accuracy results for the workload with
varying ratio of updates and inserts. Results obtained for
various types of synopses on a dataset with ZipfRandom fre-
quency distribution. The ratio of updates (U) and deletes (D)
is scaled from 0 to 0.3.

time overhead of cardinality estimation. In this experiment we

performed ingestion in two different ways: using a bulkload, which

is guaranteed to create a single LSM component, and using feed-

based ingestion with a NoMerge policy that leads to a maximum

possible number of components.

The figure shows the results for a dataset with Zipf frequencies,

but the results for other distributions are similar. It can be seen that

query time overhead for the NoMerge policy is consistently higher

than the same results for the bulkload-based workload. However,

we note that this time difference is negligible between all types of
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Figure 8: Query time overhead results for the the case when
a dataset is bulkloaded, creating a single LSM component, vs.
a workload with the NoMerge policy, creating a maximum
number of components.

data synopses. These results highlight the fact that the mergeability

of a particular synopsis type has a more profound effect on the total

space allocated to the synopses rather than on the query time.

4.4 WordCup Dataset Experiments
Figure 9 depicts the results of the accuracy experiment for theWord-

Cup dataset. In this experiment we have used feed-based ingestion

using the Constant LSM merge policy with the default number of

components (5). We have used range queries for each of 6 examined

fields in the dataset. The length of the range for each query was

equal to 1% of the range for a particular field (i.e. the difference be-

tween the maximum and minimum values of that field). Unlike the

earlier experiments where the values were spread throughout the

whole field domain, in real-world data, values are typically placed

away from the domain extremes. This property explains why the

accuracy of the EquiWidth histograms does not improve as we

allocate more buckets. In fact, for fields Timestamp,ClientID and

ObjectID all values fell into a single bucket. In contrast, EquiHeight

histograms and Wavelets were able to dynamically adjust to the

distribution of values in a particular field. Moreover, wavelets tend

to be 5-10 times more accurate.

Field Size presents an interesting example of highly skewed data

with a long distribution tail. We can observe that wavelets represent

such distributions significantly better given enough coefficients.

Finally, fields Status and Server represent categorical data. The

distribution of the values in these fields has a lot of “spikes” sepa-

rated by values with zero cardinality. Because all synopses estimate

the values relying on proximity-based similarity, this leads to vast

over/under-estimation errors.

In summary, the real world data experiments show that in certain

cases the Wavelets and EquiHeight histograms are more robust,

being less susceptible to changes in the input data.

EquiHeight

Timestamp ClientID ObjectID Size Status Server

10
-4

10
-2

 16  64 256

EquiWidth

Timestamp ClientID ObjectID Size Status Server

10
-4

10
-2

N
o
rm

a
liz

e
d
 L

1
 A

b
s
o
lu

te
 E

rr
o
r

 16  64 256

Wavelet

Timestamp ClientID ObjectID Size Status Server

10
-4

10
-2  16  64 256

Figure 9: Estimation accuracy results, for all types of syn-
opses for 6 fields from the WorldCup dataset. The sizes of
the synopses are increased from 16 to 256 elements.

5 CONCLUSIONS AND FUTUREWORK
In this paper we have proposed a novel lightweight approach to

collecting statistics that exploits the properties of LSM-based stor-

age to obtain statistical data summaries of the underlying data.

Our solution is integrated into the common operations of the LSM

framework and thus allows us to natively and inexpensively keep

statistics in sync with rapidly changing data. We have implemented

3 different types of synopses (equi-width histograms, equi-height

histograms, and wavelets) and developed efficient approaches to

compute them during LSM lifecycle events. We have shown exper-

imentally that computing these data synopses introduces a neg-

ligible runtime overhead, both during the ingestion, when data

summaries are created, and during query optimization, when cardi-

nality estimates are obtained. We have also performed an extensive

experimental evaluation of the synopses’ cardinality estimation er-

rors using various data distributions, query workloads, and merge

policy parameters. Our experiments have shown that our design

provides good accuracy in a broad number of cases.

As futureworkwe plan to extend the proposed statistics-collection

approach to other value domains (i.e., not just integer numerics)

as well as to multidimensional index types (e.g., B-Trees with com-

posite keys and R-Trees). Another potential direction is to relax

the condition of relying on a sorted order already provided by a

primary or secondary index in order to compute statistics on arbi-

trary record attributes. Methods based on sketches [31] seem to be a

promising data summary variant for this scenario. Finally, we would

like to explore sampling-based statistics-collection methods and

assess their accuracy and runtime overhead in comparison to pre-

computed synopses. Sampling tuples from base relations provides

significant advantages over field-level statistics because it does not

rely on calculating synopses only for preselected attributes, thus

allows to correctly estimate cardinality for correlated data.
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A BACKGROUND ON LSM STORAGE MODEL
The traditional way of organizing storage and indexing subsystems

in relational databases has implied performing in-place mutations

of a particular disk-resident data structure (i.e., B-Tree, R-Tree or

heap file). Thus, any modification required performing random

writes to the disk. Techniques like pinning disk pages in the buffer

cachewere introduced to slightly alleviate the problem, but perform-

ing structural updates in tree-like index structures still imposed

significant per-update write overhead.

Modern data-intensive workloads require data management sys-

tems that are able to ingest significant numbers of records/second

while providing the ability to run analytical queries on them. To

achieve high ingestion rate, new storage models were adopted that

rely on performing modifications in a log-structured way i.e., by

breaking up a continuous stream of updates/inserts/deletes into

groups based on their arrival time. Individual records within a

group are stored in a order-preserving tree data structure to allow

efficient lookup. These groups are periodically merged in order not

to deteriorate read performance.

The LSM-framework operates on batches of records called compo-
nents. At each point in time there exists a single mutable component

which resides in main memory (called the in-memory component).
All modification operations are performed within this component,

in-place. Once its size crosses a certain threshold, the contents of an

in-memory component are flushed to disk, creating an immutable

disk component, while the in-memory component’s content is reset.

Since disk components are immutable, changes to records which

already made their way to disk should only happen within the

in-memory component, creating a new version of the record in the

case of an update, or a special anti-matter record (an entry that

cancels the record in an earlier flushed component) in the case of

a delete. In a workload with continuous ingestion, the number of

disk components keeps increasing. An indefinite growth would

create multiple component files that should be probed during a

read operation, thus hampering the performance of any selective

lookup query. Instead, a periodic merge operation is scheduled to

combine several disk components, possibly reconciling the anti-

matter with regular records, creating a single merged component.

The frequency of merges and the number of components deemed to

be combined is determined by themerge policy. Figure 10 illustrates
the typical operations of the LSM-based storage model.

The LSM-framework is usually implemented on top of some

order-preserving index data structure, thus both events of the LSM

lifecycle operate on records sorted by a particular key (primary or

secondary). In the case of the LSM-flush the sorted order is directly

imposed by the index structure of the in-memory component, while

for the LSM-merge the order is obtained by merging pre-sorted

input components. This allows to define both LSM-events as an

index bulkloading operation, i.e., creating a new index from the pre-

sorted data, and consider bulkload as another event in the LSM-fied

index lifecycle.

Memory

Disk

<A>

<A>

MC1

DC1

(a) Initial state

Memory

Disk
<A> <A>

MC2

DC1 DC2
Merge

(b) After flush

Memory

Disk

MC2
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(c) After merge

Figure 10: Typical operations in LSM-based storage model.
(a) State prior to flush in which there already exists a disk
component DC1 with some record ⟨A⟩ and an in-memory
component MC1 with the result of deleting this record —
an anti-matter record ⟨Ā⟩. (b) LSM components after a flush
operation has persisted the in-memory component and cre-
ated a new disk component DC2. (c) Result of a merge opera-
tion that combined the contents of componentsDC1 andDC2.
Resulting component DC3 does not contain any ⟨A⟩ records
because they were reconciled during the merge.

B BACKGROUND ONWAVELETS
Wavelets are amathematical tool for multi-resolution analysis based

on hierarchical function decomposition. They are heavily used for

compression in image processing, signal analysis, and other do-

mains. The process of converting an original function signal into

the wavelet domain, called wavelet decomposition, is a transfor-

mation which “breaks up” the original data into a coarse-grained

base function and a number of detail coefficients that add more

fine-level details to the high-level representation. Wavelet decom-

position provides a function-agnostic method for the space-efficient

representation of an underlying signal.

As a wavelet basis we have chosen the Haar basis because it

provides a simple and efficient decomposition algorithm. Moreover,

Haar wavelets provide a natural way of compressing the initial

signal (a process called thresholding). Finally, because Haar de-

composition is a linear transformation, it provides an easy way

of combining different synopses once they are converted into the

wavelet domain by summing up appropriate wavelet coefficients.
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Figure 11: Structure of error tree. Nodes on the lowest level
(l = 3) are comprised of the elements of prefix sum vector
F +. Other nodes from the upper levels of the binary tree

have the structure
x
y where x is an average coefficient, y

is a detail coefficient of the wavelet transformation.

We formulate our purpose as estimating the frequency function

of the records in some dataset R = (r1, ..., rn ). Suppose that each

record’s key is defined on some bounded domain D = 1, ...,M,

where M is some power of 2. Let’s define a frequency of each

domain key i as the number of records with an ID Di :

fi = |r j |,∀j ∈ {1, ...,n},∃i ∈ {1, ...,M},where r j .ID = Di .

All of these frequencies define a frequency vector F = f1, ..., fM .

After that, we apply the Haar decomposition algorithm to convert

the frequency vector into the wavelet domain. Once the decompo-

sition is computed, a cardinality estimate for a particular key range

can be obtained by issuing a range-sum query over the wavelet.

To illustrate the Discrete Haar wavelet decomposition, consider

a simple example. Suppose we have a small dataset with domain

D withM = 8 and frequency vector for this dataset looks like

F = [1 0 1 0 0 2 1 4], meaning that there are, for example, f1 = 1

records where the record ID is equal to equal to D1. As a first

preprocessing step we generate a prefix sum of the frequency vector

F + = [1 1 2 2 2 4 5 9]. This step is an optimization to convert the

original frequency function into a dense signal which is known

to be approximated more accurately by wavelets [38]. The Haar

decomposition algorithm involves a recursive process of pairwise

averaging and calculating the average differences of the input vector

items, which produces average coefficients and detail coefficients
respectively. Given two input wavelets coefficients A and B an

average and a detail coefficients are calculated as
B+A

2
and

B−A
2

respectively. For the given example, averaging produces a lower-

resolution level1 vector [ 1+1

2

2+2

2

4+2

2

9+5

2
] = [1 2 3 7]. To recover

the information that was lost during averaging, we compute level1
a detail coefficients vector [ 1−1

2

2−2

2

4−2

2

9−5

2
] = [0 0 1 2]. This

process is repeated recursively for all levels 1, ..., logM = 3 such

that the average obtained on the leveli becomes an input vector of

the leveli+1. The result is a binary tree-like data structure called the

error tree [38] illustrated in Figure 11. The final wavelet coefficients

consist of the main average and all detail coefficients produced

during the decomposition process: [3.25 1.75 0.5 1 0 0 1 2] sorted

by their level in decomposition.

Note that the decomposition process is lossless, i.e., the number

of values in the original signal is the same as the number of final co-

efficients. To subsequently compress the wavelet, we first normalize

the original signal by dividing the coefficients by

√
2

logM−l
, where

l is the coefficient’s level. Thus, coefficients on lower resolution

levels are considered more important than the similar coefficients

on higher levels. Given a predefined budget K , we pick the top-K

coefficients with the greatest normalized absolute values and create

a wavelet synopsis, which has a provably optimal error under the

L2-metric [46].

To reconstruct the original data back from the wavelet domain,

we reverse the decomposition process and consider all non-significant

coefficients to be 0. The intuition behind this approach to compres-

sion is that many of the detail coefficients by themselves are equal or

close to 0, so removing them does not introduce significant changes

to the reconstructed signal.

The wavelet decomposition algorithm extends naturally to the

multi-dimensional case. Moreover, unlike histogram-based meth-

ods, it does not suffer from the “curse of dimensionality”[48].
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