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Motivation – XML Pub-subs 
! Filtering engine is at the heart of publish-subscribe systems (pub-subs) 

! Used to deliver news, blog updates, stock data, etc 
! XML is a standard format for data exchange 

! Powerful enough to capture message values as well as its structure using XPath 
! The growing volume of information requires exploring massively parallel high-

performance approaches for XML filtering 

3 

Publisher 0 

Publisher 1 

Publisher N 

Subscriber 0 

Subscriber 1 

Subscriber M 

Filtering 
Algorithm 

Query 
Profiles 

Matches 

Data 
Streams 

Forward 
Matches 

Add, Update or 
Delete Profiles 



Related work (software) 
! XFilter (VLDB 2000) 

! Creates a separate FSM for each query 

! YFilter (TODS 2003) 
! Combines individual paths, creates a single 

NFA 

! LazyDFA (TODS 2004) 
! Uses deterministic FSMs 

! XPush (SIGMOD 2003) 
! Lazily constructs a deterministic pushdown 

automaton 

FSM-based 
approaches 
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Related work (software) 
! FiST (VLDB 2005) 

! Converts the XML document into 
Prüfer sequences and matches 
respective sequences 

! XTrie (VLDB 2002) 
! Uses Trie-based index to match query 

prefix 

! AFilter (VLDB 2006) 
! Leverages prefix as well as suffix 

query indexes 

sequence-
based 
approaches 

others 
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Related work (hardware) 

! “Accelerating XML query matching through custom 
stack generation on FPGAs” (HiPEAC 2010) 
! Introduced dynamic-programming XML path filtering approach for 

FPGAs 

! “Efficient XML path filtering using GPUs” (ADMS 2011) 
! Modified original approach to perform path filtering on GPUs 
 

! “Massively parallel XML twig filtering using dynamic 
programming on FPGAs” (ICDE 2011) 
! Extended algorithm to support holistic twig filtering on FPGAs 
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Why GPUs 

! This work proposes holistic XML twig filtering algorithm, 
which runs on GPUs 

! Why GPUs? 
! Highly scalable, massively parallel architecture 
! Flexibility as for software XML filtering engines 

! Why not FPGAs? 
! Limited scalability due to scarce hardware resources available on 

the chip 
! Lack of query dynamicity - need time to reconfigure FGPA 

hardware implementation 

7 



XML Document Preprocessing 
! To be able to run 

algorithm in streaming 
mode XML tree structure 
needs to be flattened 

! XML document is 
presented as a stream 
of open(tag) and 
close(tag) events 

a

db

... c ... 

XML Document 

Event Stream 
open(a) – open(b) – 

open(c) – close(c) – … –
close(b) – open(d) – … – 

close(d) – close(a) 8 



Twig Filtering: approach 
! Twig processing contains 

two steps 
! Matching individual root-to-

leaf paths 
! Report matches back to 

root, while joining them at 
split nodes 
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Dynamic programming: algorithm 
! Every query is mapped to a DP 

table 

! DP table - binary stack 

! Each stack is mapped to query 

! Each node in query is mapped to 
stack column 

! Every column has prefix pointer 

! Open and close events map to 
push and pop actions on the top-
of-the-stack (TOS) 
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Dynamic programming: stacks  
! Two different types of stack are used for different 

parts of filtering algorithm 
! Stacks captures query matches via propagation 

of ‘1’s 
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! push stacks:  
! Used for matching root-to-leaf paths  
! The TOS is updated on open (i.e. 

push) events 
! Propagat ion goes d iagona l ly 

upwards and vertically upwards from 
query root to query leaves 



Dynamic programming: stacks 
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! pop stacks:  
! Used for reporting leaf matches back 

to the root 
! The TOS is updated on close (pop) 

events (open events clear the TOS) 
! Propagat ion goes d iagona l ly 

downwards and vertically downwards 
from query leaves to the root 



Push stack: Example 
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1 
1 
$ /a //c /d /* 

XML Document ! Dummy root node (‘$’) is 
always matched in the 
beginning 

! ‘1’ is propagated diagonally 
upwards if 
! Prefix holds ‘1’ 
! Relationship with prefix is ‘/’ 
! Open event tag matches 

column tag  

Open(a) 

TOS 



Push stack: Example 
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a

b

c d 

d

e 

1 
1 

1 
$ /a //c /d /* 

XML Document ! ‘1’ is propagated diagonally 
(in terms of prefix pointer) 
upwards as in previous 
example 

Open(d) 

TOS 
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Push stack: Example 

1 
1 

1 
1 
$ /a //c /d /* 

XML Document 

Open(e) TOS 

! If the query node tag is a 
wildcard (‘*’), then any tag in 
open event qualifies to be 
matched 

! Since ‘/*’ is a leaf node 
matched this fact is saved in 
a special binary array 
(colored in red in example) 

a

b

c d 

d

e 
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Push stack: Example 
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1 
1 

1 
$ /a //c /d /* 

XML Document 
! ‘1’ propagates upwards in 

prefix column if 
! Prefix holds ‘1’ 
! Relationship with prefix is ‘//’ 
! Tag in open event could be 

arbitrary 
Open(b) 

TOS 

a

b

c d 

d

e 
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Push stack: Example 

1 
1 
1 

1 
$ /a //c /d /* 

XML Document 

Open(c) TOS 

! If ‘1’ is propagated to 
query leaf node (‘//c’ in 
example) is saved as 
matched 

 

a

b

c d 

d

e 



18 

Push stack: Example 

1 1 
1 

1 
$ /a //c /d /* 

XML Document 

Open(d) TOS 

! Node ‘/d’ is not updated, 
since ‘/a’ is a split node, 
whose chi ldren have 
different relationships (‘//’ 
with ‘c’ and ‘/’ with ‘d’) 

! The split node maintain 
different fields for these 
two kinds of children 

a

b

c d 

d
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Pop stack: Example 
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1 
1 

$ /a //c /d /* 

XML Document ! Leaf nodes contain ‘1’ if 
these nodes were saved in 
binary match array during 
1st algorithm phase 

! ‘1’ is propagated diagonally  
downwards if 
! Node holds ‘1’ on TOS 
! Relationship with prefix is ‘/’ 
! Close event tag matches 

column tag or column tag is 
‘*’ (shown in example)  

Close(e) 
TOS 

a

b

c d 

d

e 



Pop stack: Example 
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1 

$ /a //c /d /* 

XML Document 
! Split node (‘/a’ in example) 

is matched only if all it’s 
children propagate ‘1’ 

! Since so far we have 
explored only one subtree of 
node ‘/a’ match cannot be 
propagated to this node 
(‘and’-logical operation used 
to match split node) 

 

Close(d) 
TOS 
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Pop stack: Example 
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1 
1 1 

$ /a //c /d /* 

XML Document ! ‘1’ is propagated 
downwards in descendant 
node if 
! Node holds ‘1’ on TOS 
! Relationship with prefix is ‘//’ 
! Close event tag matches 

column tag  
Close(c) 

TOS 

a

b

c d 

d

e 



Pop stack: Example 
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1 1 

$ /a //c /d /* 

XML Document 

! The same rules apply, 
however nothing is 
propagated Close(d) 

TOS 

a

b

c d 

d

e 



Pop stack: Example 
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1 1 
1 

$ /a //c /d /* 

XML Document ! This time both children of 
the split node are matched, 
thus the result of ‘and’-
operation propagates ‘1’ 
down to node ‘/a’ 

! As with push stack split 
node has two separate 
fields for children with ‘/’ and 
‘//’ relationships 

! Repor t ing match f rom 
children to parent does not 
depend on event tag 

Close(b) 
TOS 

a

b

c d 

d

e 



Pop stack: Example 
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1 
1 
$ /a //c /d /* 

XML Document 

! Full query is matched if 
dummy root node reports 
match Close(a) 

TOS 

a

b

c d 

d

e 



GPU Architecture 
! SM is a multicore 

processor, consisting of 
multiple SPs 

! SPs execute the same 
instructions (kernel) 

! SPs within SM 
communicate through 
small fast shared memory 

! Block is a logical set of 
threads, scheduled on 
SPs within SM 
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Filtering Parallelism on GPUs 
! Intra-query parallelism 

! Each stack column on TOS is independently 
evaluated in parallel on SP 

! Inter-query parallelism 
! Queries scheduled parallely on different SMs 

! Inter-document parallelism 
! Filtering several XML documents as a time using 

concurrent GPU kernels (co-scheduling kernels 
with different input parameters) 
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XML Event & Stack Entry Encoding 
! The XML document is 

preprocessed and 
transferred to the GPU as a 
stream of byte-long (event/
tag ID) pairs 

! The event streams reside 
in the GPU global memory 
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tagID push/pop 

1 bit 7 bits 

XML event 



GPU Kernel Personality Encoding 
! Each GPU kernel, maps to one query node 

! The offline query parser creates a personality for each 
kernel, which is later stored in GPU registers 

! A personality is a 4 byte entry 
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isLeaf prefix 
relation 

1 bit 1 bit 1 bit 1 bit 

children 
with ‘/’ 

children 
with ‘//’ tagID prefixID … 

10 bits 7 bits 
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GPU Optimizations 
! Merging push and pop stacks to save shared 

memory 

! Coalescing global memory reads\writes 

! Caching XML stream items in shared memory 
! Reading stream in chunks by looping in strided 

manner, since shared memory size is limited 

! Avoiding usage of atomic functions 
! Calling non-atomic analogs in separate thread 
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Experimentation Setup 

! GPU experiments 
! NVidia Tesla C2075(Fermi architecture), 448 cores 
! NVidia Tesla K20(Kepler architecture), 2496 cores 

! Software filtering experiments 
! YFilter filtering engine 
! Dual 6-core 2.30GHz Intel Xeon E5 machine with 

30 GB of RAM 
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Experimentation Datasets 
! DBLP XML dataset 

! Documents of varied size 32kB-2MB, obtained by 
trimming original DBLP XML 

! Synthetic documents (having DBLP schema) of fixed size 
25kB 

! Maximum XML depth – 10 

! Queries generated by the YFilter XPath generator 
with varied parameters 
! Query size: 5,10 and 15 nodes 
! Number of split points: 1,3 and 6 
! Probability of ‘*’ node and ‘//’ relations: 10%,30%,50% 
! Number of queries: 32-2k 
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Experiment Results: Throughput 
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! GPU throughput is constant until “breaking” 
point – point where all GPU cores are 
occupied 

! Number of 
occupied cores 
depends on 
number of 
queries and 
query length 
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Experiment Results: Speedup 
! GPU speedup depends on XML document 

size: larger docs incur greater global memory 
read latency 
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! Speedup up to 
9x 

! ‘*’ and ‘//’-probability 
affects speedup since 
it increases the 
YFilter NFA size  1
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Batch Experiments 
! Batched experiments show the usage of intra-

document parallelism 
! Mimic real case scenarios (batches of real-time docs) 
! Batches of size 500 and 1000 docs were used 

! It is nor fair to use single-threaded YFilter 
implementation in batch experiments 

! “Pseudo”-multicore Yfilter: run multiple copies of 
program, distributing document load 
! Each copy runs on it’s own core 
! Each copy filters subset of document set, query set is fixed 
! Query load is the same for all copies, since it affect NFA 

size. Distributing queries deteriorates query sharing due to 
lack of commonalities. 34 



Batch Experiments: Throughput 
! No breaking point – GPU is always fully 

occupied by concurrently executing kernels 
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! Throughput 
increased up 
to 16 times in 
comparison 
with single-
document case   1

 2

 4

 8

 16

 32

 32  64  128  256  512  1024  2048
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Th
ro

ug
hp

ut
, M

B/
s

Th
ro

ug
hp

ut
, m

illi
on

 E
ve

nt
s/

s

Number of queries

Tesla K20, query length 5
Tesla C2075, query length 5

Tesla K20, query length 10
Tesla C2075, query length 10

Tesla K20, query length 15
Tesla C2075, query length 15



Batch Experiments: Speedup 
! GPU fully utilized – increase in the query length 

number yields speedup drop by factor of 2 
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! Achieve up to 
16x speedup  

! Slowdown after 
512 queries 

! Multicore version 
performs better then 
ordinary  
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Conclusions 
! Proposed the first holistic twig filtering using 

GPUs, effectively leveraging GPU parallelism 

! Allow processing of thousands of queries, whilst 
allowing dynamic query updates (vs. FPGA) 

! Up to 9x speedup over software systems in 
single-document experiments 

! Up to 16x speedup over software systems in 
batches experiments 
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Thank you! 


