
High-Performance Holistic
XML Twig Filtering Using

GPUs

Ildar Absalyamov, Roger Moussalli,
Walid Najjar and Vassilis Tsotras

Outline
! Motivation

! XML filtering in the literature
! Software approaches
! Hardware approaches

! Proposed GPU-based approach & detailed algorithm

! Optimizations

! Experimental evaluation

! Conclusions
2

Motivation – XML Pub-subs
! Filtering engine is at the heart of publish-subscribe systems (pub-subs)

! Used to deliver news, blog updates, stock data, etc
! XML is a standard format for data exchange

! Powerful enough to capture message values as well as its structure using XPath
! The growing volume of information requires exploring massively parallel high-

performance approaches for XML filtering

3

Publisher 0

Publisher 1

Publisher N

Subscriber 0

Subscriber 1

Subscriber M

Filtering
Algorithm

Query
Profiles

Matches

Data
Streams

Forward
Matches

Add, Update or
Delete Profiles

Related work (software)
! XFilter (VLDB 2000)

! Creates a separate FSM for each query

! YFilter (TODS 2003)
! Combines individual paths, creates a single

NFA

! LazyDFA (TODS 2004)
! Uses deterministic FSMs

! XPush (SIGMOD 2003)
! Lazily constructs a deterministic pushdown

automaton

FSM-based
approaches

4

Related work (software)
! FiST (VLDB 2005)

! Converts the XML document into
Prüfer sequences and matches
respective sequences

! XTrie (VLDB 2002)
! Uses Trie-based index to match query

prefix

! AFilter (VLDB 2006)
! Leverages prefix as well as suffix

query indexes

sequence-
based
approaches

others

5

Related work (hardware)

! “Accelerating XML query matching through custom
stack generation on FPGAs” (HiPEAC 2010)
! Introduced dynamic-programming XML path filtering approach for

FPGAs

! “Efficient XML path filtering using GPUs” (ADMS 2011)
! Modified original approach to perform path filtering on GPUs

! “Massively parallel XML twig filtering using dynamic
programming on FPGAs” (ICDE 2011)
! Extended algorithm to support holistic twig filtering on FPGAs

6

Why GPUs

! This work proposes holistic XML twig filtering algorithm,
which runs on GPUs

! Why GPUs?
! Highly scalable, massively parallel architecture
! Flexibility as for software XML filtering engines

! Why not FPGAs?
! Limited scalability due to scarce hardware resources available on

the chip
! Lack of query dynamicity - need time to reconfigure FGPA

hardware implementation

7

XML Document Preprocessing
! To be able to run

algorithm in streaming
mode XML tree structure
needs to be flattened

! XML document is
presented as a stream
of open(tag) and
close(tag) events

a

db

... c ...

XML Document

Event Stream
open(a) – open(b) –

open(c) – close(c) – … –
close(b) – open(d) – … –

close(d) – close(a) 8

Twig Filtering: approach
! Twig processing contains

two steps
! Matching individual root-to-

leaf paths
! Report matches back to

root, while joining them at
split nodes

9

a

db

... c ...

a

db

... c ...

Dynamic programming: algorithm
! Every query is mapped to a DP

table

! DP table - binary stack

! Each stack is mapped to query

! Each node in query is mapped to
stack column

! Every column has prefix pointer

! Open and close events map to
push and pop actions on the top-
of-the-stack (TOS)

10

$ /a //c /d /*

Query: /a[//c]/d/*

Query length X
M

L M
ax depth

Prefix pointers

a
d c

*

Dynamic programming: stacks
! Two different types of stack are used for different

parts of filtering algorithm
! Stacks captures query matches via propagation

of ‘1’s

11

! push stacks:
! Used for matching root-to-leaf paths
! The TOS is updated on open (i.e.

push) events
! Propagat ion goes d iagona l ly

upwards and vertically upwards from
query root to query leaves

Dynamic programming: stacks

12

! pop stacks:
! Used for reporting leaf matches back

to the root
! The TOS is updated on close (pop)

events (open events clear the TOS)
! Propagat ion goes d iagona l ly

downwards and vertically downwards
from query leaves to the root

Push stack: Example

13

a

b

c d

d

e

1
1
$ /a //c /d /*

XML Document ! Dummy root node (‘$’) is
always matched in the
beginning

! ‘1’ is propagated diagonally
upwards if
! Prefix holds ‘1’
! Relationship with prefix is ‘/’
! Open event tag matches

column tag

Open(a)

TOS

Push stack: Example

14

a

b

c d

d

e

1
1

1
$ /a //c /d /*

XML Document ! ‘1’ is propagated diagonally
(in terms of prefix pointer)
upwards as in previous
example

Open(d)

TOS

15

Push stack: Example

1
1

1
1
$ /a //c /d /*

XML Document

Open(e) TOS

! If the query node tag is a
wildcard (‘*’), then any tag in
open event qualifies to be
matched

! Since ‘/*’ is a leaf node
matched this fact is saved in
a special binary array
(colored in red in example)

a

b

c d

d

e

16

Push stack: Example

16

1
1

1
$ /a //c /d /*

XML Document
! ‘1’ propagates upwards in

prefix column if
! Prefix holds ‘1’
! Relationship with prefix is ‘//’
! Tag in open event could be

arbitrary
Open(b)

TOS

a

b

c d

d

e

17

Push stack: Example

1
1
1

1
$ /a //c /d /*

XML Document

Open(c) TOS

! If ‘1’ is propagated to
query leaf node (‘//c’ in
example) is saved as
matched

a

b

c d

d

e

18

Push stack: Example

1 1
1

1
$ /a //c /d /*

XML Document

Open(d) TOS

! Node ‘/d’ is not updated,
since ‘/a’ is a split node,
whose chi ldren have
different relationships (‘//’
with ‘c’ and ‘/’ with ‘d’)

! The split node maintain
different fields for these
two kinds of children

a

b

c d

d

e

Pop stack: Example

19

1
1

$ /a //c /d /*

XML Document ! Leaf nodes contain ‘1’ if
these nodes were saved in
binary match array during
1st algorithm phase

! ‘1’ is propagated diagonally
downwards if
! Node holds ‘1’ on TOS
! Relationship with prefix is ‘/’
! Close event tag matches

column tag or column tag is
‘*’ (shown in example)

Close(e)
TOS

a

b

c d

d

e

Pop stack: Example

20

1

$ /a //c /d /*

XML Document
! Split node (‘/a’ in example)

is matched only if all it’s
children propagate ‘1’

! Since so far we have
explored only one subtree of
node ‘/a’ match cannot be
propagated to this node
(‘and’-logical operation used
to match split node)

Close(d)
TOS

a

b

c d

d

e

Pop stack: Example

21

1
1 1

$ /a //c /d /*

XML Document ! ‘1’ is propagated
downwards in descendant
node if
! Node holds ‘1’ on TOS
! Relationship with prefix is ‘//’
! Close event tag matches

column tag
Close(c)

TOS

a

b

c d

d

e

Pop stack: Example

22

1 1

$ /a //c /d /*

XML Document

! The same rules apply,
however nothing is
propagated Close(d)

TOS

a

b

c d

d

e

Pop stack: Example

23

1 1
1

$ /a //c /d /*

XML Document ! This time both children of
the split node are matched,
thus the result of ‘and’-
operation propagates ‘1’
down to node ‘/a’

! As with push stack split
node has two separate
fields for children with ‘/’ and
‘//’ relationships

! Repor t ing match f rom
children to parent does not
depend on event tag

Close(b)
TOS

a

b

c d

d

e

Pop stack: Example

24

1
1
$ /a //c /d /*

XML Document

! Full query is matched if
dummy root node reports
match Close(a)

TOS

a

b

c d

d

e

GPU Architecture
! SM is a multicore

processor, consisting of
multiple SPs

! SPs execute the same
instructions (kernel)

! SPs within SM
communicate through
small fast shared memory

! Block is a logical set of
threads, scheduled on
SPs within SM

25

SM

SP SP

SP SP

SP SP

SP SP

SFU

SMem

IU

SM

SP SP

SP SP

SP SP

SP SP

SFU

SMem

IU

Global memory

Grid
Block1

Block2

BlockN

…

Filtering Parallelism on GPUs
! Intra-query parallelism

! Each stack column on TOS is independently
evaluated in parallel on SP

! Inter-query parallelism
! Queries scheduled parallely on different SMs

! Inter-document parallelism
! Filtering several XML documents as a time using

concurrent GPU kernels (co-scheduling kernels
with different input parameters)

26

XML Event & Stack Entry Encoding
! The XML document is

preprocessed and
transferred to the GPU as a
stream of byte-long (event/
tag ID) pairs

! The event streams reside
in the GPU global memory

27

tagID push/pop

1 bit 7 bits

XML event

GPU Kernel Personality Encoding
! Each GPU kernel, maps to one query node

! The offline query parser creates a personality for each
kernel, which is later stored in GPU registers

! A personality is a 4 byte entry

28

isLeaf prefix
relation

1 bit 1 bit 1 bit 1 bit

children
with ‘/’

children
with ‘//’ tagID prefixID …

10 bits 7 bits

GPU personality

GPU Optimizations
! Merging push and pop stacks to save shared

memory

! Coalescing global memory reads\writes

! Caching XML stream items in shared memory
! Reading stream in chunks by looping in strided

manner, since shared memory size is limited

! Avoiding usage of atomic functions
! Calling non-atomic analogs in separate thread

29

Experimentation Setup

! GPU experiments
! NVidia Tesla C2075(Fermi architecture), 448 cores
! NVidia Tesla K20(Kepler architecture), 2496 cores

! Software filtering experiments
! YFilter filtering engine
! Dual 6-core 2.30GHz Intel Xeon E5 machine with

30 GB of RAM

30

Experimentation Datasets
! DBLP XML dataset

! Documents of varied size 32kB-2MB, obtained by
trimming original DBLP XML

! Synthetic documents (having DBLP schema) of fixed size
25kB

! Maximum XML depth – 10

! Queries generated by the YFilter XPath generator
with varied parameters
! Query size: 5,10 and 15 nodes
! Number of split points: 1,3 and 6
! Probability of ‘*’ node and ‘//’ relations: 10%,30%,50%
! Number of queries: 32-2k

31

Experiment Results: Throughput

32

! GPU throughput is constant until “breaking”
point – point where all GPU cores are
occupied

! Number of
occupied cores
depends on
number of
queries and
query length

 1

 2

 3

 32 64 128 256 512 1024 2048
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Th
ro

ug
hp

ut
, M

B/
s

Th
ro

ug
hp

ut
, t

ho
us

an
d

Ev
en

ts
/s

Number of queries

Query length 5
Query length 10
Query length 15

Experiment Results: Speedup
! GPU speedup depends on XML document

size: larger docs incur greater global memory
read latency

33

! Speedup up to
9x

! ‘*’ and ‘//’-probability
affects speedup since
it increases the
YFilter NFA size 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 32 64 128 256 512 1024 2048

Sp
ee

du
p

Document size, kB

* and //-probability %50
* and //-probability %30
* and //-probability %10

Batch Experiments
! Batched experiments show the usage of intra-

document parallelism
! Mimic real case scenarios (batches of real-time docs)
! Batches of size 500 and 1000 docs were used

! It is nor fair to use single-threaded YFilter
implementation in batch experiments

! “Pseudo”-multicore Yfilter: run multiple copies of
program, distributing document load
! Each copy runs on it’s own core
! Each copy filters subset of document set, query set is fixed
! Query load is the same for all copies, since it affect NFA

size. Distributing queries deteriorates query sharing due to
lack of commonalities. 34

Batch Experiments: Throughput
! No breaking point – GPU is always fully

occupied by concurrently executing kernels

35

! Throughput
increased up
to 16 times in
comparison
with single-
document case 1

 2

 4

 8

 16

 32

 32 64 128 256 512 1024 2048
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Th
ro

ug
hp

ut
, M

B/
s

Th
ro

ug
hp

ut
, m

illi
on

 E
ve

nt
s/

s

Number of queries

Tesla K20, query length 5
Tesla C2075, query length 5

Tesla K20, query length 10
Tesla C2075, query length 10

Tesla K20, query length 15
Tesla C2075, query length 15

Batch Experiments: Speedup
! GPU fully utilized – increase in the query length

number yields speedup drop by factor of 2

36

! Achieve up to
16x speedup

! Slowdown after
512 queries

! Multicore version
performs better then
ordinary

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 32 64 128 256 512 1024 2048

Sp
ee

du
p

Number of queries

GPU-based(K20) vs. YFilter
GPU-based(C2075) vs. YFilter

GPU-based(K20) vs. YFilter multicore
GPU-based(C2075) vs. YFilter multicore

Conclusions
! Proposed the first holistic twig filtering using

GPUs, effectively leveraging GPU parallelism

! Allow processing of thousands of queries, whilst
allowing dynamic query updates (vs. FPGA)

! Up to 9x speedup over software systems in
single-document experiments

! Up to 16x speedup over software systems in
batches experiments

37

Thank you!

