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GPU-NEST: Characterizing Energy
Efficiency of Multi-GPU Inference

Servers
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Abstract—Cloud inference systems have recently emerged as a solu-
tion to the ever-increasing integration of AI-powered applications into the
smart devices around us. The wide adoption of GPUs in cloud inference
systems has made power consumption a first-order constraint in multi-
GPU systems. Thus, to achieve this goal, it is critical to have better
insight into the power and performance behaviors of multi-GPU infer-
ence system. To this end, we propose GPU-NEST, an energy efficiency
characterization methodology for multi-GPU inference systems. As case
studies, we examined the challenges presented by, and implications of,
multi-GPU scaling, inference scheduling, and non-GPU bottleneck on
multi-GPU inference systems’ energy efficiency. We found that inference
scheduling in particular has great benefits in improving the energy
efficiency of multi-GPU scheduling, by as much as 40%.

Index Terms—Multi-GPU, Energy Efficiency, Inference Server.

F
1 INTRODUCTION

THE ever-increasing demand for cloud-based inference
solutions has spurred the development of APIs, runtimes,
and hardware accelerators. For example, Google’s Cloud In-
ference platform provides APIs to execute inference queries
over large-scale, typed time-series datasets. NVIDIA re-
leased Triton Inference Server [1], an open-source cloud
inference software stack solution that is optimized for
NVIDIA GPUs. As another example, Qualcomm Cloud AI
100 inference accelerator and Intel Nervana NNP-I (Spring
Hill) have released hardware accelerators for cloud infer-
ence solutions.

Despite the great benefits in lower power consumption
and higher performance that application specific acceler-
ators (ASIC) bring to the cloud inference services, GPU
accelerators are still more popular in data centers due to
their programmability. Integrating more GPUs into cloud
systems has led to power hungry multi-GPU systems that
gives rise to new power management challenges both at
design and deployment time.

GPUs have been designed to perform most efficiently
at peak utilization. Historically, this has been the common-
case as many GPU-accelerated workloads (such as machine
learning training, high-performance computing, and graph-
ics) are designed to take advantage of as much compu-
tational power as possible. However, individual inference
executions rarely utilize all the computational resources on
the GPU [2] and would require concurrent processing of
inference requests to maximize GPU utilization. Further-
more, the request-response nature of inference workloads
varies during the day due to fluctuations in usage patterns,
leading to potential under-utilization. Under-utilization of
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GPUs pose challenges toward their energy efficiency, and
can be exacerbated in multi-GPU inference systems without
proper coordination and management.

Towards this end, the purpose of this paper is to char-
acterize the energy efficiency of cloud multi-GPU inference
servers. Energy efficiency metric is used since it captures
both performance and power consumption of the system.
Our experiments show that multi-GPU scaling, inference
scheduling, and non-GPU bottleneck are the main contrib-
utors of multi-GPU system energy inefficiency. Specifically,
this work makes the following contributions:
(1) We present GPU-NEST, a methodology to characterize
the energy efficiency of a multi-GPU inference system.
(2) We use GPU-NEST to characterize the energy efficiency
of several multi-GPU server configurations running the
Triton Inference Server.
(3) We explored the implications of inference models, infer-
ence scheduling, multi-GPU scaling, and non-GPU bottle-
necks on multi-GPU inference system’s energy efficiency.

To the best of our knowledge, our work is the first to charac-
terize the energy efficiency of multi-GPU inference servers.

2 MULTI-GPU INFERENCE SERVER OVERVIEW

Figure 1 shows an overview of an inference server. An
inference server consists of an HTTP/Rest or gRPC frontend
that receives inference requests (for example, in input image
for object recognition) and sends back a response. These
incoming requests goes to an inference scheduler that sched-
ules a request to an inference backend. The inference backend
executes the inference on a GPU. An inference model runs
on an inference backend. There can be multiple inference
models (and thus, inference backends) running concurrently
at the same time, even on the same GPU. In addition,
there can be different types of inference backends running
simultaneously (i.e. Caffe, Tensorflow, TensorRT, etc.)

Inference server: Many inference servers exist to serve
pre-trained models, such as TensorFlow Serving, Multi
Model Server [3], and Nvidia Triton inference server [1]. For
the purpose of this paper, our goal is to explore the energy-
efficiency characteristics of GPU-accelerated cloud inference
servers. Towards this end, we decided to evaluate Nvidia’s
Triton inference server as it supports multi-GPU inference
and is optimized for Nvidia GPUs.

In order to improve the inference throughput, Triton
inference server by default uniformly distributes inference
requests across multiple GPUs. Triton also support many
optimizations, such as multiple dynamic batching policies,
that are transparent to the client requesting inference.

Inference backend: The Triton inference server supports
pre-trianed models from different frameworks (TensorRT,
TensorFlow GraphDef and SavedModel, ONNX, PyTorch,
and Caffe2 NetDef) as the inference backend. The most
GPU-optimized of these is Nvidia’s TensorRT, which is
an optimizer and runtime that speed-ups inference perfor-
mance of machine learning applications. Pre-trained models
are optimized by TensorRT, for example with layer fusion,
and are then executed by the TensorRT inference engine.
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Fig. 1: GPU-NEST instruments GPU-accelerated inference
server to measure energy efficiency characteristics.

3 CHARACTERIZING ENERGY EFFICIENCY OF
MULTI-GPU INFERENCE SERVERS

In order to characterize energy efficiency of multi-GPU
inference server systems, we present GPU-NEST, a method-
ology to instrument and measure power and performance
characteristics of inference servers.

GPU-NEST Design: In this section, we detail our design
of GPU-NEST for performing power-performance measure-
ment of multi-GPU inference servers. Figure 1 shows an
overview of the design of GPU-NEST , which consists of two
main components: a client-side load generator to generate
inference requests, and server-side instrumentation of the
inference server. For portability, GPU-NEST is container-
ized for easy deployment on NVIDIA GPU servers. GPU-
NEST is modeled after SPECpower ssj2008 [4] which is
an industry-standard benchmark that evaluates the power
and performance characteristics of servers by measuring
the performance (operations per second) and power (watts)
consumption of servers at each 10% utilization interval.

Client-side inference request generator: Our client-
side inference request generator is built on top of Nvidia’s
perf client [5] tool and is able to generate inference requests
at given rates (RPS). perf client measures the throughput
and latency of the generated requests over a time window
and reports the steady-state metrics along with percentile
confidence intervals. We present average latency in our
results and observe similar trends with the tail latency.

To obtain the power and performance characteristics
of GPU inference systems, GPU-NEST first identifies the
maximum RPS that can be sustained by saturating the GPUs
and observing the steady-state inference throughput. Next,
perf client profiles power-performance characteristics in 10
RPS steps from 0 to the maximum RPS. We find that each
step only needs to run for ten seconds to obtain reliable and
reproducible steady state statistics.

Server-side Instrumentation: In order to measure the
power of the GPUs on the server under test, we instrument
a Power Monitor process, as shown in Figure 1, that is

TABLE 1: GPU Inference Server Platform Specifications
8-GPU 2-GPU #1 2-GPU #2

CPU Xeon Silver 4216 Core i7-6700K Core i5-2500K
Sockets 2 1 1

Cores/socket 16 4 4
Threads/core 2 2 1

Memory 192 GB 16 GB 8 GB
PCIe speed 8 GT/s 8 GT/s 5 GT/s

GPUs 8x Tesla T4 2x GTX 1070 2x GTX 1070
GPU memory 16 GB (each) 8 GB (each) 8 GB (each)
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Fig. 2: (a) Peak power consumed varies by inference model
executed and shows similar power curve shape. Max GPU
util. for each model shown in parenthesis. (b) The energy
efficiency curve of different inference models, with each
model normalized w.r.t. itself, shows that different models
will experience similar energy efficiency trends.

synchronized with the client-side load generator. The power
monitor starts recording the power of the server’s GPUs by
receiving a client-side start_power_measure command.
The server-side Power Monitor stops power measurement
and sends the average measured power of the GPUs to the
client-side script when receiving get_measured_power
command. The Power Monitor uses NVIDIA System Man-
agement Interface (nvidia-smi) for power measurement; it
can also be easily extended to utilize external power moni-
toring tools if the GPU does not support power reporting.

4 EVALUATION

4.1 Experimental Setup

Table 1 shows the specifications of GPU servers used in our
case studies. We select a variety of GPU-server configuration
including an 8-GPU server (8x Telsa T4) and two 2-GPU
servers (2x GTX 1070) with different non-GPU specs. As de-
tailed in the previous section, we utilize the Triton inference
server with the TensorRT inference backend.

4.2 Case studies

Implications of inference models: Inference throughput
and latency are dependent on the type of inference model
that is being executed. A larger model that requires more
GPU resources would result in higher latency and lower
throughput due to utilizing more hardware resources. To
explore the impact of various inference models on energy
efficiency, we run ResNet, Inception, and Dense Net on the
8-GPU server. As shown in Figure 2a, both ResNet and
Inception Net almost fully utilize the GPU (100% and 98%,
respectively) and both consumes ∼557W at peak. For Dense
Net, since it can only utilize 87% of the GPU due to lower
computational requirements, Dense Net’s has a lower peak
power at ∼508W. While the peak power consumed varies by
inference model, we observe the shape of the GPU’s power
profile remains similar and thus, the energy efficiency trends
of different models are similar (Figure 2b). In general, all
GPUs running at lower utilization will also run at a lower
energy efficiency. Based on these results, we use Resnet
as the inference model under test as it maximizes GPU
utilization.
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Implications of multi-GPU scaling: Figure 3 shows the
case study where GPU-NEST measures the 8-GPU server’s
power and performance with 1 to 8 GPUs to explore how
energy efficiency scales with GPU count.

Observation 1: GPU’s active idle power affects overall energy
efficiency of the system. Idle Tesla T4 GPU consumes ∼10W
(we call this Inactive idle power). However, loading infer-
ence model(s) into a GPU increases its power by ∼18W
(we call this Active idle power). Thus, as Figure 3a shows
for RPS = 0, with a single GPU loaded with inference
model(s), the overall 8-GPU system’s idle power is nearly
98W (∼10W for each idle GPU plus ∼28W for the GPU
loaded with model(s)). This systems’ active idle power
increases by ∼18W per GPU as more GPUs are loaded
with inference models. These results indicate that the GPUs
perform idle power gating when the GPU is idle with
no inference model loaded. This idle power can result in
significant waste when the system’s RPS load is low.

Observation 2: No fixed GPU count achieves the best energy
efficiency across different RPS. There exist a trade-off in energy
efficiency between active idle power, GPU count, and per-
formance. For example, in Figure 3b, at 1000 RPS load, a 6-
GPU configuration (6x T4) is more energy efficient than both
7-GPU and 8-GPU configurations. The 6-GPU configuration
have all GPUs operating at near peak utilization, which
corresponds to running at a higher energy efficiency (RPS
/ W). Meanwhile, the 7-GPU configuration has 7 GPUs
running at a lower energy efficiency point. With the 7-
GPU configuration at this RPS, the performance gains do
not outweigh the negatives of additional power added (yet
not utilized) to the server and hence lower efficiency point.
Therefore, having a fixed GPU count configuration does not
provide the highest energy efficiency and there is a need for
dynamically selecting GPU counts in inference servers.

While similar trends have been observed in other con-
texts, such as among servers in a cluster [6-7], to the best of
our knowledge, our work is the first to highlight this trend
in multi-GPU servers. This opens up future work to see how
applicable techniques design for cluster management can
translate to managing GPUs within a server.

Implications of inference scheduling: Triton inference
server provides uniform inference scheduling policy by
default. To explore the impact of inference scheduling on en-
ergy efficiency, we implemented a packing-based scheduling
policy. With packing scheduling, we send inference requests
to a GPU until that GPU is fully utilized (without causing
host-side queuing), before utilizing another GPU. Packing
scheduling consolidates requests into a sub-set of active
GPUs, while leaving another sub-set idle.

Observation 3: The power and energy efficiency profile of the
server with different GPU count follows the same trend using uni-
form inference scheduling policy. As the number of GPUs scale,
we observe that each n-GPU power curve is similar in shape
to the 1-GPU case as GPU scales (Figure 3a). This behaviour
is similar for the energy efficiency profile (Figure 3b). This
pattern indicates that the inference requests are uniformly
distributed across all GPUs in the Triton inference server
which is energy efficiency agnostic.

Observation 4: Inference scheduling policy can significantly
improve energy efficiency without sacrificing performance. The
packing inference scheduler power and energy efficiency
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Fig. 3: Power consumption and Normalized Energy Effi-
ciency of an 8-GPU server (8x Tesla T4). Energy efficiency
is measured as RPS / W and normalized to the 8x T4 case.

profile is shown in Figure 3 with the black dotted lines.
By packing responses to a sub-set of GPUs, this scheduling
does not incur the overhead of increased active idle power,
and gains the benefit of running GPUs at higher utilization,
and thus, higher energy efficiency points. In Figure 3b, we
see that the packing scheduler effectively tracks the highest
energy-efficiency configuration at a given RPS. The effi-
ciency drops in the saw-tooth pattern is due to the increase
in active idle power when a new GPU has a model loaded
and running at a lower utilization. Packing scheduling can
achieve 40% greater energy-efficiency levels than uniform
scheduling on all 8 GPUs.

Implications of non-GPU specs: To explore the im-
pact of non-GPU component configurations on GPU energy
efficiency, we compare two servers running two Nvidia
GTX1070 GPUs each. The 2-GPU #2 server has a less power
CPU, less cores/threads, less memory, and lower PCIe band-
width than those of 2-GPU #1 server. Figure 4 shows the
scheduler queue latency and GPU inference execution latency
across a range of RPS. The maximum achievable RPS that
does not cause exponential host-side queuing occurs when
the GPU’s are nearly fully utilized by the inference backend.

We note that GPU inference latency tends to be relatively
stable and only spikes when it is fully utilized (>98%).
After this point, the requests begin queuing on the host
side (dotted lines). We observe a similar trend with the 8-
GPU server. This further implicates that GPUs can tolerate
packing scheduling to increase utilization without signifi-
cant latency increases.

Observation 5: Non-GPU bottlenecks can impact optimal
multi-GPU configuration and limit energy efficiency. When 1
GPU is running, both servers are able to fully utilize the
GPU (98-99%) with nearly the same achieve max RPS of
∼170 RPS. However, when both GPUs are utilized for
Triton, non-GPU bottlenecks can limit the achievable RPS of
the GPUs. Potential bottlenecks could be insufficient CPU
processing power or PCIe communication bottlenecks. For
example, 2-GPU #1 can achieve 333 RPS with 2 GPUs at 97%
total GPU utilization, while 2-GPU #2 can only achieve 240
RPS with 2 GPUs at 75% total GPU utilization. Non-GPU
bottlenecks can limit achievable GPU utilization, preventing
the GPU from running at this highest efficiency range.

Figure 5 shows the power and energy efficiency curve
of a single GTX1070 (similar on both servers), and of both
2-GPU servers. What is notable is that for 2-GPU #1, since
both GPUs can run at near maximum utilization, they both
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Fig. 4: Average inference scheduler queue latency (lower
dashed lines) and GPU execution inference latency (top
solid lines). Vertical lines denote max sustainable RPS for a
GPU count. Percentages denote GPU util. at max RPS.

achieve the maximum energy efficiency that their max RPS.
However, the 2-GPU #2 scenario cannot fully utilize the
GPU due to non-GPU bottlenecks, limiting both GPUs to
run at a medium utilization. In fact, running both GPUs would
significantly reduce energy efficiency by almost 30%. Therefore,
multi-GPU inference scheduling needs to take into account
non-GPU bottlenecks in order to select the best multi-GPU
configuration that maximize energy efficiency.

5 RELATED WORK

Previous work on energy efficiency of GPUs has mostly
focused on CPU-GPU heterogeneous systems by leverag-
ing different approaches including DVFS- [8-11], CPU-GPU
workload division- or scheduling- [12-13], architectural
modification- [14], application- [15], and machine learning-
based [16] techniques. The work of most relevance explores
non-GPU bottlenecks of integrated CPU-GPU workloads
with a focus on CPU energy efficiency impact [17] and
bottlenecks of PCIe interconnects in multi-GPU systems
with a focus on scalability [18]. However, none of these prior
works explore the energy efficiency characteristics unique to
multi-GPU servers or of inference servers.

Although several papers focused on characterizing or
optimizing energy efficiency of single GPUs [8-19-20] and
multi-chip module GPUs [21], and energy-efficient inter-
GPU communication [22], to the best of our knowledge, our
work is the first to characterize energy efficiency of multi-GPU
servers and of multi-GPU inference servers.

6 CONCLUSION

We present GPU-NEST, a power benchmarking methodol-
ogy for multi-GPU inference servers. Through various case
studies on the Triton inference server, we explored the im-
plications of inference models, multi-GPU scaling, inference
scheduling, and non-GPU bottlenecks and the challenges
they present to energy efficiency. In addition, we found that
significant opportunities exist through inference scheduling
and idle power management.
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