
Border Gateway Protocol Anomaly Detection Using
Neural Network

Mohsen Karimi†, Ali Jahanshahi‡, Abbas Mazloumi‡, Hadi Zamani Sabzi‡
Department of Electrical and Computer Engineering†, Department of Computer Science and Engineering‡

University of California, Riverside
{mkari007, ajaha004, amazl001, hzama001}@ucr.edu

Abstract—Having reliable and stable connectivity to the In-
ternet dramatically depends on how Border Gateway Protocol
(BGP) can avoid bad-behaviour events by detecting them on time.
Despite a lot of efforts have gone into detecting BGP anomalies
during the last decade, it is still a challenging issue due to
emerging new abnormal behaviours both from the attackers and
network misconfigurations. In this work, we propose a Neural
Network classifier to detect the abnormal BGP events caused by
worm attacks in the network. The results show that our method
outperforms the previous work in both generality and accuracy.

Index Terms—BGP, Anomaly Detection, Neural Networks,
Machine Learning

I. INTRODUCTION

Border Gateway Protocol (BGP) is the Internets default
inter-domain routing protocol designed to exchange routing
and reachability information among autonomous systems (AS)
on the Internet. An AS is a set of routers under a single
technical administration. Each router in an AS uses an Interior
Gateway Protocol (IGP) to communicate with other routers
within the AS and an Exterior Gateway Protocol (EGP) such
as Border Gateway Protocol (BGP) to communicate with other
ASes. The Border Gateway Protocol makes routing decisions
based on paths, network policies, or rule-sets configured by a
network administrator and is involved in making core routing
decisions. Various abnormal events such as power outage,
misconfiguration, and different types of attacks can affect the
stability and reachability of some parts of the network which
can lead to delays and data loss over the Internet. We refer
these abnormal behaviors of the BGP protocol as anomalies.
These anomalies can range from single to thousands of wrong
BGP updates which can change the behavior of the BGP traffic
over the time [1].

In recent years, in conjunction with anomalies such as
hijacking, misconfiguration, link failure, and DoS attacks, it
is reported that malware attacks such as Nimda and Slammer
can affect on BGP routing as well [2]. However, there are
still several anomalies have not reported or even unnoticed.
The rapid growth of Internet size can lead to decrease of
the stability of the Internet. For example, in 2018, 4,739
routing incidents have been disclosed by BGPmon, a popular
monitoring service [3]. Thus, the problem of anomalies is still

978-1-7281-0858-2/19/$31.00 ©2019 IEEE

an important issue in having a reliable and stable connectivity
to Internet.

BGP anomaly detection problem has been addressed from
various aspects. Anomaly detection techniques can be evalu-
ated based on different metrics such as their ability to cover
different types of BGP anomalies (generality), their source
cause of anomalies, BGP features used, and their accuracy.
Generally, anomaly detection methods try to model the normal
behavior of the network and find the deviation from this nor-
mal behavior. The existing methods mainly focus on Statistical
approaches [4], [5] and Machine Learning techniques [6], [7].

In [6] a framework is introduced to detect the anomalous
events caused by worm attacks and network blackout. They
use three separate Support Vector Machine (SVM) models to
classify each anomaly event into normal and abnormal. In [8],
the authors introduce a framework which uses a single decision
tree for classification of all types of anomalies. The existing
work on both categories, i.e. Statistical and Machine Learning,
suffer from either relatively low accuracy or inability to detect
multiple types of anomalies.

In this work, we present an anomaly detection framework
for BGP protocol using Neural Network to address the afore-
mentioned shortcomings. The proposed framework includes
three main steps; first, we preprocess the raw data to remove
unnecessary and redundant incidents, then we extract features,
and finally we train a neural network and cross validate it to
evaluate the performance. The results show that our method
is more general and accurate than the similar existing ones.

II. PROPOSED METHODOLOGY

In this work, we analyze abnormal BGP behaviors caused
by worm attacks using Neural Networks. The proposed method
consists of three main processes: data preparation, feature
extraction, and classification. First, we parse raw data sets
gathered from two databases using libbgpdump tool and con-
vert them to regular format to be processed in the next step.
Then, the features are extracted from data sets using methods
presented on [9] for every time slot, which is set to 60 seconds
in this work. Next, we train a Multi-Layer Perception (MLP)
Neural Network using a certain portion of data set to build
the classifier. Finally, we evaluate the classifier’s performance
with the remaining data.

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 6092

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 29,2020 at 17:57:29 UTC from IEEE Xplore. Restrictions apply.

���

���

����

�����

�

���

���

����

�����

��

��

�	

�����

���

x2

x1

xm

y

�
��������������������
�������

�����

��������	
��
����
��������� ��	
���� ������������� ����
��������
��

�������
����������
��������
���� �������
���
����

��
��
��
��

�
��
�

��
��

�
��
�

Fig. 1. The structure of the proposed framework

A. Data Structure

In this section the origin of the data sets, structure of data,
and features are described. The routing data is selected from
two different classes of normal and abnormal network. Since
the main focus of this research is the effect of worm attacks on
router update messages behavior, normal and abnormal classes
of data are selected from the router’s updates in presence and
in absence of worm respectively. The data are gathered from
[10] and [11]. Table I shows the virus name, source of data,
date, and duration of the virus presence in the network. The
virus presence duration is based on the information reported
in [12].

TABLE I
WORM SPECIFICATION

Worm Name Source of Data Date Duration
Nimda rrc04, Geneva Sept 18, 2001 24 hours

Slammer Routeviews, Oregon Jan 25, 2003 24 hours
Code-Red rrc02, Paris Jul 19, 2001 24 hours

To extract features, a Python script is written to parse
the files that were generated using libbgpdump. The script
calculates all the the parameters for a given time slot. Extracted
features and a brief description of each feature have been
shown in Table II.

TABLE II
LIST OF EXTRACTED FEATURES

BGP Features
Feature Explanation

1 Updates # of update messages.
2 A-Updates # of updates which only announce prefixes.
3 W-Updates # of updates which withdraw at least one prefix.
4 A-Prefix # of announced prefixes
5 W-Prefix # of withdrawal prefixes
6 A-Dup # of duplicated announced prefixes
7 W-Dup # of duplicated withdrawal prefixes
8 AW-Mix # of withdrawal after announced or vice versa.

B. The Classifier Framework

This section describes the architecture of the proposed
classifier framework, its components, and their operations. As
mentioned before, libbgpdump generated raw data is divided
into 60 seconds slots/intervals, and the features introduced in
Table II have been extracted for each of them.

The features and their corresponding classes, i.e. normal
or abnormal, are divided into two portions: 90% of them are

used for training phase and 10% are used for testing phase
to evaluate the overall performance of the classifier. It is
worth mentioning that for each portion, the data was selected
randomly.

The classifier utilized in this research is based on MLP
Neural Network which uses Back-Propagation technique for
training. The structure of the whole framework is shown
in Figure 1. For every set of extracted features, one output
is considered to be labeled as normal or abnormal. The
corresponding outputs for normal and abnormal feature sets
are assigned -1 and +1, respectively.

In the training phase, the 90 percent of extracted feature
vectors along with their corresponding outputs are fed to the
network. The input layer of the network consists of input nodes
of feature vector. Therefore, the number of neurons in the first
layer is the number of features which here is 8. Since there are
two classes in this work, i.e. normal and abnormal, the number
of neurons in the last layer is 1 and a threshold unit is added
afterward to classify between two predefined classes. Number
of hidden layers are chosen 2 and the optimum number of
nodes in each hidden layer is chosen based on (1) and (2)
[13].

k1 =
√
N ∗ (p+ 2) + 2

√
N

p+ 2
(1)

k2 = p

√
N

p+ 2
(2)

Where p, k1, and k2 are number of outputs, number of
neurons in first hidden layer, and number of neurons in second
hidden layer respectively.

The activation function used to calculate each layer’s output
from the summation of weighted inputs is based on tansig
function which is the Hyperbolic Tangent Sigmoid. This
activation function has output range from -1 to +1 that is very
suitable in cases where there are only two classes.

TABLE III
OVERVIEW OF NEURAL NETWORK SPECIFICATION

Neural Network Specification
Number of Samples (N) 5535 Samples
Input Layer 8 Neuron
Output Layer (p) 1 Neuron
First Hidden Layer (k1) 129 Neurons
Second Hidden Layer (k2) 43 Neurons
Activation Function Sigmoid
Maximum Number of Epochs 10000
Simulation Framework MATLAB

6093

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 29,2020 at 17:57:29 UTC from IEEE Xplore. Restrictions apply.

95 98
8885 85 85

98 98 98

0

20

40

60

80

100

Nimda Slammer Code-Red

Ac
cu

ra
cy

 (%
)

[6] [8] Our Method

Fig. 2. Anomaly detection accuracy comparison

Other settings of the network are set using trial and error
to achieve the best performance. Specifications of the Neural
Network used in this project are summarized in Table III.

III. EXPERIMENTAL RESULTS

In the first step of experiments, a Neural Network model
is built for 90% of combined data set of three BGP events.
For every abnormal day, one day is also used as normal day
to build the whole data set. The normal day for each data set
is considered as ten days before each anomaly happened. For
example, Sept 8, 2001 is used as a normal day for Nimda
event. After training the network, the test set, containing 10%
of unseen normal data and 10% of unseen abnormal data
are passed to the model to verify its ability to classify the
behaviour of the network to normal or abnormal.

Fig. 2 shows the comparison of anomaly detection accuracy
for our approach versus [6] and [8]. We used data sets
from Slammer, Nimda, and Code-Red worms that affected
performance of the global Internet BGP for training and testing
the proposed classifier, which is the same data set used by [6]
and [8].

According to the results, our classifier outperforms [8]
in detecting all types of anomalies. Although our classifier
accuracy is slightly better or equal to that of [6], we use a
single classifier to detect all the anomalies which adds more
generality to our classifier.

IV. CONCLUSION

In this project we proposed a method to classify abnormal
behaviour of network by designing a Neural network classifier.
To classify data we used 8 features based on BGP update
messages. The data of three different data sets from three
different types of worms, each of which were presented in
different dates, were used in this work to extract features. The
features were fed to an MLP Neural Network to build the
classifier. Finally, a set of test data were used to evaluate the
performance of the network. We could achieve 98% accuracy
by using only 8 features and training a single classifier for all
three types of data sets which is the best performance in this
area to the best of our knowledge.

One of the possible future works could be adding more
features to the feature vector that possibly make the trained
network more effective and therefore would lead to better

performance of the trained classifier. A more precise data set
that separates the data more accurately would also help to
improve the performance of the classifier.

REFERENCES

[1] B. Al-Musawi, P. Branch, and G. Armitage, “Detecting bgp instability
using recurrence quantification analysis (rqa),” in 2015 IPCCC, Dec
2015.

[2] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang, Analysis of
BGP Update Surge during Slammer Worm Attack. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 66–79.

[3] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill, “Bgp hijacking
classification,” in 2019 Network Traffic Measurement and Analysis
Conference (TMA), June 2019, pp. 25–32.

[4] M. C. Ganiz, S. Kanitkar, M. C. Chuah, and W. M. Pottenger, “Detection
of interdomain routing anomalies based on higher-order path analysis,”
in Sixth International Conference on Data Mining (ICDM’06), Dec
2006.

[5] S. Deshpande, M. Thottan, T. K. Ho, and B. Sikdar, “An online mech-
anism for bgp instability detection and analysis,” IEEE Transactions on
Computers, vol. 58, no. 11, pp. 1470–1484, Nov 2009.

[6] A. Allahdadi, R. Morla, and R. Prior, “A framework for BGP abnormal
events detection,” CoRR, vol. abs/1708.03453, 2017. [Online]. Available:
http://arxiv.org/abs/1708.03453

[7] N. M. Al-Rousan and L. Trajković, “Machine learning models for
classification of bgp anomalies,” in 2012 IEEE 13th International
Conference on High Performance Switching and Routing, June 2012.

[8] Q. Wu and M. Wang, “Abnormal bgp routing dynamics detection
by sampling approach in decision tree,” in 2009 First International
Workshop on Database Technology and Applications, April 2009, pp.
170–173.

[9] A. Moreira, “Anomaly detection in enterprise networks,” Master’s thesis,
Faculty of Engineering, University of Porto, 2011.

[10] U. of Oregon. (2015, jul) University of oregon route views project.
[Online]. Available: Available:http://www.routeviews.org/

[11] R. I. E. N. C. Center. (2015, june) University of oregon route views
project. [Online]. Available: http://www.ripe.net/

[12] N. y. Liang, G. b. Huang, P. Saratchandran, and N. Sundararajan, “A
fast and accurate online sequential learning algorithm for feedforward
networks,” IEEE Transactions on Neural Networks, vol. 17, no. 6, pp.
1411–1423, Nov 2006.

[13] D. Stathakis, “How many hidden layers and nodes?” Int. J. Remote
Sens., vol. 30, no. 8, pp. 2133–2147, Apr. 2009. [Online]. Available:
http://dx.doi.org/10.1080/01431160802549278

6094

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 29,2020 at 17:57:29 UTC from IEEE Xplore. Restrictions apply.

