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Abstract— One of the cost-efficient fabrication approaches for 

connecting layers in three-dimensional integrated circuits (3D ICs) 

is the use of through-silicon vias (TSVs). However, the large and 

closely spaced nature of TSVs has made them seriously prone to 

coupling capacitances between TSVs, increasing the probability of 

crosstalk faults. To reduce crosstalk faults in 3D ICs, this paper 

proposes a dynamic numerical-based crosstalk avoidance 

mechanism called 3D-DyCAC. The 3D-DyCAC mechanism is 

applied in two phases. In the first phase, a numerical system-based 

crosstalk avoidance code (CAC) is proposed to reduce the opposite-

direction transitions in adjacent TSVs. This numerical-based CAC 

generates code words with cumulative groups of 1s and 0s to 

minimize adjacent transitions in arranged N × N meshes of TSVs. 

The proposed CAC has no ambiguity in representing code words 

and generates a unique code word for each data word. In the 

second phase, a triangular window (TW) is introduced to consider 

overlaps between the cells of TSVs during the arrangement of code 

words on TSVs. In the TW area, the content of the victim TSV 

and/or the content of adjacent bit positions can be dynamically 

inverted based on the content of data words. Evaluation results 

show that 3D-DyCAC reduces the area occupation, power 

consumption, and power-delay product of codec by 10%, 24%, 

and 46%, respectively, in comparison with state-of-the-art 

mechanism 3DLAT. 

Keywords— Three-Dimensional Integrated Circuits (3D ICs); 

Through-Silicon Vias (TSVs); Crosstalk Faults; Crosstalk Avoidance 

Code (CAC). 

I.  INTRODUCTION  

Increasing the delay gap between interconnections and gates 

has made interconnection delay the major performance 

bottleneck in two-dimensional integrated Circuits (2D ICs) [1]. 

This is due to long interconnections between processing 

elements in 2D ICs that increase the hop count between source 

and destination during data transmission. To address this 

problem, designers often add another dimension, shortening the 

routing hops by providing three-dimensional integrated circuits 

(3D ICs) [1][2]. The 3D ICs have several advantages over 2D 

ICs, including higher scalability, higher throughput, and lower 

power consumption [2]. However, with migration to 3D ICs, 

new evil rises due to coupling capacitance between through-

silicon vias (TSVs) that connect different stack layers [1]. The 

coupling capacitances between TSVs cause them to mutually 

affect the transmitted signal of adjacent TSVs and generate 

crosstalk faults [3]. Crosstalk faults are due to TSVs’ large 

diameter and their bounded, adjacent, short structure, and 

crosstalk faults can lead to unwanted voltage glitches and delay 

and/or speed-up in rising/falling transitions appearing on the 

center TSV (called the victim TSV). These effects can lead to 

the corruption and misrouting of data and also power 

dissipation in 3D ICs [3][4].  

Mechanisms to address crosstalk faults [5]-[21] have been 

developed at the physical level [4], transistor level, and 

register-transfer level (RTL) [5]-[21]. Shielding and repeater 

insertion and skew transitions are examples of physical level and 

transistor level mechanisms to tackle crosstalk faults. Coding 

mechanisms at RTL level are among the promising mechanisms. 

Numerical-based crosstalk avoidance codes (CACs) at the RTL 

are relatively cost-efficient compared to physical-level and 

transistor level mechanisms, and they reduce crosstalk faults by 

preventing specific transition patterns [16][21]. However, CACs 

cannot directly be applied in 3D ICs. This is due to the fact that, 

in 2D ICs, the victim TSV is surrounded by only two aggressor 

wires, while in 3D ICs, the victim TSV is surrounded by 

multiple aggressor TSVs [3]. This makes the TSV-to-TSV 

coupling capacitance more complex. In other words, the 

additional dimension results in a significant difference between 

using CACs in 2D IC and 3D IC designs.  

A handful of previous studies on 3D ICs have developed 

approaches to reduce or omit crosstalk faults by using 

numerical-based CACs [5][6][12][13], but these approaches 

have entailed undesirable overheads. To solve this problem, the 

current paper proposes an overhead-efficient CAC-based 

mechanism for 3D ICs called dynamic numerical-based 

crosstalk avoidance (3D-DyCAC). The mechanism of 3D-

DyCAC is applied in two phases. In the first phase, a numerical 

system generates code words to minimize adjacent transitions. 

The numerical system generates a unique code word for each 

data word and consequently has no ambiguity in representing 

code words. In the second phase, a triangular window (TW) is 

introduced to consider overlaps between the cells of TSVs. 

Through the use of the TW during the arrangement process, the 

content of the victim TSV and/or the content of an adjacent bit 

position are inverted dynamically based on the content of the 

data word. Evaluation shows that 3D-DyCAC reduces the area 

occupation, power consumption, and power-delay product of 

codec by 10%, 24%, and 46%, respectively, in comparison with 

state-of-the-art mechanism [5]. 
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II. 3D-DYCAC: DYNAMIC NUMERICAL-BASED CROSSTALK 

AVOIDANCE MECHANISM 

 Numerical-based CACs are among the cost efficient 

mechanisms that can prevent the occurrence of specific 

transition patterns [19]. This is done by encoding data word 

𝑑 = 𝑑𝑁𝑑𝑁−1𝑑𝑁−2𝑑𝑁−3….𝑑2𝑑1 in a sender and decoding code 

word 𝑐 = 𝑐𝑁𝑐𝑁−1𝑐𝑁−2𝑐𝑁−3….𝑐2𝑐1 in a receiver, where N is the 

number of TSVs. Using numerical system 𝑏 = 𝑏𝑁 , 𝑏𝑁−1, … , 𝑏1, 

data words can be calculated by 𝑐 = ∑ 𝑑𝑖 ×𝑁
i=1 𝑏𝑖 in a sender. In 

other words, a numerical system is a mathematical notation that 

uses symbols in a consistent manner to represent numbers of a 

given set [19]. For example, a numerical system with bases of 9 

3 2 2 1 1 1 0 1 maps data word 0 1 1 0 0 0 0 0 0 to code word 0 

0 0 0 0 1 1 1 1, in such a way that 3 = 9 × 0 + 3 × 0 + 2 × 0 +
2 × 0 + 1 × 0 + 1 × 1 + 1 × 1 + 0 × 1 + 1 × 1. However, the 

structures and arrangements of TSVs make the application of 

numerical-based CACs complex in 3D ICs. A system of 𝑁 × 𝑁 

TSVs is too complex to be analyzed, so this paper employs a 

coding in partitions of 3 × 𝑁 meshes of TSVs.  These meshes 

have 3 rows and N columns. This structure can be extended to 

meshes of 𝑁 × 𝑁 TSVs.  

Considering the arrangement of data words on two neighbor 

meshes of TSVs shown in Figure 1, the sequence of code word 

𝑑 = 𝑑𝑁𝑑𝑁−1𝑑𝑁−2𝑑𝑁−3….𝑑2𝑑1 should satisfy the following 

conditions:  

 

Condition 1: Direct TSVs (in blue in Figure 1) are located at 

distance 𝑑 from the victim TSV (in red in Figure 1), 

and they impose more crosstalk effects than diagonal 

TSVs with 𝑑√2 distance from victim TSV (in yellow 

in Figure 1), so it is required that 𝑑2, 𝑑4, 𝑑6 and 𝑑8 

have the same values as far as possible. 

 

Condition 2: When the coding mechanism is extended to a 

neighboring mesh of TSVs, 𝑑8 becomes a new victim 

in the neighbor mesh. To prevent crosstalk faults and 

consider overlapping in this condition, at least two 

TSVs out of 𝑑1, 𝑑2 and  𝑑3 (in neighbor mesh of TSV) 

should have the same value as 𝑑8. As these 𝑑i𝑠 are 

arranged in triangle, this area is called the triangular 

windows (TWs), shown in Figure 1 in dashed lines. 

To satisfy these two conditions, this paper proposes 

dynamic numerical-based crosstalk avoidance (3D- DyCAC). 

The proposed 3D-DyCAC is applied in two phases. In the first 

 

 phase, which satisfies the first condition, a CAC based on a 

numerical system generates code words with cumulative groups 

of 1s and 0s to minimize tandem transitions in arranged 3 × N 

meshes of TSVs. In the second phase, which satisfies the 

second condition, a dynamic mechanism considers overlaps 

between cells of TSVs during the arrangement of code words 

on TSVs. 

In the proposed numerical-system-based CAC, adjacent 

wires cannot transit in opposite directions when transitioning 

from one code word to another code word [19]. Thus, transition 

patterns 01 → 10 and 10 → 01 are avoided. This property can 

satisfy the first condition, and it generates the code words with 

cumulative 1s and 0s. This property prevents changing the 

value of adjacent TSVs. In other words, the bit patterns 010, 

101, 1001, and 0110 cannot appear in any of the code words. 

The CAC proposed in the first phase of 3D-DyCAC 

generates bases through Eq. 1:  

 

𝑏𝑖 = {

1 𝑖 = 1
0 𝑖 = 2

𝑔i−1 − 𝑔i−2

𝑔𝑁−3

3 ≤ 𝑖 ≤ 𝑁 − 1
𝑖 = 𝑁

 
                       (1) 

Where  𝑔i is the maximum number of code words that can 

be generated in 3D-DyCAC based on Eq. 2: 

 

   𝑔𝑘 = 𝑔𝑁−1 + 𝑔𝑁−5  for 𝑁 > 6          (2) 

 

The initial values of this recursive relation are 𝑔1 = 2, 

𝑔2 = 3, 𝑔3 = 4, 𝑔4 = 5, and 𝑔5 = 7. This numerical system is 

complete, and for any data word 𝑑, 𝑑 ∊ [0, ∑ 𝑏i], the system 

generates at least one representation using the numerical 

system. The completeness is achieved if for all 𝑏s, 𝑏i ≤ 1 +
∑ 𝑏i−1

j=1 . This numerical system can be extended to any arbitrary 

number of TSVs.  

The mapping algorithm of 3D-DyCAC that maps a data 

word to a code word using the numerical system is shown in 

Figure 2. In this mapping algorithm, 𝑟𝑖 is the remainder of each 

step to the next step, and 𝐹𝑖 is the i
th

 base of Fibonacci 

sequence. 

Applying CACs in the first phase can reduce the number of 

transitions by generating cumulative numbers of 1s and 0s. 

However, using this numerical system cannot by itself satisfy 

the required conditions for applying numerical-based CACs in a 

mesh of TSVs: the overlaps between the adjacent TSVs are not 

considered while arranging the data words on a mesh of TSVs. 

The data words 𝑑2, 𝑑4, 𝑑6, and 𝑑8 should have the same values 

as far as possible, and at least two out of 𝑑1, 𝑑2, and  𝑑3 should 

have the same value as 𝑑8. It is important to check the two 

required conditions after generating code words using CAC. To 

perform such a check, two counters, called direct neighbor 

counter (DNC) and triangular counter (TC), are defined. DNC 

reports the similarity between a directly adjacent TSV and the 

victim TSV, and TC reports the number of possible similarities 

between 𝑑1, 𝑑2, 𝑑3, and  𝑑8.  DNC and TC are given by  
X

4
  and  

X

3
, respectively. Where X shows the similarity of direct 

  
Figure 1. The Arrangement of Data Words in TSVs in Two Neighbor 

Meshes 

d1 d4 d7
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neighbor TSVs to 𝑑5 in DNC and possible similarities between 

𝑑2, 𝑑1, 𝑑3 and 𝑑8 in TC. As 𝑑5 has four direct neighbors, the 

denominator in DNC is equal to four, and since, in TW, three 

data words should be the same as far as possible, the 

denominator is equal to three. 

The flow chart of arranging 𝑑𝑖 data words in the second 

phase is shown in Figure 3. Based on this flow chart, the first 

step is counting the values of the DNC and TC counters. If
 

DNC ≤  
𝑋

4
 or TC ≤ 

 X

3
, then the values of 𝑑2 and 𝑑5  are checked; 

if they are the same, both 𝑑2  and 𝑑5  are inverted. Otherwise, 

only the victim TSV, 𝑑5 is inverted dynamically. This 

mechanism of using CAC with the dynamic inversion of 

𝑑2  and/or 𝑑5  is called 3D-Dynamical CAC, or 3D-DyCAC.
 

Through the use of this mechanism,

 

the two

 

required conditions

 

are satisfied.  

III.  EVALUATION AND RESULTS 

In order to experimentally evaluate the proposed 

mechanism, the codec of 3D-DyCAC is implemented using 

VHDL-based simulations and synthesized by Design Compiler 

in 45 nm technology. To have fair comparisons, the codec of 

3DLAT (ω = 4) is implemented, and the results are compared. 

We assume that the TSVs are arranged in a layout of 3 × N. 

Also, we suppose that the data bandwidth is 64, and thus we 

need eight 3 × 3 TSV clusters for the data and three clusters for 

control TSVs. An extra TSV is reserved; since it is required to 

inform the receiver about the status of inverted TSVs. As 

shown in Figure 4, results demonstrate, on average, a 10% 

decrease in the area consumption compared to 3DLAT. Also, 

3D-DyCAC can reduce power consumptions of codec in 

different bandwidths by 23% with respect to 3DLAT, as shown 

in Figure 5.  

To measure the energy consumed per switching event, 

Figure 6 compares the power-delay product (PDP) of 3D-

DyCAC with respect to 3DLAT. This comparison confirms that 

3D-DyCAC can improve PDP by an average of 46% with 

respect to 3DLAT. In practice, wire delay and codec critical 

path are two important parameters in determining performance. 

Although results are close in low width TSVs, the efficiency of 

the proposed coding is recognizable with increases in TSV 

width. 

𝐢𝐟 𝑑 ≥ 𝐹𝑁+1 𝐭𝐡𝐞𝐧 
    𝑐𝑁 = 1; 
𝐞𝐥𝐬𝐞 
   𝑐𝑁  = 0; 
𝐞𝐧𝐝 𝐢𝐟 
𝑟𝑁  = 𝑑 −  𝑐𝑁 ∙ 𝐹𝑁+1 
𝐟𝐨𝐫 𝑘 = 𝑁 − 1 to 2 𝐝𝐨 
     𝐢𝐟 𝑟𝑘+1  ≥ 𝐹𝑘+1 𝐭𝐡𝐞𝐧 
        𝑐𝑘  = 1; 
    𝐞𝐥𝐬𝐞 𝐢𝐟 𝑟𝑘+1  < 𝐹𝑘  𝐭𝐡𝐞𝐧 
       𝑐𝑘  = 0; 
    𝐞𝐥𝐬𝐞 
       𝑐𝑘  = 𝑐𝑘+1; 
     𝐞𝐧𝐝 𝐢𝐟 
 𝑟𝒌 = 𝑟𝑘+1 − 𝑐𝑘 ∙ 𝐹𝑘; 
𝐞𝐧𝐝 𝐟𝐨𝐫 
𝑐1  = 𝑟2; 
𝐎𝐮𝐭𝐩𝐮𝐭: 𝑐𝑁𝑐𝑁−1 … 𝑐1. 

 

Figure 2. Mapping Algorithm of Proposed CAC in the First Phase 
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Figure 3. Flowchart of the Second Phase 

 

 
Figure 4. Codec Area Occupations of 3D-DyCAC in Comparison with 

3DLAT
 

 

 
Figure 5. Codec Power Consumption of 3D-DyCAC in Comparison with 

3DLAT 
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IV. CONCLUSION 

To enhance the reliability of 3D ICs, this paper presents a 

mechanism for avoiding TSV-to-TSV crosstalk faults. This is 

done by applying a 3D-CAC coding mechanism called 3D-

DyCAC. The 3D-DyCAC is applied in two phases. In the first 

phase, a numerical-system-based CAC generates code words 

with cumulative groups of 1s and 0s to minimize adjacent 

transitions in arranged meshes of TSVs. This numerical-system-

based CAC has no ambiguity in representing code words and 

generates a unique code word for each data word. In the second 

phase, a TW is introduced to consider overlaps between the 

cells of TSVs during the arrangement of code words on TSVs. 

The TW dynamically inverts the content of the victim TSV 

and/or the content of adjacent bit positions based on the content 

of data words. Evaluation results show that 3D-DyCAC reduces 

the area occupations, power consumption, and critical path of 

codec by 10%, 24% and 46%, respectively, in comparison to 

state-of-the-art mechanism 3DLAT. 
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