
3D-DyCAC: Dynamic Numerical-based Mechanism for

Reducing Crosstalk Faults in 3D ICs
Zahra Shirmohammadi

shirmohammadi@ipm.ir

School of Computer Science,

Institute for Research in

Fundamental Sciences (IPM)

 Hadi Zamani Sabzi

hzama001@ucr.edu

University of California Riverside

 Seyed Ghassem Miremadi

miremadi@sharif.edu

Sharif University of Technology

Abstract— One of the cost-efficient fabrication approaches for

connecting layers in three-dimensional integrated circuits (3D ICs)

is the use of through-silicon vias (TSVs). However, the large and

closely spaced nature of TSVs has made them seriously prone to

coupling capacitances between TSVs, increasing the probability of

crosstalk faults. To reduce crosstalk faults in 3D ICs, this paper

proposes a dynamic numerical-based crosstalk avoidance

mechanism called 3D-DyCAC. The 3D-DyCAC mechanism is

applied in two phases. In the first phase, a numerical system-based

crosstalk avoidance code (CAC) is proposed to reduce the opposite-

direction transitions in adjacent TSVs. This numerical-based CAC

generates code words with cumulative groups of 1s and 0s to

minimize adjacent transitions in arranged N × N meshes of TSVs.

The proposed CAC has no ambiguity in representing code words

and generates a unique code word for each data word. In the

second phase, a triangular window (TW) is introduced to consider

overlaps between the cells of TSVs during the arrangement of code

words on TSVs. In the TW area, the content of the victim TSV

and/or the content of adjacent bit positions can be dynamically

inverted based on the content of data words. Evaluation results

show that 3D-DyCAC reduces the area occupation, power

consumption, and power-delay product of codec by 10%, 24%,

and 46%, respectively, in comparison with state-of-the-art

mechanism 3DLAT.

Keywords— Three-Dimensional Integrated Circuits (3D ICs);

Through-Silicon Vias (TSVs); Crosstalk Faults; Crosstalk Avoidance

Code (CAC).

I. INTRODUCTION

Increasing the delay gap between interconnections and gates

has made interconnection delay the major performance

bottleneck in two-dimensional integrated Circuits (2D ICs) [1].

This is due to long interconnections between processing

elements in 2D ICs that increase the hop count between source

and destination during data transmission. To address this

problem, designers often add another dimension, shortening the

routing hops by providing three-dimensional integrated circuits

(3D ICs) [1][2]. The 3D ICs have several advantages over 2D

ICs, including higher scalability, higher throughput, and lower

power consumption [2]. However, with migration to 3D ICs,

new evil rises due to coupling capacitance between through-

silicon vias (TSVs) that connect different stack layers [1]. The

coupling capacitances between TSVs cause them to mutually

affect the transmitted signal of adjacent TSVs and generate

crosstalk faults [3]. Crosstalk faults are due to TSVs’ large

diameter and their bounded, adjacent, short structure, and

crosstalk faults can lead to unwanted voltage glitches and delay

and/or speed-up in rising/falling transitions appearing on the

center TSV (called the victim TSV). These effects can lead to

the corruption and misrouting of data and also power

dissipation in 3D ICs [3][4].

Mechanisms to address crosstalk faults [5]-[21] have been

developed at the physical level [4], transistor level, and

register-transfer level (RTL) [5]-[21]. Shielding and repeater

insertion and skew transitions are examples of physical level and

transistor level mechanisms to tackle crosstalk faults. Coding

mechanisms at RTL level are among the promising mechanisms.

Numerical-based crosstalk avoidance codes (CACs) at the RTL

are relatively cost-efficient compared to physical-level and

transistor level mechanisms, and they reduce crosstalk faults by

preventing specific transition patterns [16][21]. However, CACs

cannot directly be applied in 3D ICs. This is due to the fact that,

in 2D ICs, the victim TSV is surrounded by only two aggressor

wires, while in 3D ICs, the victim TSV is surrounded by

multiple aggressor TSVs [3]. This makes the TSV-to-TSV

coupling capacitance more complex. In other words, the

additional dimension results in a significant difference between

using CACs in 2D IC and 3D IC designs.

A handful of previous studies on 3D ICs have developed

approaches to reduce or omit crosstalk faults by using

numerical-based CACs [5][6][12][13], but these approaches

have entailed undesirable overheads. To solve this problem, the

current paper proposes an overhead-efficient CAC-based

mechanism for 3D ICs called dynamic numerical-based

crosstalk avoidance (3D-DyCAC). The mechanism of 3D-

DyCAC is applied in two phases. In the first phase, a numerical

system generates code words to minimize adjacent transitions.

The numerical system generates a unique code word for each

data word and consequently has no ambiguity in representing

code words. In the second phase, a triangular window (TW) is

introduced to consider overlaps between the cells of TSVs.

Through the use of the TW during the arrangement process, the

content of the victim TSV and/or the content of an adjacent bit

position are inverted dynamically based on the content of the

data word. Evaluation shows that 3D-DyCAC reduces the area

occupation, power consumption, and power-delay product of

codec by 10%, 24%, and 46%, respectively, in comparison with

state-of-the-art mechanism [5].

978-1-5090-3997-5/17/$31.00 ©2017 IEEE 87

II. 3D-DYCAC: DYNAMIC NUMERICAL-BASED CROSSTALK

AVOIDANCE MECHANISM

 Numerical-based CACs are among the cost efficient

mechanisms that can prevent the occurrence of specific

transition patterns [19]. This is done by encoding data word

𝑑 = 𝑑𝑁𝑑𝑁−1𝑑𝑁−2𝑑𝑁−3….𝑑2𝑑1 in a sender and decoding code

word 𝑐 = 𝑐𝑁𝑐𝑁−1𝑐𝑁−2𝑐𝑁−3….𝑐2𝑐1 in a receiver, where N is the

number of TSVs. Using numerical system 𝑏 = 𝑏𝑁 , 𝑏𝑁−1, … , 𝑏1,

data words can be calculated by 𝑐 = ∑ 𝑑𝑖 ×𝑁
i=1 𝑏𝑖 in a sender. In

other words, a numerical system is a mathematical notation that

uses symbols in a consistent manner to represent numbers of a

given set [19]. For example, a numerical system with bases of 9

3 2 2 1 1 1 0 1 maps data word 0 1 1 0 0 0 0 0 0 to code word 0

0 0 0 0 1 1 1 1, in such a way that 3 = 9 × 0 + 3 × 0 + 2 × 0 +
2 × 0 + 1 × 0 + 1 × 1 + 1 × 1 + 0 × 1 + 1 × 1. However, the

structures and arrangements of TSVs make the application of

numerical-based CACs complex in 3D ICs. A system of 𝑁 × 𝑁

TSVs is too complex to be analyzed, so this paper employs a

coding in partitions of 3 × 𝑁 meshes of TSVs. These meshes

have 3 rows and N columns. This structure can be extended to

meshes of 𝑁 × 𝑁 TSVs.

Considering the arrangement of data words on two neighbor

meshes of TSVs shown in Figure 1, the sequence of code word

𝑑 = 𝑑𝑁𝑑𝑁−1𝑑𝑁−2𝑑𝑁−3….𝑑2𝑑1 should satisfy the following

conditions:

Condition 1: Direct TSVs (in blue in Figure 1) are located at

distance 𝑑 from the victim TSV (in red in Figure 1),

and they impose more crosstalk effects than diagonal

TSVs with 𝑑√2 distance from victim TSV (in yellow

in Figure 1), so it is required that 𝑑2, 𝑑4, 𝑑6 and 𝑑8

have the same values as far as possible.

Condition 2: When the coding mechanism is extended to a

neighboring mesh of TSVs, 𝑑8 becomes a new victim

in the neighbor mesh. To prevent crosstalk faults and

consider overlapping in this condition, at least two

TSVs out of 𝑑1, 𝑑2 and 𝑑3 (in neighbor mesh of TSV)

should have the same value as 𝑑8. As these 𝑑i𝑠 are

arranged in triangle, this area is called the triangular

windows (TWs), shown in Figure 1 in dashed lines.

To satisfy these two conditions, this paper proposes

dynamic numerical-based crosstalk avoidance (3D- DyCAC).

The proposed 3D-DyCAC is applied in two phases. In the first

 phase, which satisfies the first condition, a CAC based on a

numerical system generates code words with cumulative groups

of 1s and 0s to minimize tandem transitions in arranged 3 × N

meshes of TSVs. In the second phase, which satisfies the

second condition, a dynamic mechanism considers overlaps

between cells of TSVs during the arrangement of code words

on TSVs.

In the proposed numerical-system-based CAC, adjacent

wires cannot transit in opposite directions when transitioning

from one code word to another code word [19]. Thus, transition

patterns 01 → 10 and 10 → 01 are avoided. This property can

satisfy the first condition, and it generates the code words with

cumulative 1s and 0s. This property prevents changing the

value of adjacent TSVs. In other words, the bit patterns 010,

101, 1001, and 0110 cannot appear in any of the code words.

The CAC proposed in the first phase of 3D-DyCAC

generates bases through Eq. 1:

𝑏𝑖 = {

1 𝑖 = 1
0 𝑖 = 2

𝑔i−1 − 𝑔i−2

𝑔𝑁−3

3 ≤ 𝑖 ≤ 𝑁 − 1
𝑖 = 𝑁

 (1)

Where 𝑔i is the maximum number of code words that can

be generated in 3D-DyCAC based on Eq. 2:

 𝑔𝑘 = 𝑔𝑁−1 + 𝑔𝑁−5 for 𝑁 > 6 (2)

The initial values of this recursive relation are 𝑔1 = 2,

𝑔2 = 3, 𝑔3 = 4, 𝑔4 = 5, and 𝑔5 = 7. This numerical system is

complete, and for any data word 𝑑, 𝑑 ∊ [0, ∑ 𝑏i], the system

generates at least one representation using the numerical

system. The completeness is achieved if for all 𝑏s, 𝑏i ≤ 1 +
∑ 𝑏i−1

j=1 . This numerical system can be extended to any arbitrary

number of TSVs.

The mapping algorithm of 3D-DyCAC that maps a data

word to a code word using the numerical system is shown in

Figure 2. In this mapping algorithm, 𝑟𝑖 is the remainder of each

step to the next step, and 𝐹𝑖 is the i
th

 base of Fibonacci

sequence.

Applying CACs in the first phase can reduce the number of

transitions by generating cumulative numbers of 1s and 0s.

However, using this numerical system cannot by itself satisfy

the required conditions for applying numerical-based CACs in a

mesh of TSVs: the overlaps between the adjacent TSVs are not

considered while arranging the data words on a mesh of TSVs.

The data words 𝑑2, 𝑑4, 𝑑6, and 𝑑8 should have the same values

as far as possible, and at least two out of 𝑑1, 𝑑2, and 𝑑3 should

have the same value as 𝑑8. It is important to check the two

required conditions after generating code words using CAC. To

perform such a check, two counters, called direct neighbor

counter (DNC) and triangular counter (TC), are defined. DNC

reports the similarity between a directly adjacent TSV and the

victim TSV, and TC reports the number of possible similarities

between 𝑑1, 𝑑2, 𝑑3, and 𝑑8. DNC and TC are given by
X

4
 and

X

3
, respectively. Where X shows the similarity of direct

Figure 1. The Arrangement of Data Words in TSVs in Two Neighbor

Meshes

d1 d4 d7

d2 d5 d8

d3 d6 d9

d1 d4 d7

d2 d5 d8

d3 d6 d9

88

neighbor TSVs to 𝑑5 in DNC and possible similarities between

𝑑2, 𝑑1, 𝑑3 and 𝑑8 in TC. As 𝑑5 has four direct neighbors, the

denominator in DNC is equal to four, and since, in TW, three

data words should be the same as far as possible, the

denominator is equal to three.

The flow chart of arranging 𝑑𝑖 data words in the second

phase is shown in Figure 3. Based on this flow chart, the first

step is counting the values of the DNC and TC counters. If

DNC ≤
𝑋

4
 or TC ≤

 X

3
, then the values of 𝑑2 and 𝑑5 are checked;

if they are the same, both 𝑑2 and 𝑑5 are inverted. Otherwise,

only the victim TSV, 𝑑5 is inverted dynamically. This

mechanism of using CAC with the dynamic inversion of

𝑑2 and/or 𝑑5 is called 3D-Dynamical CAC, or 3D-DyCAC.

Through the use of this mechanism,

the two

required conditions

are satisfied.

III. EVALUATION AND RESULTS

In order to experimentally evaluate the proposed

mechanism, the codec of 3D-DyCAC is implemented using

VHDL-based simulations and synthesized by Design Compiler

in 45 nm technology. To have fair comparisons, the codec of

3DLAT (ω = 4) is implemented, and the results are compared.

We assume that the TSVs are arranged in a layout of 3 × N.

Also, we suppose that the data bandwidth is 64, and thus we

need eight 3 × 3 TSV clusters for the data and three clusters for

control TSVs. An extra TSV is reserved; since it is required to

inform the receiver about the status of inverted TSVs. As

shown in Figure 4, results demonstrate, on average, a 10%

decrease in the area consumption compared to 3DLAT. Also,

3D-DyCAC can reduce power consumptions of codec in

different bandwidths by 23% with respect to 3DLAT, as shown

in Figure 5.

To measure the energy consumed per switching event,

Figure 6 compares the power-delay product (PDP) of 3D-

DyCAC with respect to 3DLAT. This comparison confirms that

3D-DyCAC can improve PDP by an average of 46% with

respect to 3DLAT. In practice, wire delay and codec critical

path are two important parameters in determining performance.

Although results are close in low width TSVs, the efficiency of

the proposed coding is recognizable with increases in TSV

width.

𝐢𝐟 𝑑 ≥ 𝐹𝑁+1 𝐭𝐡𝐞𝐧
 𝑐𝑁 = 1;
𝐞𝐥𝐬𝐞
 𝑐𝑁 = 0;
𝐞𝐧𝐝 𝐢𝐟
𝑟𝑁 = 𝑑 − 𝑐𝑁 ∙ 𝐹𝑁+1
𝐟𝐨𝐫 𝑘 = 𝑁 − 1 to 2 𝐝𝐨
 𝐢𝐟 𝑟𝑘+1 ≥ 𝐹𝑘+1 𝐭𝐡𝐞𝐧
 𝑐𝑘 = 1;
 𝐞𝐥𝐬𝐞 𝐢𝐟 𝑟𝑘+1 < 𝐹𝑘 𝐭𝐡𝐞𝐧
 𝑐𝑘 = 0;
 𝐞𝐥𝐬𝐞
 𝑐𝑘 = 𝑐𝑘+1;
 𝐞𝐧𝐝 𝐢𝐟
 𝑟𝒌 = 𝑟𝑘+1 − 𝑐𝑘 ∙ 𝐹𝑘;
𝐞𝐧𝐝 𝐟𝐨𝐫
𝑐1 = 𝑟2;
𝐎𝐮𝐭𝐩𝐮𝐭: 𝑐𝑁𝑐𝑁−1 … 𝑐1.

Figure 2. Mapping Algorithm of Proposed CAC in the First Phase

Invert d5

Input Data

 DNC � 3/4 TC � 2/3

d1 == d5

Invert d5 and d2

Send Data

Yes

No Yes
No

Figure 3. Flowchart of the Second Phase

Figure 4. Codec Area Occupations of 3D-DyCAC in Comparison with

3DLAT

Figure 5. Codec Power Consumption of 3D-DyCAC in Comparison with

3DLAT

0

50

100

150

200

250

300

350

400

450

0 9 18 27 36

C
o

d
ec

 A
re

a
O

cc
u

p
at

io
n

(m

m
2
)

Bandwidth (bits)

3D-DyCAC 3DLAT

0

50

100

150

200

250

0 9 18 27 36

C
o

d
ec

 P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
W

)

Bandwidth (bits)

3D-DyCAC 3DLAT

89

IV. CONCLUSION

To enhance the reliability of 3D ICs, this paper presents a

mechanism for avoiding TSV-to-TSV crosstalk faults. This is

done by applying a 3D-CAC coding mechanism called 3D-

DyCAC. The 3D-DyCAC is applied in two phases. In the first

phase, a numerical-system-based CAC generates code words

with cumulative groups of 1s and 0s to minimize adjacent

transitions in arranged meshes of TSVs. This numerical-system-

based CAC has no ambiguity in representing code words and

generates a unique code word for each data word. In the second

phase, a TW is introduced to consider overlaps between the

cells of TSVs during the arrangement of code words on TSVs.

The TW dynamically inverts the content of the victim TSV

and/or the content of adjacent bit positions based on the content

of data words. Evaluation results show that 3D-DyCAC reduces

the area occupations, power consumption, and critical path of

codec by 10%, 24% and 46%, respectively, in comparison to

state-of-the-art mechanism 3DLAT.

REFERENCES

[1] C. S. Tan, “3D Integration for VLSI Systems,” Stanford

Publishing, 2011.

[2] K. Tu, “Reliability Challenges in 3D IC Packaging Technology,”

Micro Electronics Reliability (MER), vol. 51, pp. 517–523,

2011.

[3] R. Kumar and S. P Khatri, “Crosstalk Avoidance Codes for 3D

VLSI,” Proc. IEEE Conf. Design, Automation and Test in

Europe (DATE 13), pp. 1673–167, March 2013.

[4] C. J. Akl and M. A. Bayoumi, “Reducing Interconnect Delay

Uncertainty via Hybrid Polarity Repeater Insertion,” IEEE

Trans. Very Large Scale Integration (VLSI) Systems, vol. 16, no.

9, pp. 1230–1239, 2008.

[5] Q. Zou, D. Niu, Y. Cao, and Y. Xie, “3DLAT: TSV-based 3D ICS

Crosstalk Minimization Utilizing Less Adjacent Transition

Code,” Proc. IEEE Conf. Asia and South Pacific Design

Automation Conference (ASP-DAC 14), pp. 762-767, January

2014.

[6] Y. Ying Chang, Y. S. Huang, V. Narayanan, and C.T. King,

“Shieldus: A Novel Design of Dynamic Shielding for

Eliminating 3D TSV Crosstalk Coupling Noise,” Proc. IEEE

Conf. Asia and South Pacific Design Automation (ASP-DAC

13), pp. 675-680, July 2013.

[7] A. Eghbal, P. M. Yaghini, and N. Bagherzadeh, “Capacitive

Coupling Mitigation for TSV-based 3D ICs,” Proc. VLSI Test

Symposium (VTS 15) l, pp. 1-6, Apri 2015.

[8] M. Khayambashi, P. M. Yaghini, A. Eghbal, and N. Bagherzadeh,

“Analytical Reliability Analysis of 3D NoC Under TSV

Failure,” ACM Journal on Emerging Technologies in Computing

Systems, vol. 11, pp. 43-48.

[9] Y. Y. Chang, Y. S. C. Huang, V. Narayanan, and C. T. King,

“ShieldUS: A Novel Design of Dynamic Shielding for

Eliminating 3D TSV Crosstalk Coupling Noise,” Proc. IEEE

Conf. Design Automation Conference (ASP-DAC 13), pp. 675-

680, January 2013.

[10] A. Eghbal, P. M. Yaghini, S. S. Yazdi, and N. Bagherzadeh,

“TSV-to-TSV Inductive Coupling-aware Coding Scheme for 3D

Network-on-Chip,” Proc. Symp. Defect and Fault Tolerance in

VLSI and Nanotechnology Systems (DFT 14), pp. 92-97,

October 2014.

[11] W. N. Flayyih, K. Samsudin, S. J. Hashim, Y. I. Ismail, and F. Z.

Rokhani, “Adaptive Multibit Crosstalk-Aware Error Control

Coding Scheme for On-Chip Communication,” IEEE Trans.

Circuits and Systems II: Express Briefs, vol. 63, no. 2, pp. 166-

170, February 2016.

[12] Y. Zhang, B. Li, B. Zhang and D. Xue, “Novel Crosstalk

Minimization Code for 3D IC,” Proc. China Semiconductor

Technology International Conf. (CSTIC 15), July, pp. 1-3.

[13] Z. Shirmohammadi, N. Rohbani and S. G. Miremadi, “3D-DPS:

An Efficient 3D-CAC for Reliable Data Transfer in 3D ICs,”

Proc. IEEE Conf. European Dependable Computing Conference

(EDCC 16), pp. 97-107, September 2016.

[14] Z. Shirmohammadi, F. Mozafari and S. G. Miremadi, “An

Efficient Numerical-Based Crosstalk Avoidance Codec Design

for NoCs,” Microprocessors and Microsystems (MICPRO), vol

50, 2017.

[15] Z. Mahdavi, Z. Shirmohammadi and S. G. Miremadi, “ACM:

Accurate Crosstalk Modeling to Predict Channel Delay in

Network-on-Chips,” Proc. IEEE International Symp. On-Line

Testing and Robust System Design (IOLTS 16), pp. 7-8, July

2016.

[16] Z. Shirmohammadi, M. Ansari, S. Kazemian Abhari, S. Safari, S.

G. Miremadi, “PAM: a Packet Manipulation Mechanism for

Mitigating the Crosstalk Faults in NoCs,” Proc. IEEE Conf.

Dependable, Autonomic and Secure Computing (DASC 15), pp.

1895- 1902, September 2015.

[17] Z. Shirmohammadi, S. G. Miremadi, “Addressing NoC Reliability

through an Efficient Fibonacci-Based Crosstalk Avoidance

Codec Design,” Proc. IEEE Conf. Algorithms and Architectures

for Parallel Processing (ICA3PP 15), pp. 756-770, October 2015.

[18] Z. Shirmohammadi, S. G. Miremadi, “Using Binary Reflected

Gray Coding for Crosstalk Mitigation of Network on Chip,”

Proc. International Symp. Computer Architecture & Digital

Systems (CADS 15), pp. 81-86, October 2013.

[19] Z. Shirmohammadi and S. G. Miremadi, “Crosstalk Avoidance

Coding for Reliable Data Transmission of Network on Chips,”

Proc. IEEE Symp. System-on Chip 2013 (SoC 13), Tampere,

Finland, pp. 1-4, October 2013.

[20] Z. Shirmohammadi and S. G. Miremadi, “S2AP: An Efficient

Numerical-based Crosstalk Avoidance Code for Reliable Data

Transfer of NoCs,” Proc. IEEE Symp. Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC 15), June -

pp. 1-6, July 2015.

[21] Z. Shirmohammadi, S. G. Miremadi, “Addressing NoC Reliability

Through an Efficient Fibonacci-based Crosstalk Avoidance

Codec Design,” Microelectronics Reliability (MR), vol 63, pp.

304-313, 2016.

Figure 6. Codec Power Consumption of 3D-DyCAC in Comparison

with 3DLAT

0

50

100

150

200

250

300

350

400

450

9 18 36

P
D

P

Bandwidth (bits)

3DLAT 3D-DyCAC

90

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 10.80 points
 Normalise (advanced option): 'original'

 32

 D:20170126085122
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Down
 10.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryList_V1
 qi2base

