IIIIIIIIIIIIIIIIIIIIII

Ao RIVERSIDE

ParaStack: Efficient Hang Detection for
MPI Programs at Large Scale

Hongbo Li
Z1zhong Chen & Rajiv Gupta

UCR

i Souin b

UCR

Program Hang

Resource Wastage
Current Solution

Execution in Batch Mode

Process 1D

Time
~

> T: occupied supercomputer time.

» Processes communicate via message passing (MPI]).

Program Hang Occurs

> Program hang --- a type of bug whose occurrence stalls
the program’s execution.

» Root cause can be in

one single process, e.g. process 0 --- Incorrect thread-level
synchronization and infinite loop,
or all processes --- communication deadlock across all processes
et.al.

Process ID

Time

T

Hang Causes Resource Wastage R

Process 1D
0 1 2

Large scale

Time

Resource waste

» Negative --- significant resource wastage at large scale.

Solution: Hang Detection

Process 1D

> Release resources when detecting a hang

> Shorter detection delay (t,;) = Bigger saving (t,)

Traditional Detection Method (= R

> Timeout 1s a commonly used method based on various
metrics, e.g., [O-watchdog monitors how often a program
writes.

> Setting a good timeout is hard due to following two
dilemmas:

Small timeout = Large Savings

Too Small timeout = False Alarms

Large timeout = Avoid False Positives
Too Large timeout = Large Wastage

UCR

DD

Statistical Model
Two Problems

ParaStack ~=

> Does not guess based on nul/ unlike timeout methods.

> Detects hangs based on runtime history.

10

R

Basic Concept K

while (...) {
user code
MPI_Function ()
S out }
» Definition:
Nout
S =
out Ntotal

where N,,; denotes the number of processes
executing inside user code and N;,;,; denotes the
total number of processes employed in the run.

11

Dynamic Variation of Sout R

0.6
SOUt 03 LU

O r \I\ [l \I\ \I\ [\I\I\I\.\ RER \I\ \I\I\I\I\ \I\ \I\ mE \I\I\I\I\I\I\ 1T \I\ [\ M \I\ I \ \ \ [\I\ [l \I\.\ I \I\I\I\I\ I [l \I\.\I\I\l\ [\I\ 1T \I\ I \I\I\I\ \I\ \I\I\ [\I

1 51 Running timeline 101

Sout 0.5 FT

O \H\IHHH\HH\HH\HHHHHHHH\HH\HHH\HHHHHHHHHHIH \I\I\I\ HIHHHH\HH\HHH\HH\HH\HHH\HHHHHHHH\HH\HHHHHHHHH'H HI\I\I\ \I\'HHHHHHHHH

1 101 Running Timeline 201

0.6
Sout 0.3 I SP

0 TTrTrrrrr T i T T T T T I T T I T T T T T T T T TTITT T

1 o1 Running timeline 101

A snippet of S, variation obtained via sampling every
1 millisecond interval.

12

When a Hang Occurs

0.8

Sout 0.4
O .ulﬁl !l.nfu. Il.fluu(|%.-n%l. II-I%IIIIl Il%ulu.

[1 1 1 1 1 1 1 1 1 1

1 51 Running Timeline 101

> Sout Variation of a faulty LU run, where a fault 1s
simulated by a very long sleep and injected on the left
border of the red region.

> Program hang 1s characterized by two features: (1) very
Sout and (2) observations of (1).

13

Suspicion

> F(Sout) 1s the empirical cumulative distribution function
obtained from randomly sampling S,,¢.

> Given probability p, we obtain t = F~1(p) and classify the
observed value of S,,; into a pair of opposite random
events:

A : Suspicion if Sour <'t,
A : Non-suspicion if Soy; > t.

14

Feature 1: Small

Significance Test of Hang R

> Geometric distribution. The probability distribution of ¥ = y
times of suspicions before the first occurrence of non-
suspicion 1s

PY=y)=q"*(1—q)
where g estimates the true suspicion probability p.

> Given the confidence level 1 — a, we claim a hang is detected
if

> Make it simple: something is very likely wrong when a very
rare event occurs.

15

Feature 1+2: Consecutively small

UCR

16

Two Problems with the Model

> (1) How to achieve random sampling?

> (2) The observed suspicion probability (p) doesn’t
reflect the truth (p), i.e, p #D.

17

R

Random Sampling R

» Insert between two consecutive samplings with a random
time step: rand(I) + 1/2.

» Too small I -> lack of randomness; Bigger I -> better
randomness.

1 v W4 || W4
| | |
SOUt 05 Lw VLW Jﬁmﬂmﬁm
0 ¥ Dbl se g6 —ge—36— 36— —3¢-30— ¢3¢ 3¢
1 101 Running Timeline 201
x Lack of randomness v better randomness

> Solution: use runs test to check randomness of the sample
sequence, and double [1f 1t 1s found to be lack of randomness
until randomness 1s assured.

18

Random Sampling (Cont.) R

» Runs test --- a standard test that checks the randomness of a
two-valued data sequence.

> Runs test’s procedure:

1) calculate the average of the sample sequence;

2) denote values bigger than the average as (+) and those smaller than

that as (-);

3) check the number of runs (R) --- a run is defined as a series of

consecutive (+) or (-);

4y Too small or too large R > the sequence is lack of randomness

(significance test)

19

Random Sampling (Cont.) R

Example. We have a sample sequence as

[0.20.10.10.2 0.10.10.00.0][0.80.91.00.8 0.9p.{1p-90.9]

which can be transformed as below

[——— ————+x+++ H-J4.

Its average is 0.44375, the non-rejection region at 95%
confidence is (4, 14), and R = 4. As R is outside the non-
rejection region, we claim the sampling is not random

and thus double I.

20

P+D R

» The difference (d) between the observed probability (p) and
the true probability (p) 1s closely related to the sample size n.

> Solution: Hence, we estimate |p — p| < d at different sample

size levels with high confidence (95%) :

(p=047 4=03 whenll<n< 19,

p=027 d=02 whenl9<n<42,
p=012 d=01 when42<n < 86,
(ﬁ = 0.06 d=0.05 when 86 < n.

AN\

At each level, we use a different credible p to define what is
a suspicion (S, < F71(p)) .

> Make it simple: the difference gets smaller as sample size
Increases.

21

p # p (Cont.)

> |p —P| < d is not enough as underestimating p, i.c., p <
p, lead to false positives.

Given p < p, p* --- the probability that a program is still healthy ---
converges faster than p* to the significance level « as k increases =
more false positives.

> We use g = P + d as an estimate of p in the calculation of
hangs’ probability (g%), which guarantees that g > p with
97.5% confidence.

22

R

UCR

Goal R

> Trivial overhead

> High accuracy & Low false positive
» ParaStack > Timeout

> Short detection delay

> Enable resource saving when a hang occurs

24

Evaluation Setting

Fault injection

> A hang is simulated by injecting a long enough sleep()

In either source code or binary.

Target Programs
» HPL, HPCG, NPB benchmark set

ParaStack’s default setting

» 10 randomly selected processes are monitored.
> Significance level a = 0.1%.

> The mnitial maximal sampling interval 1s set as [= 400 ms.

25

R

Evaluation Setting (Cont.)

R

Scale | Tardis | Tianhe-2 | Stampede
256 | 800+ 20+

1024 300+ 100+
4096 50
8192 5
16384 3
AC | Accuracy

FP | False positive rate

D Average delay

S Standard deviation of delays

26

Overhead, Accuracy & False Alarms R

Overhead @ scale 1024 with 5 runs on each program. We
disable the automatic adaptation of 1.

Benchmark BT CG LU SP HPL | HPCG
I1=100 2.44% 7.61% | 3.35% | 0.26% | 0.12% | 1.64%
=400 -0.08% 0.55% | 1.14% | 0.04% | 0.12% | 0.35%

> Average accuracy —> over 99% for /00 runs of each program

> No false alarm reported 1n:
- 39.7 hours of hang-free runs at scale of 1024
- 66 hours of hang-free runs at scale of 256
- all hang-injected runs

27

ParaStack v.s. Timeout

Platform — Tianhe-2 Tardis
Benchmark(Input size) — FT(D) FT(E) FT(D) LU(D)

Metrics — AC FP D |AC FP D | AC FP D |AC FP D
Iy = 400ms, K = 5 times 00 33 [o0 10 -]00 10 -
[y = 400ms, Ky = 10 times 09 01 651 10 00 53
[3 = 800ms, K3 =5 times , : : . : 08 02 7010 00 39
[y = 800ms, Ky = 10 times 10 00 13210 00 17479 1.0 00 1021 1.0 0.0 107

» Timeout baseline

10 runs per setting & 256 processes

Hang 1s claimed to be found upon K consecutive observations of
Sout < 0 sampled at a fixed interval 1.

Like ParaStack, it only samples 10 processes to maintain the trivial

overhead.

28

ParaStack v.s. Timeout (Cont.) R

P p*
AC FP D | AC FP D
FT(D) | 1.0 0.0 48 | 1.0 0.0 35
FT(E) [1.0 0.0 294 [1.0 0.0 149
FT(D) | 1.0 0.0 14.0 | Q.99 0.0 25.2
Tardis | LUD) | 1.0 0.0 45 [1.0 0.0 1.1
SPD) [1.0 00 33 [1.0 00 1.0

Platform | Bench.

Tianhe-2

10 runs per setting & 256 processes

» Setting of ParaStack:
P: ParaStack initializing I as 400ms.

P*: ParaStack initializing I as 10ms which doesn’t deliver random
sampling.

> P* compares well with P as ParaStack 1s able to automatically
adjust I to ensure a good model.

29

Detection Delay Ik

LU

@ E@ 632 42 1 1 The median of detection

. vmoégﬁeggggg delays based on 100 runs
| per setting at scale 256.

LU | SP | FT | MG | HPL | HPCG

3 3 | 13 3 4 5

(Unit: seconds)

N

36 H

(42,50) B3
85 B

30

Detection Delay (Cont.)

Delay on Tianhe-2 with 50 runs per setting

Scale| | Metric| || BT | CG FT LU SP | HPL
1024 D 7.2 18.8 8.8 9.0 4.8 6.8
S 7.3 14.7 7.3 4.2 2.2 3.3

Delay on Stampede with 20 runs per setting @ scale
1024 and 10 runs per setting at scale 4096

Scalel BT CG LU SP HPL
cale D S| D S| D S| D SID S
1024 || 71 45176 45 |78 59|41 12]50 25
4096 || 54 3.6 | 241 13.1] 43 13 | 37 20 | 5.6 4.7

R

» ParaStack detects hangs in a few seconds, which is far
less than the commonly used 7-minute timeout.

31

Timesaving

100.0%

50.0%

Saved time (%)

10.0% 11.3%
e
oN =

—

> 10 faulty HPL runs with program hang’s occurrence
uniformly distributed over the program execution

> On average 35.5% time saving

32

Thank you!

@Question?

