
ParaStack: Efficient Hang Detection for
MPI Programs at Large Scale

Hongbo Li
Zizhong Chen & Rajiv Gupta

Question Solution Evaluation

2

Question Solution Evaluation

3

Program Hang

Resource Wastage

Current Solution

Execution in Batch Mode

4

Process ID
0 1 2 i !……

"

": occupied supercomputer time.
Processes communicate via message passing (MPI).

Ti
m

e

Program Hang Occurs

Program hang --- a type of bug whose occurrence stalls
the program’s execution.

Root cause can be in
one single process, e.g. process 0 --- Incorrect thread-level
synchronization and infinite loop,
or all processes --- communication deadlock across all processes
et.al.

Process ID
0 1 2 i !

Ti
m

e

……

5

Hang Causes Resource Wastage

Process ID
0 1 2 i !

Ti
m

e

……

Resource waste

Large scale

6

Negative --- significant resource wastage at large scale.

Solution: Hang Detection

Release resources when detecting a hang
Shorter detection delay (!") à Bigger saving (!#)

7

Process ID
0 1 2 i $

Ti
m

e

……

!"

!#

Traditional Detection Method
Timeout is a commonly used method based on various
metrics, e.g., IO-watchdog monitors how often a program
writes.

Setting a good timeout is hard due to following two
dilemmas:

Small timeout à Large Savings
Too Small timeout à False Alarms

Large timeout à Avoid False Positives
Too Large timeout à Large Wastage

8

Question Solution Evaluation

9

Statistical Model

Two Problems

ParaStack

Does not guess based on null unlike timeout methods.

Detects hangs based on runtime history.

10

Basic Concept

while (…) {
user code
MPI_Function ()

}!"#$
Definition:

!"#$ =
."#$
.$"$/0

where 1234 denotes the number of processes
executing inside user code and 142456 denotes the
total number of processes employed in the run.

11

Dynamic Variation of Sout

A snippet of !"#$ variation obtained via sampling every
1 millisecond interval.

0
0.3
0.6

1 51 101

Sout

Running timeline

0
0.3
0.6

1 51 101Running timeline

Sout

0
0.5

1

1 101 201

Sout

Running Timeline

LU

FT

SP

12

When a Hang Occurs

0

0.4

0.8

1 51 101

Sout

Running Timeline

!"#$ variation of a faulty LU run, where a fault is
simulated by a very long sleep and injected on the left
border of the red region.

Program hang is characterized by two features: (1) very
small !%&' and (2) consecutive observations of (1).

13

Suspicion
!(#$%&) is the empirical cumulative distribution function
obtained from randomly sampling ()*+.

Given probability -̂, we obtain . = 012 -̂ and classify the
observed value of ()*+ into a pair of opposite random
events:

14Feature 1: Small

Significance Test of Hang
Geometric distribution. The probability distribution of ! = #
times of suspicions before the first occurrence of non-
suspicion is

$! = # = %& ∗ (1 − %)
where % estimates the true suspicion probability ,.

Given the confidence level 1 − -, we claim a hang is detected
if

$./ ! ≥ 1 = 23 ≤ 5.

Make it simple: something is very likely wrong when a very
rare event occurs.

15Feature 1+2: Consecutively small

Whole Picture

16

!

!"
!#

Probability
 drops as consecutive

suspicions are observed

Two Problems with the Model

(1) How to achieve random sampling?

(2) The observed suspicion probability ("̂) doesn’t
reflect the truth ("), i.e., # ≠ %# .

17

Random Sampling
Insert between two consecutive samplings with a random
time step: !"#$ % + %/(.

Too small % à lack of randomness; Bigger % à better
randomness.

Solution: use runs test to check randomness of the sample
sequence, and double) if it is found to be lack of randomness
until randomness is assured.

0
0.5

1

1 101 201

Sout

Running Timeline
ûû û ûû û û ûû û û û û û û û û û û û ûû û ûû û ûû û û

ü ü ü ü

û Lack of randomness ü better randomness

18

Random Sampling (Cont.)
Runs test --- a standard test that checks the randomness of a
two-valued data sequence.

Runs test’s procedure:
1) calculate the average of the sample sequence;

2) denote values bigger than the average as (+) and those smaller than

that as (-);

3) check the number of runs (!) --- a run is defined as a series of

consecutive (+) or (-);

4) Too small or too large "à the sequence is lack of randomness

(significance test)

19

Random Sampling (Cont.)

20

Example. We have a sample sequence as

0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.0 0.8 0.9 1.0 0.8 0.9 0.1 0.9 0.9,

which can be transformed as below

− − − − − − − − + + + + + − + + .

Its average is 0.44375, the non-rejection region at 95%
confidence is (4, 14), and # = 4. As & is outside the non-
rejection region, we claim the sampling is not random
and thus double '.

!" ≠ "
The difference ($) between the observed probability (!") and
the true probability (") is closely related to the sample size %.

Solution: Hence, we estimate |" − !"| ≤ $ at different sample
size levels with high confidence (95%) :

*̂ = 0.47
*̂ = 0.27
*̂ = 0.12
*̂ = 0.06

3 = 0.3
3 = 0.2
3 = 0.1
3 = 0.05

when 11 ≤ : < 19,
when 19 ≤ : < 42,
when 42 ≤ : < 86,
when 86 ≤ :.

At each level, we use a different credible !" to define what is
a suspicion (?@AB ≤ CDE *̂) .

Make it simple: the difference gets smaller as sample size
increases.

21

!" ≠ " (Cont.)

|% − %̂| ≤) is not enough as underestimating ", i.e., !" <
", lead to false positives.

Given %̂ < %, %̂+ --- the probability that a program is still healthy ---
converges faster than %+ to the significance level , as k increases à
more false positives.

We use - = !" + 0 as an estimate of " in the calculation of
hangs’ probability (-1), which guarantees that - ≥ " with
97.5% confidence.

22

Question Solution Evaluation

23

Goal
Trivial overhead

High accuracy & Low false positive

ParaStack > Timeout

Short detection delay

Enable resource saving when a hang occurs

24

Evaluation Setting

10 randomly selected processes are monitored.
Significance level ! = 0.1%.
The initial maximal sampling interval is set as ' = 400 ms.

ParaStack’s default setting

25

Fault injection
A hang is simulated by injecting a long enough sleep()
in either source code or binary.

Target Programs
HPL, HPCG, NPB benchmark set

Evaluation Setting (Cont.)

26

Used notations AC Accuracy
FP False positive rate
D Average delay

S Standard deviation of delays

Number of hang-injecte
d

runs usin
g default P

araStack Scale Tardis Tianhe-2 Stampede
256 800+ 20+

1024 300+ 100+
4096 50
8192 5

16384 3

Overhead, Accuracy & False Alarms

Average accuracyà over 99% for 100 runs of each program

No false alarm reported in:
- 39.7 hours of hang-free runs at scale of 1024
- 66 hours of hang-free runs at scale of 256
- all hang-injected runs

27

Overhead @ scale 1024 with 5 runs on each program. We
disable the automatic adaptation of !.

ParaStack v.s. Timeout

Timeout baseline
Hang is claimed to be found upon K consecutive observations of
!"#$ ≤ 0 sampled at a fixed interval I.
Like ParaStack, it only samples 10 processes to maintain the trivial
overhead.

28

10 runs per setting & 256 processes

ParaStack v.s. Timeout (Cont.)

Setting of ParaStack:
P: ParaStack initializing ! as 400ms.
P*: ParaStack initializing ! as 10ms which doesn’t deliver random
sampling.

P* compares well with P as ParaStack is able to automatically
adjust ! to ensure a good model.

29

10 runs per setting & 256 processes

Detection Delay

30

The median of detection
delays based on 100 runs
per setting at scale 256.

BT CG LU SP FT MG HPL HPCG

4 6 3 3 13 3 4 5

(Unit: seconds)

Detection Delay (Cont.)

31

Delay on Tianhe-2 with 50 runs per setting

Delay on Stampede with 20 runs per setting @ scale
1024 and 10 runs per setting at scale 4096

ParaStack detects hangs in a few seconds, which is far
less than the commonly used 1-minute timeout.

Timesaving

10 faulty HPL runs with program hang’s occurrence
uniformly distributed over the program execution

On average 35.5% time saving

32

27.5%

55.5%

24.0%

0.0%

88.7%

59.2%

33.5%
44.8%

10.0% 11.3%
0.0%

50.0%

100.0%

1 2 3 4 5 6 7 8 9 10

Sa
ve

d
tim

e
(%

)

Hangs

Thank you!

33

Any Question?

