
Non-Intrusively Avoiding Scaling Problems
in and out of MPI Collectives

Hongbo Li, Zizhong Chen, Rajiv Gupta, and Min Xie

May 21st, 2018

Outline

Scaling Problem

Avoidance Framework

Evaluation

Conclusion

Outline

Scaling Problem

Avoidance Framework

Evaluation

Conclusion

Scaling Problem
Scaling problem is a type of bug that occurs when the
program runs at a large scale in terms of

the number of processes (P)
OR the input size
OR both

They frequently arise with the use of MPI collectives as
collective communication involves

a group of processes
and message size (input size)

An Example of MPI Collective

MPI_Gather using two processes (! = #) with each
transferring two elements $ = #.

Root process:

Scaling Problem
The root cause of a scaling problem with the use of
MPI collectives can be

inside MPI collectives
or outside MPI collectives

Many scaling problems are challenging to deal with
They escape the testing in the development phase

It takes days and months to wait for an official fix
Difficulty exists in bug reproduction, root-cause diagnosis,
and fixing

Inside MPI

Scaling problems reported online.

Many scaling problems are challenging to deal with
They escape the testing in the development phase

It takes days and months to wait for an official fix
Difficulty exists in bug reproduction, root-cause diagnosis,
and fixing

Inside MPI

Environment
settingConnection

failure

Integer
overflowOS

Platform
Unkown

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be
easily corrupted by integer overflow

0

Root’s recvbuf

Each process’
sendbuf

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is not corrupted.

*+,-./0 + 234564 0 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be
easily corrupted by integer overflow

0Root’s recvbuf

Each process’
sendbuf

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is not corrupted.

*+,-./0 + 234564 0 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be
easily corrupted by integer overflow

0

1

Root’s recvbuf

Each process’
sendbuf

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is not corrupted.

*+,-./0 + 234564 1 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be
easily corrupted by integer overflow

0 1Root’s recvbuf

Each process’
sendbuf

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is not corrupted.

*+,-./0 + 234564 1 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be
easily corrupted by integer overflow

0 1

2

Root’s recvbuf

Each process’
sendbuf

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is not corrupted.

*+,-./0 + 234564 2 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be
easily corrupted by integer overflow

0 1 2Root’s recvbuf

Each process’
sendbuf

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is not corrupted.

*+,-./0 + 234564 2 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be
easily corrupted by integer overflow

0 1 2 i P-1Root’s recvbuf

Each process’
sendbuf

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is not corrupted.

Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

0

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is corrupted

*+,-./0 + 234564 0 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

0

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is corrupted

*+,-./0 + 234564 0 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

0

1

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is corrupted

*+,-./0 + 234564 1 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

0 1

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is corrupted

*+,-./0 + 234564 1 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

0 1

2

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is corrupted

*+,-./0 + 234564 2 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

0 1 2

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is corrupted

*+,-./0 + 234564 2 ∗ 4Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

0 1 2

i

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is corrupted

*+,-., + < 0

1234567 + *+,-., + ∗ ,Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

0 1 2i

In MPI_Gatherv, the root process calculate addresses for the incoming
messages when !"#$%# is corrupted

*+,-., + < 0

1234567 + *+,-., + ∗ ,Calculate address:

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

For MPI_Gatherv, the number of elements (N)
received by the root process satisfies

* < ,-./0. 1 − 1 + 5*6_89:
→ < < = ><?_@AB

For MPI_Gather (a regular collective),
< ≤ D ><?_@AB

Outside MPI
In the user code, displacement array !"#$%# (C int,
commonly 32 bits) of irregular collectives can be easily
corrupted by integer overflow

For MPI_Gatherv, the number of elements (N)
received by the root process satisfies

* < ,-./0. 1 − 1 + 5*6_89:
→ < < = ><?_@AB

For MPI_Gather (a regular collective),
< ≤ D ><?_@AB

Huge gap: =D

Outside MPI
Irregular collectives’ limitation due to displacement
array !"#$%# of data type & "'(

Replace int with long long int ?
Discussed yet never done --- backward compatibility

An immediate remedy is in need!

Outline

Scaling Problem

Avoidance Framework

Evaluation

Conclusion

Avoidance

Scaling problem’s trigger
Workaround strategy

Trigger (1) [Outside MPI]
Irregular collectives’ limitation’s trigger is

!"#$%# " < 0

Trigger (2) [Inside MPI]
Users perform testing
It tells users if there is a scaling problem
It also tells at what scale the problem occurs

Do users really need a fancy supercomputer to perform
testing?

Not Necessary!

Trigger (2) [Inside MPI]
User side testing: users manifest potential scaling
problems of MPI routines of their interest
It tells users if there is a scaling problem
It also tells at what scale the problem occurs

Most scaling problems with the use of MPI collectives
relate to both parallelism scale and message size
With ONLY 2 nodes with each having 24 cores and 64 GB
memory, we easily find 4 scaling problems inside released
MPI libraries.
Scaling problems related only to the number of processes are
not found yet

Workarounds

Workaround

(W1) Partition
communication

(W1-A) Partition
processes

(W1-B) Partition the
message

(W2) Build big
data type

Workaround (1)

Partitioning one MPI_Gatherv communication using two strategies
supposing the bug is triggered when !" > $. Four processes (" = $) are
involved with each sending two elements (! = &) and process 0 is the root
process.

Empty recvbufFilled recvbuf Temporary buffer

!" ≤ $

Workaround (2)
Build big data type

Message size = s*n

Bigger data type (bigger !) à smaller "

Only effective when the scaling problem is unrelated to
!

Effective case: "# > 4
Ineffective case: s"# > 4

Workaround (2)

Build big data type for MPI_Gather to avoid a bug triggered when !" > $.

root à proc 0

proc 1

sendbuf recvbuf

root à proc 0

proc 1

sendbuf recvbuf

% = 4,) = 1B, , = 2

% = 1,) = 4B, , = 2

!" = .

!" < $

Outline

Scaling Problem

Avoidance Framework

Evaluation

Conclusion

Evaluation – Setting
Tianhe-2:

Each node has 24 cores and 64GB DRAM
One process per core

MPI_Gatherv
Effectiveness of avoiding scaling problem
Performance

Evaluation – Effectiveness

Workarounds for MPI_Gatherv that avoids the irregular
collective limitation problem.

• !": the maximal workable ! (unit: 1 M, i.e., 2^20)
• #$: the maximal memory consumption on one node
calculated according to MPI standard

23X increase!

Our workarounds are effective till the memory limit is
hit

Evaluation – Performance

MPI_Gatherv [P=768, s=1 B bug occurs when n>2.625 M].

Evaluation -- Summary
Effectiveness:

W1-B is the best

Performance:
W2 is the best
The time cost of a collective based on either W1-A or W1-B
increases linearly as ! increases

Outline

Scaling Problem

Avoidance Framework

Evaluation

Conclusion

Conclusion
Scaling problems are hard to be fixed and thus uses
often need to spend days and months to wait for an
official fix

We provide a non-intrusive framework for application
users as an immediate remedy

Easier than debugging
Faster than official fix

Thank you!

