
Hongbo Li
Zizhong Chen Rajiv Gupta

CC’19, Washington DC, USA
Feb. 17, 2019

Efficient Concolic Testing of
MPI Applications

Concolic Testing

Concrete Execution Symbolic Execution

It Is Popular
Programming languages:
Binary machine code, C, Java, and JavaScript.

Application types:
web applications, sensor network applications, Unix utilities,
database applications, and embedded software, GPU
programs, image processing software, and so on

Various tools:
KLEE, DART, SAGE, PEX, jCute, CREST, Jalangi, etc.

COMPI [IPDPS 2018]

COMPI is a concolic testing tool for MPI programs
with following major features:

Deals with basic MPI semantics
Deals with high testing cost caused by input values,
parallelism, and loops

COMPI achieves 69-86% branch coverage within a few
hours

Concolic Testing

(1) Instrumentation (2) Iterative testing

Issues of COMPI

Our Solutions

Evaluation

Issues of COMPI

Our Solutions

Evaluation

Issues of COMPI
Input generation does not guarantee cost-effective
testing

Floating point data types and operations are not
supported

Issue I
Larger input values à Longer execution

Solution of COMPI: Input Capping

Solver

∀" ≤ $%&

constraints

values
Program execution

An MPI program performing matrix multiplication.

Example

!"# = 50à Fail to cover the else branch

NO solution

Small Cap

! ← C, where 100 < & ≤ 500

&)* = 500à High testing cost

Big Cap

! ← 1234567

No Capping à Execution failure

No Input Capping

Issue II
Floating-point data types and operations are not
supported

Unable to mark !
Fixing it to a value à
either f1 or f2 could not be explored

Unable to record " ∗ 1.1
Symbolic representation of c is not existing à
either f3 or f4 could not be explored

Issues of COMPI

Our Solutions

Evaluation

Our Solutions
Input tuning à cost effective testing

Floating-point extension à exploration of branches
related to the use of floating-point arithmetic

Our Solutions
Input tuning à cost effective testing

Floating-point extension à exploration of branches
related to the use of floating-point calculations

Constraint solving using reals instead of floating-point
numbers à faster constraint solving

Input Tuning

Input Tuning

{! > 100} ∪ {! ≤)**+,} is solvable

- ← /0/
Solution by solver for {! > 100}

- ← /123456

AND {! > 100} ∪ ! ≤)**+, − / is unsolvable

Binary search of)**+, in (0, 1234567) satisfying:

Tuned solution

Tuning

Input Tuning for Multi-variable
Multi-constraint Case

!" ($%&'!(!%&1)

!" ($%&'!(!%&2)

......

$%&,(-.!&(1

$%&,(-.!&(2

True False

True False

Need to solve {$%&,(-.!&(1, $%&,(-.!&(2}

......

Input Tuning for Multi-variable
Multi-constraint Case

!" ($ − & > 100)

!" (& > 0)

......

+,-./01!-/1

+,-./01!-/2

True False

True False

Need to solve {$ − & > 100, & > 0}
......

Input Tuning for Multi-variable
Multi-constraint Case

{" = 4321,) = 1234}

Tuning for {+ − - > /00, - > 0}

{" = 4321,) = 1234, " ≤ 233451,) ≤ 233451}
min{23345} = 102

{" = 4321,) = 1234, " ≤ 233451,) ≤ 233452}
min{233452} = 1

{" = 102,) = 1}

Stage I Tuning

Stage II Tuning

Input Tuning -- Summary
Stage I avoids too large values being generated for ALL
variables appearing in dependent constraints

Stage II ensures the smallest value is generated for the
SINGLE variable appearing in the target constraint
based on Stage I

Our Solutions
Input tuning à cost effective testing

Floating-point extension à exploration of branches
related to the use of floating-point arithmetic

Floating-Point Extension
Two floating-point data types supported: float, double

The extension adopts the design methodology of
symbolic reasoning for integers
Instrument floating-point operations
Records only linear constraints
Non-linear constraints are simplified using concrete values, e.g., ! ∗ # is
recorded as $ ∗ ! with C being the concrete value of #

Floating-Point Extension

Two solvers: Real v.s. Float
Accuracy: Real < Float
Solving speed: Real > Float

Real v.s. Float based on 100 iterative tests of a
synthetic program that compares expression !
with constant 0.

! = # # + % # + % + &
Cost (float) 31.4s 75.0s 91.2s
Cost (real) 8.2s 8.1s 8.2s

3.8-11.1X faster

Limitations of COMPI

Our Solutions

Evaluation

Evaluation
Input tuning is evaluated using HPL, IMB-MPI1, and
SUSY-HMC

Floating-point extension is evaluated using SUSY-HMC

One hour testing at each configuration

Initial input values are 1 for all variable in the first test

In the evaluation of input capping, we selects the same
cap for all variables

Input T
uning on H

PL

Input T
uning on IM

B
-M

PI1

Input T
uning on SU

SY-H
M

C

Input Tuning
10-minute coverage (input tuning) ≥ 1-hour coverage
(other methods)

SUSY-HMC: 1-hour coverage (input tuning) is about
1.2-2.3X higher than 1-hour coverage (other methods)

Floating-point Extension

Floating-point Extension
Real (1704) > Int (1662) > Float (1582)

Constraint solving time of Real (1.7%) < Constraint
solving time of Float (10.9%)

Conclusion
Input tuning
10-minute coverage (input tuning) ≥ 1-hour coverage (other
methods)
SUSY-HMC: 1-hour coverage (input tuning) is about 1.2-2.3X
higher than 1-hour coverage (other methods)

Floating-point Extension
Floating-point extension using reals achieve 42-122 more
branches than the other two

Thank you!

