Testing and Runtime Support for MPI Applications *

Hongbo Li

Abstract: Over the past two decades, dis-
tributed cluster system has evolved from none
to the predominant architecture in the current
HPC world — it accounts for about 85% of the
current topb500 supercomputers. Along with
the rise of cluster, MPI has evolved into the
de facto standard for HPC applications on dis-
tributed clusters due to its great portability
and performance. The tool support for verify-
ing correctness of MPI applications lags far be-
hind the ever-increasingly sophisticated hard-
ware that has been developed. Lack of tools
poses following challenges for developers: (1)
there are no practical tools for systematic soft-
ware testing techniques for MPI applications;
and (2) there is insufficient tool support for
scaling problems — a class of bugs that man-
ifests at large scale either in terms of problem
size or the number of processes.

To address the first problem, we have de-
veloped COMPI, the first concolic testing tool
for MPI applications. COMPI tackles two ma-
jor challenges. First, it provides an automated
testing framework for MPI programs — it per-
forms concolic execution on a single process
and records branch coverage across all. Sec-
ond, COMPI employs three techniques to ef-
fectively control the cost of testing as too high
a cost may prevent its adoption or even make
the testing infeasible.

To address the second problem, we have
designed an avoidance framework for scaling
problems with the use of MPI collectives. As

*The original title in the list of IPDPS’18 PhD Fo-
rum is Correctness Support for MPI Applications.

the complexity of MPI collectives is directly
impacted by both parallelism scale and prob-
lem size, their use often triggers scaling prob-
lems. Fixing a scaling problem is challenging,
and thus it usually takes much time for users to
wait for an official fix. To improve users’ pro-
ductivity, we establish the necessity of user side
testing and provide a protection layer to avoid
scaling problems non-intrusively, i.e., without
requiring any changes to the MPI library or
user programs. This provides an immediate
remedy when an official fix is not readily avail-
able.

We also built a hang detection tool that
saves computing resources in presence of pro-
gram hangs at large scale. While program
hangs on large parallel systems can be de-
tected via the widely used timeout mechanism,
it is difficult for the users to set the time-
out — too small a timeout leads to high false
alarm rates and too large a timeout wastes a
vast amount of valuable computing resources.
To address the above problems with hang de-
tection, this paper presents ParaStack, an ex-
tremely lightweight tool to detect hangs in a
timely manner with high accuracy, negligible
overhead with great scalability, and without
requiring the user to select a timeout value.
For a detected hang, it provides direction for
further analysis by telling users whether the
hang is the result of an error in the computa-
tion phase or the communication phase. For
a computation-error induced hang, our tool
pinpoints the faulty process by excluding hun-
dreds and thousands of other processes.



