Introduction of Software Security

Attacks Are Staggeringly Expensive

“Cybercrime proceeds in 2004 were $105 billion, greater than those of
illegal drug sales” --- Valerie McNiven

“Identity fraud reached $52.6 billion in 2004.” --- Javelin Strategy &
Research

“Dealing with viruses, spyware, PC theft, and other computer-related
crimes costs U.S. businesses a staggering $67.2 billion a year --- FBI

“Over 130 major intrusions exposed more than 55 million Americans to
the growing variety of fraud as personal data like Social Security and credit
card numbers were left unprotected” --- USA Today

1/11/2017

The Changing Threats to Computer Security

* Vulnerable programs
— Coding bugs, buffer overflows, parsing errors
* Malicious programs
— Spyware, trojans, rootkits
* Misconfigured programs
— Security features not turned on
— Complex configuration
* Social engineering
— Phishing/pharming

Causes
* Complexity
— One security-related bug per thousand lines of source
code

* Homogeneity

— Same operating systems, software, libraries and
hardware

* Connectivity

— Everything is connected in the Internet
* Fundamental OS design flaws

— Monolithic design

— Insufficient access control

1/11/2017

Software Security

* Common vulnerabilities:
— Buffer overflow
— Dangling pointer
— Format string bugs
— Time-of-check-to-time-of-use bugs
— Symbolic link races
— SQL injection
— Directory traversal
— Cross-site scripting
— Cross-site request forgery

Vulnerabilities discovered per year (CERT)

Vulnerabilities By Year

7948

66106520 6452

56325736
5297 5191
4935 4651
4155
2156 2450
=il

6080

1999 894
M 2000 1020
M 2001 1877
M 2002 2156
2003 1526
2004 2450
2005 4935
M 2006 6510
M 2007 6520
2008 5632
2009 5736
M 2010 4651
M 2011 4155
M 2012 5297
2013 5191
2014 7948
2015 6452
M 2016 6080

1/11/2017

Days from patch to exploit (information security, July 2004)

300
250 -1

200 - \
150 -} \
i A 4

50 —

T T T T
1999 2000 2001 2002 2003 2004

Software vulnerabilities in C/C++ programs

String

Integer
Formatted IO
Race Condition

1/11/2017

1/11/2017

Strings

* Strings—such as command-line arguments,
environment variables, and console input—are of
special concern in secure programming because they
comprise most of the data exchanged between an end
user and a software system. Graphic and Web-based
applications make extensive use of text input fields
and, because of standards like XML, data exchanged
between programs is increasingly in string form as well.
As a result, weaknesses in string representation, string
management, and string manipulation have led to a
broad range of software vulnerabilities and exploits.

Examples
1. int main(void) { 1. int main(int argc, char *argv[]) {
2. char Password[80]; 2. char name[2048];
3. puts("Enter 8 character password:"); 3. strcpy(name, argv[1]);
4. gets(Password); ... 4, strcat(name, " =");
5.} 5. strcat(name, argv[2]); ...
6.
Reading unbounded stream from standard input I

Unbounded string copy and concatenation

1. #include <iostream>

2. int main(void) {

3. char buf[12];

4. cin >> buf;

5. cout << "echo: " << buf << endl;
6.}

Extracting characters from cin into a character array

10

1/11/2017

Preparation

* echo 0 > proc/sys/kernel/randomize_va_space
* gcc —fno-stack-protector example01.c —o example-01

11

Problem 1

» Craft a malicious input to bypass the
authentication:

— Print “access granted” instead of “access denied”

12

Problem 2

* Inject arbitrary code to execute
— A shell code template is given
— Make a working exploit that runs “ps”

Problem 3

* Return into an existing function in libc
— Make a working exploit that runs “ps”

14

1/11/2017

1/11/2017

Mitigations

* Secure Coding practice
e Compiler Enhancement
* OS/Hardware Enhancement

Secure Coding: Input Validation

1. int myfunc(const char *arg) {
2. char buff[100];
3. if (strlen(arg) >= sizeof(buff)) {
4. abort();
5 }

6.}

Secure Coding: gets vs. fgets vs. gets_s

1. gdefine BUFFSIZE B8

2]

- int _tmein{int argc, _TCHRR* argv[l){

3. char buff [BUFFSIZE];
{/ insecure use of gets()
4. gets {buff);
5. printf{"gets: %s.\n", buff};
&. if (fgets(buff, BUFFSIZE, stdin) == NULL) |
7- printf{"read errcr.\n");
a. abort (l;
=
10. printf{"fgets: %s.\n", bufi);
11. if (gets_s(buff, BUFFSIZE) == NULL) {
1z printf{"inwvalid input.‘\n");
13, sbort(l;
14. }
15. printfi{"gets_s: %3.\n", bufil;
1s. return 07
17

17

Secure Coding: strcpy & strcat

» Standard: strncpy, strncat

strncpy(dest, source, dest_size - 1);
dest[dest_size - 1] ="'\0';

* Nonstandard: strcpy_s, strcat_s, stricpy, stricat

18

1/11/2017

Compiler Enhancement: Canary

Stack pointer —— » . 4

local variables (C)

arrays (B)
quard

Frame pointer 3 previous frame pointer

return address

arguments (A)

s Location (A) has no array or pointer variables.
e Location (B) has arrays or structures that contain arrays.

e Location (C) has no arrays.

19

No-Execute Protection

* In new hardware:
— NX (No-Execute) by AMD
— XD (eXecute-Disabled) by Intel
— DEP (Data Execution Prevention) by Microsoft

— A bit in the page table entry indicates if this page can be
executed.

* Software emulation: PaX, WAX
* Prevent code injection attack

20

1/11/2017

10

OS Enhancement: ASLR

* ASLR: Address Space Layout Randomization
— Stack, heap, executable, library, etc

— Executable/library need to be compiled to be PIE
(e.g. position-independent executable)
— On 32-bit architecture
* 5-10% performance overhead
* Not enough entropy: brute force can still succeed
— On 64-bit architecture
* Very low performance overhead
* Enough entropy

21

Integer Vulnerabilities

* Integer Overflow
* Sign Error
* Truncation Error

1/11/2017

11

Integer Overflow

int i;
2. unsigned int j;
3. 1 = INT MRX; // 2,147,483,647
4. i++;
5. printf("i = sd\n", 1); /* 1 = -2,147,483,648 */
€. j = UINT MAX; // 4,294,967,285;
T. J++;
3. printf("j = su\n", j); /* J =0 */
9. i = INT MIN; [/ -2,147,483,648;

i-—;

. printf("i = %d\n", i); /* i = 2,147,483,647 */
i=0;
j—-z

. printf("j = %u\n", j); /* j = 4,294,0967,295 */

23
Integer Overflow Vulnerability
1. void getComment (unsigned int len, char *src) {
2 unsigned int sizs;
3. size = len - Z;
4. char *comment = (char *)malloc(size + 1);
5. ment, src, size);
.
7.1
8. int _tmain(int argc, _TCHAR* argv[])
9. getComment (1, "Comment ™);
10. return 0;
11.)
A realworld vulnerability in handling comments in JPEG files
24

1/11/2017

12

Sign Error

int 1 = -3;

2 unsigned short u;
3. u = i;
4. printf("au = %$hu\n", u); /* u = 65533 */
25
Sign Error Vulnerability
1. #define BUFF_SIZE 10
z. int main{int arge, char* argv]){
3. int len;
4. char buf[BUFF SIZE];
5. len = atoilargvll]};
@. if (lemn < BUFF_SIZE){
7. memepy {buf, argviZ], len);
. }
= else
10. printf{"Tec much data'\n™};
11. 1}
26

1/11/2017

13

Truncation Errors

S

~1 o

e

short int is

1= u;
printf("i = %d\n", i); /* i = -32768 */
u = 65535

i=u;

printf("i = %d\n", 1); /* 1 = -1 */

27

Truncation Error Vulnerability

int mainl{int arge, char *const *argv) {
unsigned short int total;
total = strleniargv[l])+strlen{ergwvlZ])+1l;
char *buff = (char *) mallocitotal);
strepy (buff, argvll]l):
strcat (buff, argvlZ]l):

CEg I e

=1 @ o

28

1/11/2017

14

Mitigations for Integer Vulnerabilities

* Type range checking
— In Pascal & Ada: type day is new INTEGER range 1..31
— In C: we need to explicitly check at runtime

* Compiler checking
— Warning for “possible loss of data”

— Runtime checks
* VC++: /RTCc GCC: -ftrapv
* Performance overhead is high, only good for debugging

» Safe library: Safelnt

* Research Ideas
— Static Binary Analysis
— Dynamic Testing

Format String Vulnerabilities

e Buffer Overflow
* Read Memory Content
* Write Memory Content

1/11/2017

15

1/11/2017

Format String: Buffer Overflow

1. char buffer[512];
2. sprintf (buffer, "Wrong command: %s\n", user);

When user is too large

1. char outbuf[512];
2. char buffer([512);
3. sprintf(
buffer,
"ERR Wrong command: %.400s",
user
].

4, sprintf (outbuf, buffer):

user = %497d\x3c\xd3\xff\xbf<nops><shellcode>

31

Format String: View Stack Content

char format [32];
stropy (format, "%08x.%08x.%08x.%08x") ;

printf (format, 1, 2, 3):

How to view arbitrary
memory content?

Initial argument pointer Final argument pointer

Memory:

| e0f84201 | 01000000 | 02000000 | 03000000 | 25303878 | 2253038 |

Formatstring: %08 x . %08 x .%08x.%08x

A A0 [0 D\

Output: ~ 00000001.00000002.00000003.25303878

32

16

Format String: Write Arbitrary Memory

int 1;
printf ("hello%n\n", (int *)&i);

After printf, i=5

A malicious case:

printf ("\xdc\xf5\x42\x01%08x%08x%08x%n") ;

Mitigations

* Making format string static/constant

Dynamic use of static content

* snprintf versus sprintf

34

1/11/2017

17

1/11/2017

stdio vs. iostream

¢, char * argv[]) {

35

Mitigations (cont’d)

* Compiler checks

— GNU C compiler flags include -Wformat, -
Wformat-nonliteral, and -Wformat-security

* Research ldeas:
— Static taint analysis
— Dynamic taint analysis

36

18

Race Condition

* Race Condition:

— An unanticipated execution ordering of concurrent
flows that results in undesired behavior

* Three Properties:
— Concurrency
— Shared Object
— Change State
* TOCTOU Race Condition
— Time of check, time of use

37

Exploiting Symbolic Links

1. if (stat("/some dir/some_file", &statbuf) == -1) {
2. err(l, "stat™):

3.)

4. if (statbuf.st_size >= MAX FILE_SIZE) {

5. err(2, "file size");

6.}

7.

8. if ((fd=open("/some_dir/some_file", O_RDONLY)) == -1) {
9. err(3, "open - /some dir/some file"):
10. }
11. // process file

An attacker that has appropriate permission could exploit this
vulnerability by executing the following commands during the race
window (between lines 1 and 8):

rm /some_dir/scome_file

In -s attacker file /some dir/some file

38

1/11/2017

19

Exploiting Temporary Files

int fd = cpen("/tmp/some_file",
O_WRONLY | O_CREAT | O_TRUNC, 0600);

* If a /tmp/some_{file file already exists, then that file is opened and
truncated.

* If /tmp/some_file is a symbolic link, then the target file referenced by
the link is truncated.

int fd = open("/tmp/scme file",
O WRONLY | O CREAT | © EXCL | O TRUNC, 0600);

* This call to open fails whenever /tmp/some_file already
exists, including when it is a symbolic link.

* The test for file existence and the file creation are
guaranteed to be atomic

Mitigation

No easy solution
Use file descriptor instead of filename
— fchown vs. chown, fstat vs. stat, fchmod vs. chmod

— Use caution with link, unlink, symlink, mkdir, rmdir, mount,
unmount, etc.

Avoid shared objects, if possible
Least privilege

Temporary files

— Never reuse filenames

— Randomize filename generation

— Use mkstemp, rather than mktemp, tempnam, or
tempnam_s

40

1/11/2017

20

Demo --- Exploit String Vulnerability

N~NoOo ok~ WNPRE

© 0

10.
11.
12.
13.
14.
15. }
16.

17. 3}

int IsPasswordOkay(void) {
char Password[12];
gets(Password);
if (Istrcmp(Password, *‘goodpass'™))
return(true);
else return(false);

-}

- void main(void) {

int PwStatus;
puts("'Enter password:'");
PwStatus = IsPasswordOkay();
if (PwStatus == false) {
puts(**Access denied™);
exit(-1);

else puts('Access granted');

41

Introduction of Malware

1/11/2017

21

Outline

Malware Taxonomy & Overview
Code Obfuscation

Rootkit Techniques

New Trends

Malware Taxonomy

Virus vs. Worm
— Propagate itself or human involved
Adware/Spyware
Keylogger
Password thief
Network sniffer
Mass mailer
Backdoor
Bot

Driveby-download
— Exploit browser vulnerabilities
Rootkit

1/11/2017

22

Malicious Code Problem

Malware is everywhere.

Source: Symantecggternet Security Threat Report (vol. VII)

7360

6,000 -

4496

4,000 -

2,000 | 1702

445 687

New viruses and worms

Jan.-June July-Dec. Jan.-June July-Dec. Jan.-June July-Dec.
2002 2002 2003 2003 2004 2004

* Large malware families.

Al Right Reserved Copyright 2010 by CSRG-Yin Lab

Obfuscation Techniques

* Metamorphism

— Upon replication, the malware generates a new (equivalent)
version of itself

* Polymorphism
— The malware encrypts its malicious payload, to be decrypted for
execution
— The encryptor and decriptor functions mutate with each
replication
* Emulation
— The malicious payload is converted into a virtual instruction set

— An interpreter is imbedded in the malware to emulate each
virtual instruction at runtime

All Right Reserved Copyright 2010 by CSRG-Yin Lab 46

1/11/2017

23

1/11/2017

Metamorphism

» Code Transposition (changing order of
instructions)

— Version 1 and 2 are semantically equivalent:

Version 1: Version 2:
mov eax, ebx mov ecx, 5
mov ecx, 5 mov eax, ebx
jmp +14 jmp +14

All Right Reserved Copyright 2010 by CSRG-Yin Lab a7

Metamorphism 2

* “nop” insertion
— Version 1 and 2 are semantically equivalent:

Version 1: Version 2:
mov eax, ebx mov eax, ebx
mov ecx, 5 mov eax, eax
call [ebp] test eax, eax
nop
inc eax
dec eax
mov ecx, 5
call [ebp]

All Right Reserved Copyright 2010 by CSRG-Yin Lab 48

24

Metamorphism 3

* Register re-assignment

— Version 1 and 2 are semantically equivalent,
calling function at 0x2020 with parameter ‘5’ and
clearing both ebx and eax:

Version 1: Version 2:
mov eax, 5 mov ebx, 5
push eax push ebx
call 0x2020 call 0x2020
XOr eax, eax xor ebx, ebx
xor ebx, ebx XOr eax, eax

All Right Reserved Copyright 2010 by CSRG-Yin Lab 49

Metamorphism 4

» Substitution of equivalent instruction
sequences

— Version 1 and 2 are semantically equivalent:

Version 1: Version 2:
mov eax, 5 mov eax, 5
shl eax, 1 mul eax, eax, 2

All Right Reserved Copyright 2010 by CSRG-Yin Lab 50

1/11/2017

25

Metamorphism 5

* Modifying condition jumps
— Version 1, 2, and 3 are semantically equivalent:

Version 1: Version 2: Version 3:
mov eax, 5 mov eax, 5 mov eax, 5
test eax, eax push 0x2020 jmp 0x2020

jnz 0x2020 ret

All Right Reserved Copyright 2010 by CSRG-Yin Lab 51

Polymorphism (Packed Executable)

Instruction
Pointer (IP)

- Program Code Instruction

Pointer (IP)
Packed Data

\:| Empty Memory Region

1/11/2017

26

Georgia
Tech

Emulator-Based Obfuscation

Obfuscated Program

P,
Bytecode Program

(written in language L)

x86 ISA ‘ ’

VvV

Sharif et al. Automatically Reverse Engineering Malware Emulators

Georgi
Tech

ia

Impacts on Existing Malware Analysis

Obfuscated Program

o Unknown Language L
L can be randomly generated

P, o Pure Static Analysis (whitebox)

Bytecode Program Completely thwarted
(written in language L)

Only emulator code is analyzable
P, is considered as data by analyzer

o Greybox methods

Includes instruction level analyzers,

x86 ISA

‘ information-flow, dynamic tainting,
N multi-path exploration etc.

Analysis is inaccurate

For example, paths may explored in
the emulator, but not the malware

Sharif et al. Automatically Reverse Engineering Malware Emulators

1/11/2017

27

Rootkits

Replace system utility tools
— E.g., s, ps, netstat
Hooking user-level APls
— Hot patching
— Modify IAT, EAT
Kernel hooking
— System call table, IDT
— Function pointers on heap (stealthier)
Direct Kernel Object Manipulation (DKOM)
— Unlike a process object from the active process list
— SetpidtoO
Virtual Machine Monitor based rootkit
— Using hardware virtualization technology
— Bluepill
BIOS, Firmware rootkit ...

Trend for Attackers

From Virus to Worm to Driveby Downloads

— No exploit -> simple exploits -> complex exploits
From user to kernel to even lower level

— It become harder to detect and has higher privilege
Code obfuscation is common practice

— Metamorphism, Polymorphism, Built-in emulator
From hobby to profit driven

— Economy chain

— E.g, exploits infrastructure, botnet, black market

1/11/2017

28

Trend for Defenders

* Traditional malware detection is failing
— Signature checking: byte sequence, regular expression
— Semantic-aware: too expensive, not practice
— Whitelisting is a promising approach
* More security mechanism should be
implemented in OS
— Finer-grained access control
— E.g., UAC
— More kernel code integrity protection

1/11/2017

29

