
CS510 Software Engineering
Program Slicing

Asst. Prof. Mathias Payer

Department of Computer Science
Purdue University

TA: Scott A. Carr
Slides inspired by Xiangyu Zhang

http://nebelwelt.net/teaching/15-CS510-SE

Spring 2015

http://nebelwelt.net/teaching/15-CS510-SE

What is slicing?

Table of Contents

1 What is slicing?

2 Using Slicing

3 Slice Construction

4 Offline Slicing Algorithms

5 Online Slicing Algorithms

6 Forward Dynamic Slice Computation

7 Slicing Outlook

8 Summary

Mathias Payer (Purdue University) CS510 Software Engineering 2015 2 / 39

What is slicing?

What is slicing?

Program slicing1 is a method used by experienced computer
programmers for abstracting from programs. Starting from a subset
of a program’s behavior, slicing reduces that program to a minimal
form which still produces that behavior. The reduced program, called
a slice, is an independent program guaranteed to faithfully represent
the original program within the domain of the specified subset of
behavior.

Slicing

The slice of variable v at statement S is the set of statements
involved in computing v’s value at S.

1Mark Weiser, Program slicing, ICSE’81
Mathias Payer (Purdue University) CS510 Software Engineering 2015 3 / 39

What is slicing?

Slicing Example

1 #d e f i n e N 256
2

3 v o i d main () {
4 i n t i = 0 ;
5 i n t sum = 0 ;
6 w h i l e (i < N) {
7 sum = sum + i ;
8 i = i + 1 ;
9 }

10 p r i n t f (”Sum = %d\n” , sum) ;
11 p r i n t f (” i = %d\n” , i) ;
12 }

Mathias Payer (Purdue University) CS510 Software Engineering 2015 4 / 39

Using Slicing

Table of Contents

1 What is slicing?

2 Using Slicing

3 Slice Construction

4 Offline Slicing Algorithms

5 Online Slicing Algorithms

6 Forward Dynamic Slice Computation

7 Slicing Outlook

8 Summary

Mathias Payer (Purdue University) CS510 Software Engineering 2015 5 / 39

Using Slicing

Use-cases for slicing

Debugging minimize program to capture essentials.

Data-Flow Testing reduce cost of regression testing after changes.

Code Reuse extract modules for reuse.

Version Integration safely integrate non-interfering extensions.

Partial Execution Replay repeat only failure-relevant part.

Partial Roll Back partially roll back a transaction.

Information Flow prevent confidential data from interacting with
untrusted data.

Others...

Mathias Payer (Purdue University) CS510 Software Engineering 2015 6 / 39

Slice Construction

Table of Contents

1 What is slicing?

2 Using Slicing

3 Slice Construction

4 Offline Slicing Algorithms

5 Online Slicing Algorithms

6 Forward Dynamic Slice Computation

7 Slicing Outlook

8 Summary

Mathias Payer (Purdue University) CS510 Software Engineering 2015 7 / 39

Slice Construction

Slice Construction

1 #d e f i n e N 256
2

3 v o i d main () {
4 i n t i = 0 ;
5 i n t sum = 0 ;
6 w h i l e (i < N) {
7 sum = sum + i ;
8 i = i + 1 ;
9 }

10 p r i n t f (”Sum = %d\n” , sum) ;
11 p r i n t f (” i = %d\n” , i) ;
12 }

How can we construct a
slice for # 11?

Use PDG: Data
Dependence.

Use PGD: Control
Dependence.

Recursively enumerate
all dependent
statements.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 8 / 39

Slice Construction

Static vs. Dynamic Slicing

Static slicing has lower overhead while dynamic slicing may use
runtime information.

Static runs into (code/data pointer) aliasing problems while
dynamic runs into coverage problems.

Static slicing may run into state explosion.

Static slices are usually larger than dynamic slices.

Combined static/dynamic approach allows best coverage and
best results.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 9 / 39

Slice Construction

Dynamic Slicing

A dynamic program slice2 is an executable subset of the original
program that produces the same computations on a subset of selected
variables and inputs. It differs from the static slice (Weiser, 1982,
1984) in that it is entirely defined on the basis of a computation.
The two main advantages are the following: Arrays and dynamic data
structures can be handled more precisely and the size of slice can be
significantly reduced, leading to a finer localization of the fault.

2Bogdan Korel and Janusz Laski, Dynamic Program Slicing, 1988
Mathias Payer (Purdue University) CS510 Software Engineering 2015 10 / 39

Slice Construction

Dynamic Slicing (2)

The set of executed statements instances that contributed to the
value of the criterion.

Dynamic slicing leverages all information about a particular
execution of a program.

Computation through Dynamic Program Dependence Graph
(DPDG): (i) each node is an executed statement; (ii) edges
represent control/data dependences; dynamic slice criterion is a
triplet {var, exec point, input}; (iii) the reachable set from a
criterion constitutes a slice.

Dynamic slices are smaller, more precise, and more helpful.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 11 / 39

Slice Construction

Static vs. Dynamic Slicing

Static slicing has lower overhead while dynamic slicing may use
runtime information.

Static runs into (code/data pointer) aliasing problems while
dynamic runs into coverage problems.

Combined static/dynamic approach allows best coverage and
best results.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 12 / 39

Slice Construction

Dynamic Slicing Example

1 #d e f i n e N 256
2

3 v o i d main () {
4 i n t i = 0 ;
5 i n t sum = 0 ;
6 w h i l e (i < N) {
7 sum = sum + i ;
8 i = i + 1 ;
9 }

10 p r i n t f (”Sum = %d\n” , sum) ;
11 p r i n t f (” i = %d\n” , i) ;
12 }

slice(I@11) =
{4, 6, 8, 11}
dslice(I@11,N = 0) =
{4, 11}
(11 DD 4, 11 !CD 6)

dslice(I@11,N = 1) =
{4, 6, 8, 11}
10’: i = 5;

dslice(I@11,N = 1) =
{10′, 11}

Control Dependence3

3B is control dependent on A iff there is a path in the CFG from A to B that
does not contain the immediate dominator of A.
Mathias Payer (Purdue University) CS510 Software Engineering 2015 13 / 39

Slice Construction

Dynamic Slicing Summary

Do we still care about aliasing?

No, a backward linear scan through the trace recovers all data
dependences.

What about control dependences?

Still tricky. We cannot just traverse backwards to detect if a
statement X is control dependent on an earlier statement, more
data-structures are needed.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 14 / 39

Offline Slicing Algorithms

Table of Contents

1 What is slicing?

2 Using Slicing

3 Slice Construction

4 Offline Slicing Algorithms

5 Online Slicing Algorithms

6 Forward Dynamic Slice Computation

7 Slicing Outlook

8 Summary

Mathias Payer (Purdue University) CS510 Software Engineering 2015 15 / 39

Offline Slicing Algorithms

Offline Slicing

Idea: instrument the program to generate the control-flow and
memory access trace, recover control dependences and data
dependences offline, after trace collection.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 16 / 39

Offline Slicing Algorithms

Trace example

1 v o i d main () {
2 i n t i = 0 ; t r a c e (2 , wr , &i , 0) ;
3 i n t sum = 0 ; t r a c e (3 , wr , &sum , 0) ;
4 w h i l e (i<N, t r a c e (4 , rd , &i , rd &N)) {
5 sum = sum + i ; t r a c e (5 , rd , &sum , rd , &i , wr , &sum) ;
6 i = i + 1 ; t r a c e (6 , rd , &i , wr , &i) ;
7 }
8 p r i n t f (”sum = %d\n” , sum) ; t r a c e (8 , rd , &sum) ;
9 p r i n t f (” i = %d\n” , i) ; t r a c e (9 , rd , &i) ;

10 }

Mathias Payer (Purdue University) CS510 Software Engineering 2015 17 / 39

Offline Slicing Algorithms

Offline Slicing: Data Dependence

For each “{R, addr}”, traverse trace backwards to find the closest
“{W, addr}”, introduce a data-dependency edge. Then traverse
further to find the corresponding writes of the reads on the identified
write.
{9, rd ,&i} → {6,wr ,&i}
{6, rd ,&i} → {2,wr ,&i}

Mathias Payer (Purdue University) CS510 Software Engineering 2015 18 / 39

Offline Slicing Algorithms

Offline Slicing: Control Dependence

Assume that there are no recursive functions and CD(i) is the set of
static control dependence of i. Traverse backward in the trace and
find the closest x so that x is in CD(i) then introduce a dynamic
control dependence from i to x.
This does not work (well) with recursion.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 19 / 39

Online Slicing Algorithms

Table of Contents

1 What is slicing?

2 Using Slicing

3 Slice Construction

4 Offline Slicing Algorithms

5 Online Slicing Algorithms

6 Forward Dynamic Slice Computation

7 Slicing Outlook

8 Summary

Mathias Payer (Purdue University) CS510 Software Engineering 2015 20 / 39

Online Slicing Algorithms

Online Slicing Algorithms

Offline trace traversal has huge performance implications due to
frequent trace scans.

Detect control dependence and data dependence online during
execution (instead of just recording the trace).

Mathias Payer (Purdue University) CS510 Software Engineering 2015 21 / 39

Online Slicing Algorithms

Efficient Data Dependence Detection

Idea: Use data structure to store last writer.

Store last instruction that writes an address in a hashmap.

For reads, lookup address in hashmap and add data-dependency
edge.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 22 / 39

Online Slicing Algorithms

Efficient Control Dependence Detection

Dynamic Control Dependence

yj is dynamic control dependent (DCD) on xi iff there exists a path
from xi to Exit that does not pass yj and no such paths for nodes in
the executed path from xi to yj .

We also note that all executed statements between a predicate
instance and its immediate post-dominator form a region.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 23 / 39

Online Slicing Algorithms

Region example

1 f o r (i =0; i<N; I ++) {
2 i f (i %2==0)
3 p = &a [i] ;
4 f o o (p) ;
5 }
6 a=a +1;

|- |- 1_1

| | |- 2_1

| | |- 3_1

| | 4_1

| | ...

| | |- 1_2

| | | |-2_2

| | | |-3_2

| | | 4_2

| | | ...

| |- |- 1_3

|- 6_1

Mathias Payer (Purdue University) CS510 Software Engineering 2015 24 / 39

Online Slicing Algorithms

Dynamic Control Dependence: Properties

1 A statement instance xi is DCD on the predicate instance
leading xi ’s enclosing region.

2 Regions are disjoint or nested, they never overlap.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 25 / 39

Online Slicing Algorithms

DCD: Property 1

A statement instance xi is DCD on the predicate instance leading xi ’s
enclosing region.
Proof:
let the predicate instance be pj and assume xi does not DCD pj .
Therefore either (i) there is not a path from pj to exit that does not
pass xi , which indicates xi is a post-dominator of pj , contradicting
the condition that xi is in the region delimited by pj and its
immediate post-dominator or (ii) there is a yk in between pj and xi so
that yk has a path to Exit that does not pass xi . Since pj ’s
immediate post-dominator is also a post-dominator of yk , yk and pj ’s
post-dominator form a smaller region that includes xi , contradicting
that pj leads the enclosing region of xi .

Mathias Payer (Purdue University) CS510 Software Engineering 2015 26 / 39

Online Slicing Algorithms

DCD: Property 2

Regions are disjoint or nested, they never overlap.
Proof: Assume there are two regions (x , y) and (m, n) that overlap.
Let m reside in (x , y), thus y resides in (m, n),which implies that
there is a path from m to Exit without passing y .Let the path be P .
Therefore, the path from x to m and P constitute a path from x to
Exit without passing y , contradicting the condition that y is a
post-dominator of x .

Mathias Payer (Purdue University) CS510 Software Engineering 2015 27 / 39

Online Slicing Algorithms

Efficient DCD Detection

Observation: regions have LIFO property (otherwise regions
would overlap).

Implication: the sequence of nested active regions can be
maintained by a stack, called Control Dependence Stack.

A region is nested in the region right below it on the stack.

The enclosing region for the current execution point is always
the top entry in the stack, therefore the execution point is
control dependent on the predicate that leads the top region.

An entry is pushed onto CDS if a branching point (predicates,
switch statements, etc.) executes.

Top is popped if the immediate post-dominator of the branching
point executes, denoting the end of the current region.

Reading assignment: Bin Xin, Xiangyu Zhang, Efficient Online Detection of

Dynamic Control Dependence, ISSTA’07.
Mathias Payer (Purdue University) CS510 Software Engineering 2015 28 / 39

Forward Dynamic Slice Computation

Table of Contents

1 What is slicing?

2 Using Slicing

3 Slice Construction

4 Offline Slicing Algorithms

5 Online Slicing Algorithms

6 Forward Dynamic Slice Computation

7 Slicing Outlook

8 Summary

Mathias Payer (Purdue University) CS510 Software Engineering 2015 29 / 39

Forward Dynamic Slice Computation

Forward Dynamic Slice Computation

Prior mechanisms use backward slicing: dependence graphs are
traversed backwards from slicing criterion with space complexity
O(execution length).

Forward computation: a slice is represented as a set of
statements that are involved in computing the value of the
slicing criterion, maintain slices per variable.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 30 / 39

Forward Dynamic Slice Computation

Forward Dynamic Slicing

An assignment statement execution is formulated as:
si : x = pj?op(src1, src2, ...)

The statement execution instance si is control dependent on pj
and operates on variables of src1, src2, etc.

Upon execution of si , the slice of x is updated to
slice(x) = si ∪ slice(src1) ∪ slice(src2) ∪ ... ∪ slice(pj)

The slice of variable x is the union of the current statement, the
slices of all variables that are used and the slice of the predicate
instance that si is control dependent on. Because they are
contributing to the value of x .

Such slices are equivalent to slices computed by backwards
algorithms.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 31 / 39

Forward Dynamic Slice Computation

Forward Dynamic Slicing (2)

A predicate is formulated as si : pj?op(src1, src2, ...). The
predicate itself is control dependent on another predicate
instance pj and the branch outcome is computed from variables
of src1, src2, and so on.

When executing si a triple of
< si , IPD(s), s ∪ slice(src1) ∪ slice(src2) ∪ ... ∪ slice(pj) > is
pushed to the CDS. The entry is popped at its immediate
post-dominator.

slice(pj) can be retried from the top element of the CDS.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 32 / 39

Forward Dynamic Slice Computation

Forward Dynamic Slicing Example

a = 1 11 : a = 1 slice(a) = {1}
b = 2 21 : b = 2 slice(b) = {2}
c = a+b 31 : c = a + b slice(c) = {1, 2, 3}
if a < b then 41 : if a < b then push(< 41, 6, 1, 2, 4 >)
d = b*c 51 : d = b ∗ c slice(d) = {1, 2, 3, 4, 5}

Mathias Payer (Purdue University) CS510 Software Engineering 2015 33 / 39

Forward Dynamic Slice Computation

Forward Dynamic Slicing (3)

Slices are equivalent to those computed by backward slicing.

Space complexity is bounded by
O((nr(variables) + MAX CDS DEPTH) ∗ nr(statements)).

Efficiency relies on hashmap implementation and set operations.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 34 / 39

Slicing Outlook

Table of Contents

1 What is slicing?

2 Using Slicing

3 Slice Construction

4 Offline Slicing Algorithms

5 Online Slicing Algorithms

6 Forward Dynamic Slice Computation

7 Slicing Outlook

8 Summary

Mathias Payer (Purdue University) CS510 Software Engineering 2015 35 / 39

Slicing Outlook

Slicing Outlook

Slicing is an approach to isolate part of the program (or
execution) given a certain criterion.

Event slicing: intrusion detection, execution fast forwarding,
understanding network protocols, malware replayer.

Forward slicing.

Chopping.

Probabilistic slicing.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 36 / 39

Summary

Table of Contents

1 What is slicing?

2 Using Slicing

3 Slice Construction

4 Offline Slicing Algorithms

5 Online Slicing Algorithms

6 Forward Dynamic Slice Computation

7 Slicing Outlook

8 Summary

Mathias Payer (Purdue University) CS510 Software Engineering 2015 37 / 39

Summary

Summary

Static and dynamic slicing concepts and mechanisms.

Offline dynamic slicing algorithms based on backwards traversal
of traces are inefficient.

Online algorithms that detect data dependences and control
dependences allow efficient implementation.

Mathias Payer (Purdue University) CS510 Software Engineering 2015 38 / 39

Summary

Questions?

?

Mathias Payer (Purdue University) CS510 Software Engineering 2015 39 / 39

	What is slicing?
	Using Slicing
	Slice Construction
	Offline Slicing Algorithms
	Online Slicing Algorithms
	Forward Dynamic Slice Computation
	Slicing Outlook
	Summary

