Efficient Software-Based Fault
Isolation

Robert Wahbe, Steven Lucco
Thomas E. Anderson, Susan L. Graham

Software Extensibility

Operating Systems Application Software

* Kernel modules * PostreSQL

* Device drivers * OLE

* Unix vNodes * Quark Xpress, Office
But:

Flaws in extension modules could cause flaws in the entire
system

¢ Crashes

* Data corruption

2/22/2017

Hardware Isolation

is slow

* Traps, address space switches, TLB flushes...

* Performance doesn’t necessarily improve with
integer performance

Software Isolation

* Load each untrusted module into its own fault
domain

* Provide write protection so that untrusted
code can’t corrupt data

* Limit execution so that untrusted code can’t
hijack operating system resources or crash
containing program

2/22/2017

Implementation

* Fault domains are segments

Target Address
[[T TTTT]

Segment ID \
[TTTTTTT1 =

Upper
Address Bits

* Untrusted code gets code and data segments

* Write protection
— Segment matching
— Address sandboxing

Graphic stolen from Tony Bock

Segment Matching

store using target-address

Becomes:

dedicated-reg <= target-address

scratch-reg <= (dedicated-reg >> shift-reg)
compare scratch-reg segment-reg

trap if not equal

store using dedicated-reg

2/22/2017

2/22/2017

Address Sandboxing

store using target-address

Becomes:

dedicated-reg <= target-address & mask-reg
dedicated-reg <= dedicated-reg | segment-reg
store using dedicated-reg

Process Resources

* Need to protect file handles, other process
resources.

— Make operating system aware of fault domains

— Require fault domains to access process resources
through RPC

Implementation

Segment Matching Address Sandboxing
* Four dedicated registers * Five dedicated registers
* Five extra instructions * Two extra instructions
* Trap indicates exact * No indication of failure
instruction that caused
failure

Optimization

Compiler customization or object patching

Data Sharing

e All data is readable from fault domains

* Pages mapped into multiple fault domains
allow cross-fault-domain communication

2/22/2017

Cross-Domain RPC

* Generate stubs for interfaces in trusted code.

» Stubs responsible for:
— Copying arguments
— Preserving machine state
— Trapping failures and time-outs

* But no traps or address space switching

Performance

* Encapsulation overhead
e Cross-fault-domain RPC cost
» Effect on user programs

2/22/2017

Sequoia 2000 | Untrusted Software- Number of DEC-MIPS-PIPE

Query Function Enforced Fault | Cross-Domain | overhead
Manager Isolation Calls (Predicted)
Overhead Overhead

Query 6 1.4% 1.7% 60989 18.6%

Query 7 5.0% 1.8% 121986 38.6%

Query 8 9.0% 2.7% 121978 31.2%

Query 10 9.6% 5.7% 1427024 31.9%

Native Client: A Sandbox for Portable,
Untrusted x86 Native Code

e S&P 09’

* Google Inc

— Bennet Yee, David Sehr, Gregory Dardyk,
J. Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar

* Best paper award

All Rights Reserved. Copyright 2010 by CSRG-Yin Lab. 14

2/22/2017

Everyone uses the web browser

* Browser is the most important tool to get the
information in modern society.
— Restricted environment for safety purpose.
* Interpreter-based sandbox
* Slow

— Native plug-ins for extra performance or
functionality requirements.
* Fast, versatile
* Trust-based protection but not safe

All Rights Reserved. Copyright 2010 by CSRG-Yin Lab

Native code == unsafe?

* “No fundamental reason why native code
should be unsafe”

— Traditional difficulties:

* The problem of deciding the outcome of arbitrary
native code with executing it is undecidable.

* Many unexpected side effects during code execution.

— Exception, interrupt, racing condition, 1/0.
* But a safe and efficient isolated environment
can be created for restricted native code.

All Rights Reserved. Copyright 2010 by CSRG-Yin Lab

16

2/22/2017

Threat model

* Achieve comparable safety to accepted
systems such as JavaScript.
— Input: arbitrary code and data
* support multi-threading, inter-module communication
— Restrictions (Obligations):
* No code page writing: No self-modification code, No JIT
* No direct system call: No I/O
* No hardware exception/interrupt: failsafe
* No ambiguous indirect control flow transfer
* Isolated direct memory access

All Rights Reserved. Copyright 2010 by CSRG-Yin Lab. 17

Obey me or die

Binary code does
not satisfy the
obligations

Native Client (NaCl)

All Rights Reserved. Copyright 2010 by CSRG-Yin Lab. 18

2/22/2017

Microkernel-based architecture

Browser
SRPC imglib.nexe
User Interface NPAPI — S
HTML and <E:>] storage
JavaScript — service
service runtime

Untrusted native code runs in its own private address space created by
X86 segment registers (%cs, %ds, %gs, %fs, %ss).

NaCl module and the browser runs in the same process.

All dangerous interfaces are forbidden or monitored by the sandbox
(including the instructions modifying the segment registers).

All Rights Reserved.

Copyright 2010 by CSRG-Yin Lab.

19

Obligations for control flow transfer

Cl

Co6

Cc7

Once loaded into the memory, the binary is not writable,

enforced by OS-level protection mechanisms during execu-
tion.

The binary is statica]]z linked at a start address of zero, with
the first byte of text at 64K.

All indirect control ftransfers use a naclijmp pseudo-
instruction (defined below).

The binary is padded up to the necarest page with at least
one hlt instruction (0xf4).

The binary contains no instructions or pseudo-instructions
overlapping a 32-byte boundary.

All valid instruction addresses are reachable by a fall-
through disassembly that starts at the load (base) address.
All direct control transfers target valid instructions.

All Rights Reserved.

Copyright 2010 by CSRG-Yin Lab.

20

2/22/2017

10

Security properties under obligations

* A static code analysis will ensure:
— Data integrity
* All memory addresses are within the sandbox
* Otherwise, a segmentation fault given (%cs, %ds,... are set)
— Reliable disassembly

* All possible jump targets are known (mandatory 32byte
alignment for all jump instructions)

— No unsafe instructions
* Disassembler is reliable
— Control flow integrity
* Same reason for reliable disassembly

All Rights Reserved. Copyright 2010 by CSRG-Yin Lab. 21

Load a NaCl module

Memory address:

1. Verify the module code
according to the obligations.

0 —

Control Code
[mm———————— 2. Load control code block into

! Block fincludi . p
memor
: 64KB —_ y Including system ca
! trampolines, thread context data).
! 3. Load the module code and data
i into memory.
1 .
! 4. Set the segment registers to
| IS— Module Code and establish a private memory space
User far call to Data (64KB afterwards, 64KB is the zero
access system call offset).
trampolines. 5. Transfer the control to the
(call the routine out of module code.
current memory

segmentation)
All far calls are under
/dontroReserved. Copyright 2010 by CSRG-Yin Lab. 22

2/22/2017

11

Applications, tools, and availability

* Applications

— Allow developer to choose any language in the
browser (not just JavaScript).

— Allow simple, computationally intensive extensions for
web applications

— Binary-level sandbox without a trusted compiler
* Tools: GCC tool chain

— on Ubuntu Linux, MacOS, Windows XP
* Availability: open source, part of Chrome

— http://code.google.com/p/nativeclient/

All Rights Reserved. Copyright 2010 by CSRG-Yin Lab 23

Easier than you imagine

* Ported programs mentioned:
— SPEC CPU 2000 benchmarks
— Some graphics computation demo
— H.264 video decoder i :
— Physics simulation system (l) b
— FPS game (Quake)

All Rights Reserved. Copyright 2010 by CSRG-Yin Lab

2/22/2017

12

Insignificant performance overhead

Slowdown vs. -static

14%

[aligna2

12%

Il nacl32

10%

8%

S ———— ——

4% T

o h

0% {CHL|

2% L L]

4% T T T T T T T T T T T T T T T
" 9 by o % % B Y% % T % % % % Y, 2. o,
’3‘;,)’0 % eﬁ’ - OCEFQ © ¢ “ s 0@9 1\9» ’)5"54. e ‘?‘&-" . 0/-?%

All Rights Reserved.

Max space overhead is 57.5% code size increment for gcc in SPEC
CPU 2000.

Mandatory alignment for jump targets impacts the instruction
cache and increases the code size (more significant if compared to

dynamic linked executables).
Copyright 2010 by CSRG-Yin Lab

25

2/22/2017

13

