Introduction to Fuzzing

What is Fuzzing?

* A form of vulnerability analysis

* Process:

* Many slightly anomalous test cases are input into the
application

* Application is monitored for any sign of error

2/8/2017

Example

Standard HTTP GET request
* § GET /index.html| HTTP/1.1

Anomalous requests

* § AAAAAA...AAAA /index.htm| HTTP/1.1
* § GET ///////index.htm| HTTP/1.1

* § GET %n%n%n%n%n%n.html HTTP/1.1
* § GET /AAAAAAAAAAAAA.html HTTP/1.1

* § GET /index.htm| HTTTTTTTTTTTTTP/1.1
e § GET /index.htm| HTTP/1.1.1.1.1.1.1.1
* §etc...

User Testing vs Fuzzing

* User testing

* Run program on many normal inputs, look for bad things
to happen

* Goal: Prevent normal users from encountering errors

* Fuzzing
* Run program on many abnormal inputs, look for bad
things to happen

* Goal: Prevent attackers from encountering exploitable
errors

2/8/2017

Types of Fuzzers

* Mutation Based — “Dumb Fuzzing”
* mutate existing data samples to create test data

* Generation Based — “Smart Fuzzing”
* define new tests based on models of the input

* Evolutionary
* Generate inputs based on response from program

Fuzzing

* Automatically generate random test cases
* Application is monitored for errors

* Inputs are generally either
* files (.pdf, png, .wav, .mpg)
* network based (http, SOAP, SNMP)

2/8/2017

Mutation Based Fuzzing

* Little or no knowledge of the structure of the inputs is
assumed

* Anomalies are added to existing valid inputs

* Anomalies may be completely random or follow some
heuristics

* Requires little to no set up time
* Dependent on the inputs being modified

* May fail for protocols with checksums, those which depend
on challenge response, etc.

* Example Tools:

[4
¢ Taof, GPF, P F
Pzgch FuzzJPXeYCCUZZ co PEACH

FUIZZER

7

Mutation Based Example: PDF Fuzzing

* Google .pdf (lots of results)

¢ Crawl the results and download lots of PDFs

* Use a mutation fuzzer:
1. Grab the PDF file
2. Mutate the file
3. Send the file to the PDF viewer
4. Record if it crashed (and the input that crashed it)

Mutation- Super easy to Little to no Limited by May fail for
based setup and protocol initial corpus protocols with
automate knowledge checksums, or
required other

complexity .

2/8/2017

Generation Based Fuzzing

* Test cases are generated from some description of the
format: RFC, documentation, etc.

* Anomalies are added to each possible spot in the inputs

* Knowledge of protocol should give better results than
random fuzzing

* Can take significant time to set up

* Examples

* SPIKE, Sulley, Mu-4000,
Codenomicon,
Peach Fuzzer, etc..

(Vo l N N RV O R FT N]

Example Specification for ZIP file

<!-- A. Local file header -->
<Block name="localFileHeader">

<String name="1fh_Signature" valueType="hex" value="584b8384" token="true" mut

<Number name="1fh_Ver" size="16" endian="little" signed="false"/>
[truncated for space]

<Number name="1fh_CompSize" size="32" endian="little" signed="false">
<Relation type="size" of="1fh_CompData"/>

</Number>

<Number name="1fh_DecompSize" size="32" endian="little" signed="false"/>

<Number name="1fh_FileNamelLen" size="16" endian="little" signed="false">
<Relation type="size" of="1fh_FileName"/>

</Number>

<Number name="1fh_ExtrafFldLen" size="16" endian="little" signed="false">
<Relation type="size" of="1fh_FldName"/>

</Number>

<String name="1fh_FileName"/>

<String name="1fh_FldName"/>

<!-- B. File data --»
<Blob name="1fh_CompData"/>
</Block>

Src: http://www.flinkd.org/2011/07/fuzzing-with-peach-part-1/

10

2/8/2017

Mutation vs Generation

Mutation- Super easy to Little to no Limited by
based setup and protocol initial corpus
automate knowledge

May fail for
protocols with
checksums, or
other

required
+ + == complexity =

Generation- Writing have to have Completeness
based generator is spec of
labor intensive protocol
for complex (frequently
protocols not a problem
for common

Can deal with
complex
checksums
and
dependencies

ones http,
snmp, etc...]" I:? :}

White box vs. black box fu

* Black box fuzzing: sending the malformed inpu
any verification of the code paths traversed

27ing

t without

* White box fuzzing: sending the malformed input and
verifying the code paths traversed. Modifying the inputs

(via Symbolic Execution) to attempt to cover al
paths

black box + mutation 10 min 50%
black box + generation 30 min 80%
white box + mutation 2 hours 80%
white box + generation 2.5 hours 99%

| code

25%
50%
50%

100%

Source: http://msdn.microsoft.com/en-us/library/cc162782.aspx

12

2/8/2017

2/8/2017

Evolutionary Fuzzing

* Attempts to generate inputs based on the response
of the program

e Autodafe

* Prioritizes test cases based on which inputs have reached
dangerous API functions

* EFS

* Generates test cases based on code coverage metrics

* AFL
* Most popular choice in DARPA CGC

Challenges

e Mutation based — can run forever. When do we
stop?

* Generation based — stop eventually. Is it enough?

* How to determine if the program did something
l{bad”?

* These are the standard problems we face in most
automated testing.

Code Coverage

* Some of the answers to our problems are found in code
coverage

* To determine how well your code was tested, code
coverage can give you a metric.

* But it’s not perfect (is anything?)

* Code coverage types:
* Statement coverage — which statements have been executed
* Branch coverage — which branches have been taken
* Path coverage — which paths were taken.

Code Coverage - Example

if (a > 2)
a = 2;

if (b > 2)
b =2

How many test cases for 100% line coverage?

How many test cases for 100% branch coverage?
How many test cases for 100% paths?

2/8/2017

Code Coverage Tools

* If you have source: gcov, Bullseye, Emma
* If you don’t:
* Binary instrumentation: PIN, DynamoRIO, QEMU

* Valgrind : instrumentation framework for building
dynamic analysis tools

* Pai Mei : a reverse engineering framework consisting of
multiple extensible components.

Lots more to discuss on Code Coverage in a

Software Engineering class.. but lets move on.

17

The Attacker Plan

Obtain product Protocol Analysis

Manual Network
Vulnerability Fuzzing
analysis

Source/Binary

Analysis

Weaponization
(exploit
development)

But... why do it?

Closed source
research

Open source
research

18

2/8/2017

Last step...Sell it!

* Market for 0-Days ~$10K-100K

—
"9 2ERO DAY
INITIAT

eEye Digital Security®

@ GLEG G VERISIGN'

The Bug Bounty List

Lessons about Fuzzing

* Protocol knowledge is helpful
* Generational beats random, better specification make better
fuzzers

* Using more fuzzers is better
* Each one will vary and find different bugs

* The longer you run (typically) the more bugs you’ll find

* Guide the process, fix it when it break or fails to reach
where you need it to go

* Code coverage can serve as a useful guide

20

2/8/2017

10

AFL — American Fuzzy Lop

* Fuzzer developed by Michal Zalewski (Icamtuf),
Project Zero, Google
* He's on holiday today ®

* http://lcamtuf.coredump.cx/afl/

21

Why use AFL?

22

2/8/2017

11

It finds bugs

exifprobe 1 capnproto 1

23

It's spooky

* Michal gave djpeg (1JG jpeg library) to AFL
* Plus a non-jpeg file as an input
* S echo 'hello' >in_dir/hello

* AFL started to produce valid jpeg files after a day or
two

O O ==
- S =
ENEEEEEEEEEEEEEEENERR

COCTICIMITNC N e TN, e T W T
I g = (||
mnnnnE==n=N e . (el e

2/8/2017

12

More reasons

* It's dead simple

* No configuration of AFL necessary, robust
* It's cutting edge

* It's fast

* Produces very very good input files (corpus) that
can be used in other fuzzers

* Many targets that were never touched by AFL (and
it will crush them)

You won't believe what you are
reading

* Source: http://lcamtuf.coredump.cx/afl/demo/
* afl-generated, minimized image test sets (partial)

[...]
* JPEG XR jxrlib 1.1 JxrDecApp' IE = Ditched 2

* 2 Due to the sheer number of exploitable bugs that
allow the fuzzer to jump to arbitrary addresses.

2/8/2017

13

When to use AFL

27

The usual use case

* You have the source code and you compile with gcc
or clang

* Your are on 32bit or 64bit on Linux/OSX/BSD

* The to-be-fuzzed code (e.g. parser) reads it's input
from stdin or from a file

* The input file is usually only max. 10kb
* This covers *a lot* of Linux libraries

28

2/8/2017

14

What if something does not
apply?

* No source code?
—Try the experimental QEMU instrumentation

* Not on 32/64 bit?
—There is an experimental ARM version

* Not reading from stdin or file?

— Maybe your project has a utility command line tool that
does read from file

— Or you write a wrapper to do it

—Same if you want to test (parts of) network protocol
parsers

How to use AFL

2/8/2017

15

Steps of fuzzing

=

Compile/install AFL (once)

N

Compile target project with AFL
* afl-gcc / afl-g++ / afl-clang / afl-clang++ / (afl-as)

(98]

. Chose target binary to fuzz in project
* Chose its command line options to make it run fast
4. Chose valid input files that cover a wide variety of
possible input files
* afl-cmin / (afl-showmap)

Steps of fuzzing

5. Fuzzing
* afl-fuzz
6. Check how your fuzzer is doing
* command line Ul / afl-whatsup / afl-plot / afl-gotcpu
7. Analyze crashes
* afl-tmin / triage_crashes.sh / peruvian were rabbit
* ASAN / valgrind / exploitable gdb plugin / ...
8. Have a lot more work than before
* CVE assighment / responsible disclosure / ...

2/8/2017

16

Installing AFL (step 1)

#1/bin/bash

#Download & compile new AFL version:

wget http://lcamtuf.coredump.cx/afl.tgz

tar xfz afl.tgz

rm afl.tgz

cd “find . -type d -iname "afl-*"|sort|head -1~
make

echo "Provide sudo password for sudo make install”

sudo make install

AFL binaries

/opt/afl-1.56b$./afl-

afl-as afl-fuzz afl-plot
afl-clang afl-g++ afl-showmap
afl-clang++ afl-gcc afl-tmin
afl-cmin afl-gotcpu afl-whatsup

/opt/afl-1.56b%$./afl-gcc
[---1

This is a helper application for afl-fuzz. It serves
as a drop-in replacementfor gcc or clang, letting you
recompile third-party code with the required runtime

instrumentation.

L---1

2/8/2017

17

Instrumenting a project (step 2) -
example: libtiff from CVS repository

/opt/libtiff-cvs-afl$ export CC=afl-gcc
/opt/libtiff-cvs-afl$ export CXX=afl-g++
/opt/libtiff-cvs-afl$./configure --disable-shared
/opt/libtiff-cvs-afl$ make clean
/opt/libtiff-cvs-afl$ make

Choosing the binary to fuzz (step 3) -
they are all waiting for it

/opt/libtiff-cvs-afl$./tools/
bmp2tiff fax2tiff ppm2tiff raw2tiff
thumbnail tiff2pdf tiff2rgha tiffcp

tiffdither tiffinfo tiffset fax2ps
gif2tiff pal2rgb ras2tiff rgb2ycbhcr
tiff2bw tiff2ps tiffcmp tiffcrop

tiffdump tiffmedian tiffsplit

/opt/libtiff-cvs-afl$./tools/bmp2tiff

LIBTIFF, Version 4.0.3

Copyright (c) 1988-1996 Sam Leffler

[---1

usage: bmp2tiff [options] input.bmp [input2.bmp ...]
output.tif

2/8/2017

18

Chose initial input files (step 4)

/opt/libtiff-cvs-afl$ mkdir input_all
/opt/libtiff-cvs-afl$ scp host:/bmps/ input_all/
/opt/libtiff-cvs-afl$ Is -1 input_all Jwc -1

886

Chose initial input files (step 4)

/opt/libtiff-cvs-afl$ afl-cmin -1 input_all -o input
-- /Jopt/libtiff-cvs-afl/tools/bmp2tiff @@ /dev/null
corpus minimization tool for afl-fuzz by
<lcamtuf@google.com>

[*]1 Testing the target binary...

[+]1 OK, 191 tuples recorded.

[*]1 Obtaining traces for input files in
"input_all”". ..

Processing file 886/886. ..

[*] Sorting trace sets (this may take a while)...
[+] Found 4612 unique tuples across 886 files.

[*1 Finding best candidates for each tuple...
Processing file 886/886. ..

[*]1 Sorting candidate list (be patient)...

[*1 Processing candidates and writing output files...

Processing tuple 4612/4612...
[+] Narrowed down to 162 files, saved in "input®. =3

2/8/2017

19

Chose initial input files (step 4)

/opt/libtiff-cvs-afl$ Is -1 input Jwc -1
162

Fuzzing (step 5)

/opt/libtiff-cvs-afl$ screen —S fuzzing
/opt/libtiff-cvs-afl$ afl-fuzz -i input —o output --
/opt/libtiff-cvs-afl/tools/bmp2tiff @@ /dev/null

40

2/8/2017

20

How is our fuzzer doing? (step

american fuzzy lop 1.56b (bmp2tiff)

american fuzzy lop 1.56b (bmp2tiff)

2/8/2017

21

2/8/2017

How is our fuzzer doing? (step

american fuzzy lop 1.56b (bmp2tiff)

How is our fuzzer doing? (step
6)

/opt/libtiff-cvs-afl$ afl-gotcpu

afl-gotcpu 1.56b (Mar 9 2015 02:50:32) by
<lcamtuf@google.com>

[*1 Measuring preemption rate (this will take 5.00
sec). ..

[+] Busy loop hit 79 times, real = 5001 ms, slice =
2448 ms.

>>> FAIL: Your CPU is overbooked (204%). <<<

44

22

How is our fuzzer doing? (step
6)

* afl-plot

Banner: bmp2tiff
Directory: output/
Generated on: Mon MA=r 9 04:31:02 CET 2015

250

total paths
current path
200 1 pending paths e
/ pending favs —
150 | cycles done ——
100
50
0 ;
Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09
03:18 03:18 03:20 03:22 03:24 03:26 03:28 03:30
45
How i f doing? (
ow Is our fuzzer doing? (step
* afl-plot
%% uniq crashes ——
35 UNig hangs s
30 levels —
25
20
15
10
5
Mar 09 Mar 09 Mar 03 Mar 09 Mar 09 Mar 09 Mar 03 Mar 09
0316 03118 03:20 03:22 03:24 03:26 03:28 03:30
3000
5500 EXECS/SEC mm——m
2000
1500
1000
500
o J
Mar 03 Mar 09 Mar 03 ar 09 Mar 03 Mar 03 Mar 09 Mar 03
03:16 0318 03:20 03:22 03:24 03:26 03:28 03:30
46

2/8/2017

23

Other examples
american fuzzy lop 0.89b ([NEGdh

— process timing T
| run time : | cycles done : @
] last new path : | total paths :
| last uniq crash : | uniq crashes : 88
| 1last uniq hang : | uniq hangs :
- cycle progress L

overall results ———

map coverage
map density :
count coverage :

findings in depth

| now processing :
| paths timed out :
|- stage progress

| now trying :
| stage execs :
| total execs :
| exec speed : 32.71/sec (slow!)

favored paths :

new edges on :

total crashes : 124 (88 unique)
total hangs :

= fuzzing strategy yields v path geometry =—————————f
| bit flips : | levels : |
| byte flips : | pending : |
| arithmetics : | pend fav : |
| known ints : | own finds : |
| havoc : | imported : |
| trim : | variable : |
L A J
. [cpu:3081%]

47

Crash analysis (step 7)

mintmizing crash mput
/opt/libtiff-cvs-afl$ afl-tmin -i
output/crashes/id\:000000\,sig\:11\,src\:000003\,o0p\:
intl6\,pos\:21\,val\:+1 -0 minimized-crash
/Jopt/libtiff-cvs-afl/tools/bmp2tiff @@ /dev/null
afl-tmin 1.56b (Mar 9 2015 02:50:31) by
<lcamtuf@google.com>
[+] Read 36 bytes from
"output/crashes/id:000000,sig:11,src:000003,0p:intl6,
pos:21,val:+1".
[*1 Performing dry run (mem limit = 25 MB, timeout =
1000 ms)...
[+]1 Program exits with a signal, minimizing in crash
mode.
[*] --- Pass #1 -—-
[*]1 Stage #1: Removing blocks of data...

Block length = 2, remaining size = 36
Block length = 1, remaining size = 34
[---] 48

2/8/2017

24

Crash analysis (step 7)
minimizing malicious input

/opt/libtiff-cvs-afl$ Is -als

output/crashes/id\:000000\,sig\:11\,src\:000003\,o0p\:

intl6\,pos\:21\,val\:+14 -rw-—----—- 1 user user 36
Mar 9 04:17

output/crashes/id:000000,sig:11,src:000003,0p:intl6,p

os:21,val:+1

/opt/libtiff-cvs-afl$ Is -als minimized-crash 4 -rw--

————— 1 user user 34 Mar 9 05:51 minimized-crash

49

Crash analysis (step 7)
example of manual analysis

uncompr_size = width * length;

uncomprbuf = (unsigned char *)_ TIFFmalloc(uncompr_size);

(gdb) p width

$70 = 65536

(gdb) p length

$71 = 65544

(gdb) p uncompr_size
$72 = 524288

524289 is (65536 * 65544) % MAX_INT

2/8/2017

25

Crash analysis (step 7)
peruvian were-rabbit

Crash analysis (step 7)
peruvian were-rabbit

* Using crashes as inputs, mutate them to find
different crashes (that AFL considers "unique")

/opt/libtiff-cvs-afl$ afl-fuzz -1 output/crashes/ -o
peruvian_crashes -C /opt/libtiff-cvs-afl/tools/bmp2tiff
@@ /dev/null

52

2/8/2017

26

2/8/2017

Crash analysis (step 7)
peruvian were-rabbit

peruvian were-rabbit 1.56b (bmp2tiff)

27

