
SoK: On the Soundness and Precision of Dynamic Taint Analysis

Lok Kwong Yan†‡ Heng Yin†

†Syracuse University ‡Air Force Research Laboratory
Syracuse, New York, USA Rome, New York, USA

{loyan, heyin}@syr.edu

Abstract—Taint analysis or dynamic information flow track-
ing is a key binary analysis technique for revealing data
dependencies in programs. It has been used in many different
applications, such as memory error detection, vulnerability
analysis, malware analysis, and exploit diagnosis. While previ-
ous implementations are empirically effective for their chosen
tasks, they use manually defined tainting rules which have not
been proven to be sound (lack false negatives) or precise (lack
false positives). Furthermore, even perfect tainting rules could
be incorrectly implemented. We survey a number of existing
systems, and find that all suffer from either unsoundness
or imprecision, and many are quite imprecise. To improve
the situation, we propose a set of formal methods to create
tainting rules and verify their soundness and precision, and
to verify the correctness of tainting implementations. To show
the practicality of this approach, we build a new taint analysis
system that is formally verified to be sound and in many
cases precise at the instruction level. Our tests with real
world workloads (tainted shell commands in both Windows
and Linux, and keylogger detection) demonstrate observable
advantages of having provable soundness and precision, as
compared to existing taint analysis systems.

I. INTRODUCTION

Dynamic taint analysis [1] (also called tainting, dynamic
information flow tracking, etc.) is a fundamental dynamic
analysis technique. The key idea is to label certain data val-
ues (such as memory and CPU register contents) as tainted
and propagate the taints through operands as instructions
execute. A taint propagation rule (tainting rule or rule in
short) is associated with each instruction (sometimes with
special sub-cases), specifying whether each output operand
should be tainted or untainted based on the taint status of
the input operands.

While the core idea is simple, dynamic taint analysis has
been demonstrated to be crucial in solving many security
problems, such as exploit detection and analysis [1], mal-
ware analysis [2], protocol reverse engineering [3], vulner-
ability signature generation [4], guided fuzz testing [5], etc.
It is also a foundation for mixed concrete and symbolic
execution [6].

Because of its importance, there exist many imple-
mentations in the literature. Some implementations were
built upon process-level dynamic binary translation, includ-
ing TaintCheck [1], Dytan [7], LIFT [8], libdft [9], and
Minemu [10]. Another set of implementations is based
on CPU emulators (e.g., QEMU [11] and Bochs [12]),
such as TaintBochs [13], Argos [14], TEMU [15], and

DroidScope [16]. There are even implementations in hard-
ware [17], [18], [19], [20], [21], [22], [23]. These imple-
mentations have different taint granularities (e.g., labeling
bytes vs. bits). They also use different tainting rules that are
manually specified to suit their own problem domains.

While these previous systems have demonstrated their
success on solving various security problems, little effort
has been made to formally examine the correctness of
their taint analysis implementations. An ideal taint analysis
system needs to be sound and precise. Informally, a taint
analysis system is sound if all data items that are supposed
to be tainted are marked as tainted by the system, and
precise if only the data items marked as tainted by the
system are those supposed to be tainted. In other words, a
sound implementation has no false negatives, and a precise
implementation has no false positives. When dealing with
security problems, an unsound implementation may miss
real attacks, while an imprecise implementation may raise
too many false alarms.

In this paper, we take the first steps towards tackling this
fundamental problem in dynamic taint analysis. We propose
techniques for verifying the soundness and precision of taint
propagation rules that can be applied either at design time or
to verify an existing implementation. Our goal is a dynamic
taint analysis system which is both sound and precise. Since
most of the existing taint analysis implementations operate
at the instruction level, we currently focus on providing this
correctness guarantee at the instruction level. Soundness at
the instruction level also guarantees soundness at higher
levels. Extending a precision guarantee to a larger code
granularity, such as a basic block or a function body, is left
as future work.

Formally verified systems sometimes have a reputation for
having limited functionality or being less practical than ad-
hoc designs. To show that this is not the case for a taint
analysis system, we also implement a practical security-
oriented dynamic taint analysis tool as a case study of our
approach, and structure the paper around this development
process.

Our first step is “tainting rule creation and verification”, in
which we create tainting rules for different instructions and
verify their soundness and precision. A successful first step
results in a collection of correct taint propagation rules. To
achieve this, we formally model the internal tainting logic of
each instruction against definitions based on noninterference,

generate and refine candidate rules, and then use automated
decision procedures (Z3 [24] for the quantified and unquan-
tified logic of bitvectors and MONA [25] for weak monadic
second-order logic) to verify that the correctness definitions
are satisfied. We are able to create a set of rules and verify
that all of them are sound and most are precise.

The second step is “tainting rules implementation”, in
which we implement these rules in a dynamic taint analysis
system called SPITA. In particular, we have implemented
the set of verified tainting rules as an extension to QEMU,
a CPU emulator. QEMU uses a compiler-like backend called
TCG (Tiny Code Generator) for dynamic binary transla-
tion. Therefore, we have implemented these tainting rules
primarily using the TCG IR (intermediate representation).
These tainting IRs are inserted into the original IR block
to implement the specified tainting rules. This IR-level
implementation makes it easier to cover a large number of
instructions: for instance a single rule for an IR addition
operation can be used in many different x86 instructions
that perform addition.

The third step is “tainting system verification”, in which
we conduct per-trace formal verification with our tool
VITA, to make sure the implementation exactly follows the
specification (i.e., the tainting rules) in a large collection
of test scenarios. We leverage a suite of over 600,000
test programs generated using the PokeEMU [26] system.
PokeEMU symbolicly executes the Bochs x86 emulator to
achieve high path coverage over a large set of instructions,
therefore the tests provide extensive examples of many pro-
cessor behaviors. For each test case, we collect an execution
trace that contains instruction opcodes, concrete values for
instruction operands, and tainted values for each operand
before and after the instruction is processed. Then, we use a
noninterference oracle to verify that the resulting taint labels
in the trace match our formal model of correctness.

After going through these three steps, SPITA has now
been formally verified to be sound and mostly precise at the
instruction level. To demonstrate the practicality of SPITA,
we conducted two case studies, showing that improved
precision leads to less unnecessary taint in large applications.

Contributions: In short, we have made the following
contributions:
• We adopted noninterference to formally model taint

propagation correctness in a data-centric style.
• Based on this model, we conducted a survey of publicly

available taint analysis systems and found many cases
of unsoundness and extensive imprecision.

• Again based on the same model, we created our tainting
rules and checked their soundness and precision. Our
verification showed that all the rules are sound and most
are precise.

• We implemented these tainting rules in our prototype
taint analysis system called SPITA, based on QEMU. It
currently supports all integer-based instructions on the
x86 target. The tainting rules for all of them are sound
and most are precise.

• With over 600,000 test cases, we conducted per-trace

verification to ensure the correctness of our implemen-
tation. Through this verification, we indeed found a few
implementation bugs and fixed them.

• We conducted case studies to show that with the guar-
antee of soundness and more precision, SPITA achieves
significantly better results on keystroke tainting. The
evaluation of a large set of keyloggers further demon-
strated its effectiveness.

II. FORMAL MODEL AND DEFINITIONS

This section starts with an overview of our data-centric
noninterference model used to analyze instruction level taint
trackers. We also make observations on the model and how
it relates to taint tracker implementations in practice. This
discussion helps motivate some of our design decisions.
Finally, this section concludes with the definitions we use
for formal verification of taint propagation rules and taint
analysis implementations.

The original formulation of noninterference by Goguen
and Meseguer [27] was applied to a multi-level secure
operating system and used a state-machine model. A more
modern formulation divides the state of an arbitrary system
into two parts, named “high” and “low.” Consider two
possible starting states of the computation that are the
same in their low portions (“low-equivalent”), though the
high portions may be different. If the computation satisfies
noninterference, then the output states of the computation
on those two inputs will also be low-equivalent. Intuitively,
this definition captures a lack of information flow from high
to low.

When we apply the noninterference principle to dynamic
taint analysis, the tainted values correspond to high. Non-
interference is a soundness property for tainting, saying
intuitively that tainted values before the computation never
affect untainted values after, or equivalently that any value
affected by a tainted value is itself tainted. We also want
precise tainting: subject to the constraint of noninterference,
the amount of data tainted should be as small as possible.

The usual definition of noninterference considers the en-
tire tainted (high) state of a system, but for reasoning about
noninterference it suffices to consider the effect of changing
an arbitrarily small part of the state. Stated informally, if a
large change has an effect, then among the smaller changes
that make it up, at least one must also have an effect.
Taking advantage of this property, we narrow our analysis to
consider the effect of the smallest possible change: changing
a single bit from 0 to 1 or vice versa.

For the purposes of this paper we will model the state of
the computation system (e.g., a CPU) as a vector of bits.
We use the symbols ∧, ∨, ⊕, and an overbar to represent
the Boolean operations of AND, OR, XOR, and NOT either
on single bits or bitvectors, equivalent to the &, |, ˆ and ˜
operators in C. S is the set of possible states, equal to all the
bitvectors of a particular fixed size. We identify bit positions
with bitvectors that have just that one bit set, and use the
notation v|b for extracting a single bit b from a bitvector v.

2

Definition 1: Let a and b be bits in the state of a system.
We say that a computation has an information flow from a
to b if there are two input states s0 and s1 that are identical
except that s0 has a = 0 and s1 has a = 1, and in the
corresponding output states s′0 and s′1, the values of b are
different (one 0 and the other 1, in either order). In other
words, if the computation is a function f on state vectors,
and a is a bitvector with only a single position set to 1,
there is a state vector s ∈ S such that:

f(s ∨ a)|b 6= f(s ∧ a)|b (1)

From the untainted (low) perspective on a computation,
tainted bits are ones whose values are unknown. Thus as
a shorthand notation, we can represent tainted values in a
modified binary representation with three kinds of digits: 0,
for a bit that is untainted and 0; 1, for a bit that is untainted
and 1; and ?, for a tainted bit. Thus 1?0 represents a number
whose second bit is tainted; in effect, the value from the
high perspective might be either 4 (binary 100) or 6 (binary
110).

A. Taint Propagation Rules in Practice

We make three important observations about the data-
centric noninterference model. First, the model is defined
using information flows between bits. Thus it directly de-
scribes systems in which taint is labeled per bit. Not all
implementations take this approach, but the model extends
naturally to coarser-grained taint. For example, there is
information flow from byte x to byte y as long as there is
information flow from any bit of x to any bit of y. Results
from a coarse-grained analysis are inherently limited in their
precision, but for any granularity, we can try to achieve the
most precise results expressible at that granularity. In this
paper we are interested in exploring the maximum possible
precision, so we focus on bit-level tainting.

Second, we observe that the precision of taint results also
depends on the granularity of the computation analyzed.
The reason is that the taint status of bits does not include
information about how some bits might be correlated with
others. For instance, suppose we take a single tainted bit ?
(representing either 0 or 1) and multiply it by an untainted
3 (binary 11). The result must be either 0 (00) or 3 (11);
thus both the low bits should be tainted, represented as ??.
If we know where the value came from, we know that the
first and second bit positions must have the same value, but
this information is missing in the tainted-bit representation,
which could equally well describe a 1 (01) or 2 (10). This
inherent imprecision of the representation in turn leads to
imprecision in later results. For instance if we take the
tainted bit value ?? and multiply it by 3 again (i.e., ? x
3 x 3), the result is ????, since there is information flow
to each of the four bits of the result. On the other hand, if
instead of multiplying it by 3 twice as two operations, we
had started with the tainted bit ? and multiplied it by 9 in
one operation, the result would be the more precise ?00?.

This is a general phenomenon: expressing a larger com-
putation in terms of smaller ones and applying sound taint
analysis to each operation separately will always give sound
final results. However, applying precise taint analysis to each
operation separately will often not give as precise a result
as analyzing the entire computation at once.

At the binary level, there are two common choices for taint
analysis: we can either perform the analysis and update the
taint labels after each instruction, or we can translate each
instruction into a sequence of operations in a simpler inter-
mediate representation (IR), and analyze the taint effects of
each IR operation separately. Though this IR-level approach
has other advantages, it can come at a cost to precision
for the reason described in the previous paragraph. As an
instruction-level example, consider an instruction (such as
the BIC instruction on ARM) which computes the bitwise-
AND of one register and the bitwise negation of another:
z = x ∧ y. If the two inputs are the same register, this has
the effect of clearing the output register, so if this instance
of this instruction is analyzed as a unit, the output should
be completely untainted. On the other hand, an IR-level
taint analysis that treated the AND and NOT as separate
operations would be unable to tell that one operand of the
AND was the negation of the other, so the result would
still be tainted. Our formal verification can reveal these
kinds of imprecision. VITA analyzes information flows at the
x86 instruction level. SPITA takes a hybrid approach which
primarily leverages an IR, but also applies some instruction-
level rules to improve precision, as we describe in more
detail in Section IV.

A final remark is that as specified so far, the model does
not place any further restrictions on the choice of the input
state s; the specific selection comes from the context in
which we are verifying a taint analysis. To analyze the
taint propagation in a particular situation, we can specify
a concrete value for s. For instance, we can use a program
state encountered during testing; this is what our VITA tool
does. On the other hand, in constructing rules for taint
propagation, we would like them to work correctly in all
situations, so we look for taint rules that will soundly and
precisely capture information flow for any choice of s. In
short, s is a free variable when constructing rules and s is
concretized when verifying rules.

B. Verifying Taint Propagation Rules

Taint propagation rules have usually been defined based
on domain expertise and then reasoned about manually, or
simply left unverified due to the difficulties of manual verifi-
cation. For example, Memcheck has many special case rules,
but according to its project suggestions webpage, formal
verification of the rules is still needed [28]. The concepts
for formal verification of tainting rules are introduced in
this section.

The most obvious representation for bit-level taint, used
for instance by Memcheck, is to maintain taint bits parallel
to data bits with the same structure: for instance, the taint
information for a 32-bit data word is represented by another

3

32-bit word, with the first bit of the taint word reflecting
the taint status of the first bit of the data word, etc. We
adopt the convention that a taint bit value of 1 indicates
that the corresponding data bit is tainted, while 0 indicates
untainted. Memcheck uses the opposite convention in its
implementation (for what are referred to as validity or “V”
bits), but because of the duality of Boolean algebra, the
choice makes little difference. We will use the suffix t
for variables holding taint; for instance S t = S is the
set of all possible taint states. The taint propagation rule
for a given operation is a function that takes as inputs the
data state before the operation and the taint state before
the operation, and yields the taint state after the operation:
ruleop : S × S t → S t. Our definition of a sound and
precise rule is that the taint bit for an output position b
should be set if (soundness) and only if (precision) there is
an input bit position a for which there is information flow
from a to b and a is tainted.

An equivalent perspective on the soundness of a rule,
analogous to noninterference, is that for each bit position b
that is untainted after an operation, it should be the case that
for any choice of values for the tainted input bits, the value
of that untainted output bit is constant. If this condition fails,
and there is an output bit that is affected by the tainted input
but is not itself tainted, we say that the rule suffers from a
false negative error. As a formula, let y t be the output
taint after applying the rule for the operation f to the input
data state x and the input taint x t. We make the following
definition.

Definition 2: A rule y t = rulef (x, x t) applied to an
operation y = f(x) has a false negative error if:

∃b, x1, x2 :(y t|b = 0) ∧ ((x1 ∧ x t) = (x2 ∧ x t)) ∧
(f(x1)|b 6= f(x2)|b)

for some bit position b. Equivalently we can also compare
all the untainted output positions at once:

∃x1, x2 :((x1 ∧ x t) = (x2 ∧ x t)) ∧
((f(x1) ∧ y t) 6= (f(x2) ∧ y t)) (2)

Conversely, a rule has a false positive error if there is a
bit position which is tainted, but does not in fact depend on
the tainted input:

Definition 3: A rule y t = rulef (x, x t) applied to an
operation y = f(x) has a false positive error if:

∃b : (y t|b = 1) ∧ ∀x1, x2 : (3)
((x1 ∧ x t) = (x2 ∧ x t))⇒ (f(x1)|b = f(x2)|b)

Observe that the input state variables x and x t are free
in Equations 2 and 3. When checking the taint propagation
in a trace, we instantiate them with values taken from an
execution. When checking the correctness of a rule in the
abstract, we quantify over all possible values for x and x t:
a rule is sound if there is no value of x and x t for which
Equation 2 holds, and precise if there is no value of x and
x t for which Equation 3 holds.

III. CONSTRUCTING TAINTING RULES

In the previous section we presented a formal model
for taint analysis based on noninterference, and defined
soundness and precision based on information flow. Since, in
security applications, unsoundness can lead to missed attacks
(a result we consider worse than false alarms), we choose to
first construct a set of rules that are guaranteed to be sound,
and then refine them to maximize precision.

Correspondingly, this section is separated into three parts.
First, we discuss how to construct sound rules by identifying
all bit-wise information flows in operations. Second, we
verify that the rules are indeed sound, and discuss precise
rules as well as how to verify them. Finally we compare
the resulting rules with previously published taint trackers.
We draw our examples from the x86 instruction set, but the
techniques and most of the specific rules are applicable to
other architectures, since the same basic operations (such as
addition and bit shifts) are provided by all CPUs.

A. Constructing Sound Rules

Recall a rule is sound if every information flow from a
tainted input bit to an output bit is marked by making the
output bit tainted. Thus, to construct a sound rule, we first
identify all possible information flows in an instruction and
then summarize the flows with a rule. Since definition 1 is a
satisfiability problem, we use satisfiability-modulo-theories
(SMT) solvers to identify the information flows. There are
two stages. First, the behavior of each instruction of interest
is modeled using the bitvector operations of SMT solvers.
To maintain compatibility with a wide range of solvers,
the instructions are modeled in SMT-LIB Version 2 [29]
(“SMT2” for short). Hence, the output of the first stage
is a collection of SMT2 files describing the instructions’
behaviors. The second stage uses SMT solvers to identify
all information flows.

Stage 1: Behavioral Definitions: Since there are many
x86 instructions, we first divided the instruction set into
four categories: data transfer, control transfer, arithmetic
and logic and special. Data and control transfer instructions
have simple semantics with obvious bitwise information
flow relationships and do not warrant further analysis. The
arithmetic and logic category includes instructions that are
likely to be supported in any general-purpose architecture.
We focus on these instructions for wider applicability. The
rest of the instructions fall into the special category. We
included such special instruction, cmpxchg in our tests
because it has an unusual information-flow pattern.

In total we analyzed over 150 different arithmetic and
logic instructions. After some initial tests, we found that the
precise mnemonics and operand choices (e.g., add r/m8,
r8 vs. add r8, r/m8 vs. add r16/32, r/m16/32),
did not affect the information flow patterns. Thus, we
decided to simply focus on generic 32-bit register instruction
formats (e.g., add dst, src). Our 26-instruction test set
is outlined in Table I.

Since the correctness of the behavioral definitions is
paramount, we relied on both BAP [30] and the developer’s

4

(define-sort STATE () (_ BitVec 70))
(define-fun dst ((S STATE)) (_ BitVec 32)
 ((_ extract 69 38) S)
)
(define-fun f_add ((S STATE)) (_ BitVec 32)
 (bvadd (dst S) (src S))
)
(define-fun f_of ((S STATE)) (_ BitVec 1)
 ((_ extract 31 31)
 (bvand (bvxor (dst S) (src S) #xFFFFFFFF)
 (bvxor (dst S) (f_add S))
)))

;;;Other function definitions

(declare-const DST (_ BitVec 32))
(declare-const SRC (_ BitVec 32))
(declare-const ZF (_ BitVec 1))
;;;Other declarations

(assert (exists ((i (_ BitVec 32)) (j (_ BitVec 32)))
 (not (= (dst (add (concat DST i ZF OF SF AF CF PF)))
 (dst (add (concat DST j ZF OF SF AF CF PF)))
))))
(check-sat)

Figure 1: SMT2 Definition and Test for add dst, src

manuals to help define the models. Given an instruction,
we wrote assembly code to exercise different aspects of
its behavior, linked them into an executable, and then
lifted the executable into BAP’s internal IR (BIL). We then
extrapolated a single SMT2 behavioral representation from
the instruction instances cross-checked against the processor
documentation1. In essence, the correctness of our models
depends on the correctness of BAP and our ability to identify
any errors or bugs by hand.

As a quick example, a portion of the SMT2 definition for
add is shown in Figure 1. The figure shows that add has
an SMT2 equivalent operation bvadd meaning it is a basic
operation. The flags calculation logic was extracted from
BAP.

Stage 2: From Information Flow to Sound Rules: The
goal of this stage is to take the SMT2 files from stage 1
and identify all possible information flows. For each file, we
iterate through all possible pairs of input and output bits and
query Z3 for the satisfiability of the condition in Definition
1. An example query can be found at the bottom of Figure 1.
The query is used to determine whether there are two values
i and j of src such that the values of dst are different
after add. In other words, whether there is information flow
from src to dst. In this case, if the solver returns “sat”
then it means there is information flow from the input to the
output. “unsat” means there is no information flow. The bit-
wise query is more involved, however, it follows the same
pattern.

The resulting statistics for all the instructions are summa-
rized in the first five columns of Table I. The instructions
are presented in the first column; the input operands, both
implicit and explicit, in the second; output operands, both
implicit and explicit, in the third; the total number of input-
bit to output-bit combinations in column four; and the time
it took for Z3 to process the queries is shown in column

1Godefroid and Taly present algorithms to automatically generate similar
behavioral specifications [31]

five. We used a new instance of Z3 for each test case and
thus the timing results include process creation overhead.

As expected, logical operations return results extremely
quickly whereas signed multiply and divide takes the most
time. Overall, it took less than 14 hours on an Intel Core-i7
860 to automatically identify all information flow relation-
ships for 26 arithmetic and logical instructions.

The Rules: Once all of the possible information flows
were revealed, we then summarized the flows into simple
rule types. The sixth column of Table I indicates the general
flow type for each instruction. To identify the flow types,
we first graphed the information flow results to increase
understandability. Specifically we generated directed graphs,
one per input bit, where the nodes are bits of the state S
and edges signify the potential for information flow from
the source bit to the destination bit. As an example, we
combined the 32 graphs from the 32 input bits of dst in
or to produce Figure 2. The bit to bit in-place information
flow relationship is evident.

1) Information Flow Types: There are four distinct in-
formation flow patterns between the source and destination
operands. These four flow types serve as four different sound
rules that we will refine later on. Note that we did not find
any patterns of interest for the flags.

1) In-place: Information can only flow from bit i of the
source to bit i of the destination. The Memcheck name
is UifU.

2) Up: Information can only flow from bit i of the source
to bits j of the destination where j ≥ i. Figure 3
depicts this behavior, showing the combination of the
information flow graphs for bits 7, 20, and 31. It is
evident from the figure that information only flows
from bit 7 of the source operand to bit 7 and higher
of the destination. The same applies to bits 20 and 31,
where bit 31 of the source only flows to bit 31 of the
destination. The Memcheck name is Left.

3) Down: Dual to up, information can only flow from
bit i of the source to bits j of the destination where
j ≤ i. Not used in Memcheck, but if added it should
be called Right.

4) All-around: Information can flow from bit i of the
source to any bit of the destination. The Memcheck
name is Lazy.

We stress that there are times when a single instruction
requires multiple tainting rules. Table I is not an exhaustive
list. The divide instructions are good examples of this. In the
divide operation, edx:eax is divided by rm32, the quo-
tient placed into eax and remainder into edx. Intuitively,
division is similar to shift right and thus the flow type for
edx:eax to eax should be down. On the other hand, the
flow type for edx:eax to edx is all-around since nothing
definitive can be said about the relationship between the
divisor and the remainder without concrete value analysis.

2) bsf, bsr and cmpxchg: bsf and bsr are two
instructions that iterate through bit positions to find the first
1-bit and have internal control flow behaviors, leading to
potentially erroneous manually defined policies. To illustrate

5

Previously Published Taint Trackers

Instruction Inputs Outputs # Cases Runtime Fl
ow

Ty
pe

D
ro

id
Sc

op
e[

16
]

C
at

1

lib
df

t[
9]

M
in

em
u[

10
]

C
at

2

T
E

M
U

[1
5]

C
at

3

M
em

ch
ec

k[
32

]

SP
IT

A

adc dst, src dst,src,cf dsr,src,zf,of,sf,af,cf,pf 4550 1m19s U A A I A A S S U S
add dst, src dst,src dst,src,zf,of,sf,af,cf,pf 4480 1m13s U A A I A A A A S S
and dst, src dst,src dst,src,zf,sf,pf 4288 1m05s I A I I A I I S S S
dec dst dst dst,zf,of,sf,af,pf 1184 20s U A A I A A A A U S
div rm32 edx,eax,rm32 edx,eax,rm32 9216 95m48s D A A I N A A A A D
idiv rm32 edx,eax,rm32 edx,eax,rm32 9216 307m04 A A A I N A A A A A
imul1 rm32 eax,rm32 edx,eax,rm32,of,cf 6272 289m51s U A A I N A A A U U
imul2 dst, rm32 dst,rm32 dst,rm32,of,cf 4224 52m37s U A A I N A A A U U
imul3 dst, rm32, imm32 rm32,imm32 dst,rm32,imm32,of,cf 6272 53m56s U A A I N A A A U U
inc dst dst dst,zf,of,sf,af,pf 1184 19s U A A I A A A A U S
mul rm32 eax,rm32 edx,eax,rm32,of,cf 6272 16m02s U A A I N A A A U U
not dst dst dst 1024 15s I A I I A I I I I I
or dst, src dst,src dst,src,zf,sf,pf 4288 1m05s I A I I A I I S S S
rcl dst, imm8 dst,imm8,cf dst,imm8,of,cf 1722 42s A A A N A A A A A S
rcr dst, imm8 dst,imm8,cf dst,imm8,of,cf 1722 42s A A A N A A A A A S
rol dst, imm8 dst,imm8 dst,imm8,of,cf 1680 41s A A A N A A A A S S
ror dst, imm8 dst,imm8 dst,imm8,of,cf 1680 41s A A A N A A A A S S
sal dst, imm8 dst,imm8 dst,imm8,zf,of,sf,af,cf,pf 1840 35s U A A N A A S S S S
sar dst, imm8 dst,imm8 dst,imm8,zf,of,sf,af,cf,pf 1840 34s D A A N A A S S S S
sbb dst, src dst,src,cf dst,src,zf,of,sf,af,cf,pf 4550 1m21s U A A I* A* A A A* A S
shr dst, imm8 dst,imm8 dst,imm8,zf,of,sf,af,cf,pf 1840 35s D A A N A A S S S S
sub dst, src dst,src dst,src,zf,of,sf,af,cf,pf 4480 1m17s U A A I* A* A* A* A* S S
xor dst, src dst,src dsr,src,zf,sf,pf 4288 1m05s I A I I* A* A* A* A* I I
bsf dst, src src dst,src,zf 2080 31s A N A I N A A A A S
bsr dst, src src dst,src,zf 2080 31s S N A I N A A A A S
cmpxchg rm32, r32 eax,rm32,r32 eax,rm32,r32,zf,of,sf,af,cf,pf 9792 2m39s S N E E N E E E E S
TOTAL 102064 13h52m48s

Table I: Flow Type Results for x86 Instructions
Flow Types: (U)p, (D)own, (I)n-place, (A)ll-around, (S)pecial, (N)ot-Supported, (S)pecial, (E)ax is tainted in cmpxchg,

* - Zeroing Idiom, Boldface - Generated Policy is more precise

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_IN

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_OUT

0 0
pf_OUT

0
sf_OUT

Figure 2: Information flows of dst in the or instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_IN

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_OUT

0 0
pf_OUT

0
cf_OUT

0
sf_OUT

0
zf_OUT of_OUT

0

Figure 3: Information flow of bits 7, 20 and 31 of dst in sbb

the value of our approach, the information flows for input
bits 1, 5 and 8 are depicted in Figure 4. Since bsf tests the
lowest bits first, all subsequent iterations of the loop depend
on the lower bits and thus the flow behavior is equivalent
to propagating all-around. For example, if only bit number
5 of src_IN is 1, then bits 0,1 and 2 of dst_OUT are
set. However, if bit number 1 is also set, then only bit 0 of
dst_OUT is set. Thus, the setting of bits 1 and 2 depends
on the fact that bit 1 of src_IN is 0. bsr scans from
the highest bit position down, thus the flow pattern is much
more direct and is special, not all-around. It is noteworthy to
point out that some of these complex behaviors can also be
identified as control flow dependencies using the technique

31 … 9 8 7 6 5 4 3 2 1
bsr_src_IN

0

31 … 9 8 7 6 5 4 3 2 1
bsr_dst_OUT

0

31 … 9 8 7 6 5 4 3 2 1
bsf_src_IN

0

31 … 9 8 7 6 5 4 3 2 1
bsf_dst_OUT

0

Figure 4: Comparison between bsf and bsr

proposed by Ferrante et al. [33] (both Dytan and DTA++
use this technique). However control flow dependencies are
traditionally analyzed per variable and therefore would not
reveal the bit-level relationships of bsr as shown in Figure
4.

6

1. cmpxchg (rm32, r32) {
2. if (eax == rm32) then
3. rm32 = r32;
4. else eax = rm32;
5. }

Figure 5: Pseudocode for cmpxchg (flags are omitted)

cmpxchg (Figure 5) is a special x86 instruction that
demonstrates how IR tainting (i.e., emulating the cmpxchg
instruction using IR instructions and then tracking taint
through the IR instead of cmpxchg as a whole) can lead
to false-positives. It also shows the benefit of automated
analysis. Applying Definition 1 to the instruction as a whole
shows that there is no information flow from eax to eax
because the output value of eax is fully dependent on the
input value of rm32. On the other hand, if information flow
was analyzed line-by-line, and thus mimicking the behavior
of IR based tainting where each line is a corresponding IR,
eax will be tainted if eax was tainted before the instruction.
This is because eax was unchanged in the equals branch
(line 3) and thus retains its taint. The case for simple control
flow dependencies is even worse. Since eax is used in the
comparison on line 2 and also as an l-val on line 4, it will
remain tainted in the not-equals branch. All in all, care must
be taken to ensure that IR level tainting does not introduce
false positives or false negatives and that the implementation
is formally verified to be correct.

B. Constructing Precise Rules

The previous section focused on the construction of sound
rules. We arrived at four basic rules that are sound by
construction. However, we ended the section with a dis-
cussion of cmpxchg, which motivated the need for formal
verification of tainting rules. Tainting rule verification is
accomplished in two steps: the operation and the tainting
rules under test are formally specified, and then solvers are
used to determine whether Equations 2 and 3 are satisfiable.
The formal specification step is straightforward using the
models from Stage 1. Only the rules to be verified remain
to be modeled. We continue to use the SMT2 language and
the Z3 solver.

When we verified the sound rules from the previous
section, we found that while all of the rules were sound
(as expected), many of them were not precise. In order to
construct precise rules, we sought inspiration from Mem-
check, since it has many specially-defined rules. Our first
step was to formally verify the soundness and precision
of Memcheck’s specially-defined rules. Memcheck’s rules
are defined for its own VEX IR and not directly for x86
instructions. However, both are bitvector operations and thus
one can be translated into the other and vice versa. The
Memcheck rules were obtained both from the original paper
[32] as well as the Memcheck source code.

We were not always happy with Z3’s performance, so
we also supplemented it with a complementary decision
procedure MONA [25]. MONA supports a different logic
and uses a different solving approach, translating a restricted

subset of second-order logic into finite state machines whose
transition tables are in turn encoded as BDDs. MONA has
the advantage that it can naturally express properties over
unbounded bitvectors, so we need not fix a word size in
advance. MONA also deals more gracefully with alternating
quantifiers. By contrast in Z3 there was large performance
gap between soundness queries, which are pure satisfiability,
and precision queries which require a ∀ quantifier inside
a ∃. On the other hand MONA is less expressive, and is
not compatible with the SMT2 format; we had to manu-
ally construct models and rules. We represent bitvectors to
MONA as a sets of non-negative integers, where an integer
is a member of the set if the corresponding bit position
is 1. Some operations have a natural counterpart in this
representation (bitwise AND is set intersection) but some
(such as addition) require complex definitions, and because
MONA allows only finite sets, negation and bitwise NOT
cannot be directly represented at all.

The verification results are summarized in the top portion
of Table II. There are five columns: the operation, Z3 result
for soundness, the Z3 result for precision and finally, if
the Z3 result was inconclusive (i.e., Z3 did not return a
result after 24 hours of processing), the MONA result of
whether the rule is precise, and the corresponding rule that
we verified.

As the results show, all of the special rules defined in
Memcheck are sound for operands up to 256 bits2 Addition-
ally, the special rules for and and cmpEq are also precise
up to 256 bits. The same cannot be said for the other rules
though. In particular, the special rule for or, which is similar
to the one for and, has only been verified for 2-bit operands.
Operands of greater length, e.g., 4 bits, are inconclusive
since Z3 timed out. (This performance is surprising since
or is one of the simpler rules, and analogous to the and
rule which performed well, but we have not yet isolated the
cause.)

The rest of the Z3 results show that for most cases, Z3
times out for operands beyond 16 bits in length. Since the
tests for smaller bit lengths returned quickly, we hypothesize
that the size of the state space to explore is the culprit.
In these cases we proceeded to use MONA to determine
precision. The results show that MONA was able to verify
precision of the add, or and sub rules.

All of the shift rules were shown to be imprecise. This
is because the shift amount can be tainted. In this case, the
PCastYX function simply marks all bits of the output as
tainted. Subsequently, we asserted that the shift amount is
not tainted, and re-verified the rules. They were shown to
be precise for up to 16 bit operands using Z3.

New Rules: Since the Memcheck rules were verified to
be both sound and mostly precise, we incorporated them
into SPITA. We also sought to define new rules to handle
additional cases. The new rules are summarized in the
bottom part of Table II. The rules for adc and sbb are
essentially three-operand versions of the precise rules for

2We chose 256 bits as the maximum length to test, since we are unaware
of any architectures with operands greater than 256 bits.

7

Precise
Operation Sound Z3 MONA Rule (in SMT2)
add 256 16 X (bvor (bvor v1 v2)

(bvxor (bvadd d1 min d2 min)
(bvadd d1 max d2 max)))

and 256 256 X (bvand (bvor v1 v2)
(bvand (bvor d1 v1)

(bvor d2 v2)))
cmpEq 256 256 (ite (= (bvor (bvor v1 v2) (bvnot (bvxor d1 d2))) #xFFFFFFFF)

(ite (= (bvor v1 v2) #x00000000) #b0 #b1)
#b0))

or 256 2 X (bvand (bvor v1 v2)
(bvand (bvor (bvnot d1) v1)

(bvor (bvnot d2) v2)))
rol 256 16* ((bvor (PCastYX v2) (rol v1 d2))
ror 256 16* ((bvor (PCastYX v2) (ror v1 d2))
sal/shl 256 16* ((bvor (PCastYX v2) (bvshl v1 d2))
sar 256 16* ((bvor (PCastYX v2) (bvashr v1 d2))
shr 256 16* ((bvor (PCastYX v2) (bvlshr v1 d2))
sub 256 4 X (bvor (bvor v1 v2)

(bvxor (bvsub d1 min d2 max)
(bvsub d1 max d2 min))))

adc 256 16 X (bvor (bvor v1 v2)
(bvxor (bvadd d1 min d2 min cf min)

(bvadd d1 max d2 max cf max)))
rcl 256 16* (bvor (PCastYX v2) (rcl v1 d2 vcf))

where vcf is the taint value for the carry flag
rcr 256 16* (bvor (PCastYX v2) (rcr v1 d2 vcf))

where vcf is the taint value for the carry flag
sbb 256 4 X (bvor (bvor v1 v2)

(bvxor (bvsub d1 min (bvadd d2 max cf max))
(bvsub d1 max (bvadd d2 min cf min))))

bsf 32 16z Destination is tainted if (bvule (bsf v1) (bsf d1))
bsr 32 16z Destination is tainted if (bvuge (bsr v1) (bsr d1))

Table II: Precise Rules and Verification Results: Length of operands verified (in bits).
XVerified for all lengths. * Shift amount is untainted. z Non-zero operand for bsf, bsr; precise rule omitted for space. d are the operands and v are
the shadow taints. The min terms represent the value where all tainted bits are set to 0, e.g. d1 min = (bvand d1 (bvnot v1)). The max terms represent

the value where all tainted bits are set to 1, e.g. d1 max = (bvor d1 v1). The PCastYX, pessimistic cast, function returns 0 if the operand is 0 and 1s in
all bit positions otherwise.

add and sub. Similarly, the rules for rcl and rcr are
natural extensions of the shift and rotate rules identified
in Memcheck. Intuitively, this makes sense since these two
operations are simply the n + 1 versions of the rol and
ror operations respectively. The intuition behind the bsf
and bsr rules is that if an untainted bit is already 1, then it
does not matter what the value of the tainted bit is as long
as the tainted bit is scanned after the untainted bit.

It is important to note that these instructions do not have
equivalent operations in Memcheck. To put it differently,
Memcheck will use VEX IR operations to emulate this
functionality, and thus these rules cannot be directly incor-
porated into Memcheck. The same applies to SPITA since
taint is propagated at the TCG IR level. To ensure that taint
is propagated precisely, these rules are implemented at the
target instruction level (e.g., x86). That is, when SPITA sees
one of these instructions, it will use the special rules to
propagate taint and disables TCG IR tainting for the IR that
is used to emulate the instruction.

C. Comparing With Previous Policies
Two sets of rules were generated in the previous sections:

the automatically constructed sound rules, and the verified
mostly precise rules—summarized in the “Flow Type” and
“SPITA” columns of Table I respectively. We now compare

them to the rules used in 19 taint analysis systems found
in the literature. They all track taint through bitvector
instructions. To condense the results, we separated the
implementations based on the sophistication of their rules.
There are three categories. Cat1 includes all implementations
that rely on simple l-val r-val relationships [34], [7], [10],
[16], [17], [20], [23]. Effectively, their rules consist of in-
place and all-around flow types only.

Cat2 includes systems with simple sanitization rules such
as zeroing idioms (e.g., xor eax, eax) [9], [35], [8],
[14], [18], [19] and Cat3 includes those with more sophis-
ticated propagation rules [1], [15], [2], [21], [22].

The results are shown in the middle columns of Table I.
Since tainting rules can be updated after publication, all of
the implementations that we were able to find source for
have their own column showing the policy defined in the
source. The policies are ordered according to the expected
number of false positives with the least precise on the left
(column 7) and the most on the right (column 14).

As the results show, many of the rules used in previous
publications are less precise than the automatically gener-
ated sound policies. In fact, none of the policies used the
propagate-up flow type of sbb. Another interesting point is
that the default rules for libdft and Minemu are not sound.

8

Either some of the instructions were not supported, or in
the case of libdft, the default use of union or OR leads
to false negatives in instructions such as add where taint
should propagate up. Finally, the results indicate SPITA
has the most special, and proven precise, rules of any
implementation.

IV. IMPLEMENTING SPITA

The outcome of the previous section was a collection of
taint propagation rules that are sound. Most of them are
precise as well. These results were implemented in a new
taint tracker named SPITA (Sound and Precise Instruction-
level Taint Analyzer). SPITA is designed as a hybrid instruc-
tion level taint analysis platform since it tracks taint at the
bit-level through QEMU’s TCG IR operations for simple
instructions (e.g., and, or, add, sub, etc.), but tracks taint
taint through target instructions (e.g., x86 instructions) for
complex ones (e.g., bsf).

In order to support taint analysis, we first created a shadow
system state (i.e., shadow memory and registers) to store
the taint labels. Since we label taint at the bit level, the
shadow memory and registers essentially double the resource
requirements of the QEMU guest. This also means that the
shadow memory is organized into page-table structures just
like real memory.

To propagate taint, the basic idea is to ensure that for
each TCG IR instruction that is used to emulate a target
instruction, additional TCG IR instructions will be added
to propagate the taint. In other words, for each instruction
that operates on real operands, we insert a sequence of
instructions that operate on the corresponding taint operands.

Figure 6 illustrates how we implement precise tainting
for an x86 instruction, add eax, ebx, at TCG IR level.
QEMU will translate this x86 instruction into 4 TCG IRs
(shown in Figure 6(a)): two CPU registers are first moved
into two temporary variables; a sum is calculated on the
temporary variables; and finally the sum is moved into eax.
For each of these original IR instructions, we insert one or
more IRs to implement the tainting logic, which is shown
in Figure 6(b). We will create shadow variables for general-
purpose CPU registers, such as taint_eax for eax and
taint_ebx for ebx. For temporary variables, we will
also create new temporary variables to shadow them. A
mov operation can be simply shadowed by another mov.
For example, we insert mov_i32 tmp42, taint_eax
to shadow mov_i32 tmp5, eax. To apply the precise
tainting rule for add on L16, we need to insert 11 IRs (from
L5 to L15).

Note that in most cases we insert the taint IRs before the
original IR, because most precise tainting rules need to check
the operands’ concrete values. The concrete values may have
changed after the execution of the original IR. Of course,
we need to take care of IRs that may raise exceptions and
fix up the labels (if any) so that they point to the beginning
of tainted IRs instead.

Using taint rules defined for TCG IR is generally more
convenient because there are fewer IR instructions than

mov_i32
mov_i32
add_i32
mov_i32

mov_i32
mov_i32
mov_i32
mov_i32
not_i32
and_i32
not_i32
and_i32
or_i32
or_i32
add_i32
add_i32
xor_i32
or_i32
or_i32
add_i32
mov_i32
mov_i32

(a) (b)

TCG taint
ops added1:

2:
3:
4:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

tmp5, eax
tmp6, ebx
tmp5, tmp5, tmp6
eax, tmp5

tmp42, taint_eax
tmp5, eax
tmp32, taint_ebx
tmp6, ebx
tmp43, tmp32
tmp44, tmp5, tmp43
tmp43, tmp42
tmp45, tmp6, tmp43
tmp46, tmp5, tmp32
tmp47, tmp6, tmp42
tmp43, tmp46, tmp47
tmp46, tmp44, tmp45
tmp44, tmp43, tmp46
tmp43, tmp32, tmp42
tmp42, tmp43, tmp44
tmp5, tmp5, tmp6
taint_eax, tmp42
eax, tmp5

Figure 6: An example of implementing precise tainting for
add eax, ebx at TCG IR level.

x86 instructions. A smaller number of core rules can be
automatically applied to cover a much larger number of
x86 instructions. An IR-level implementation also facilitates
future ports to additional architectures. However purely-IR-
level rules can be less precise, for the reasons discussed in
Section II-A. For this reason, SPITA also includes support
for triggering more specific taint rules based on a pattern
of IR statements. For instructions that use helper functions,
we insert the tainting rule directly into the functions. For
instance, bsf and bsr are implemented as helper functions
defined in C. We simply implemented the tainting rule in
C as well and inserted the new code block into the helper
function.

After we implemented tainting rules at the IR level and
carefully scrutinized the helper functions, SPITA now has
the full tainting support for all integer-based x86 instructions
and a few floating point and SSE instructions with simple
semantics (totaling 369 opcodes - operand types and widths
ignored). A complete list of mnemonics with respect the
soundness and precision guarantees can be found in Ta-
ble III.

Table III: SPITA supported x86 instructions. The
tainting rules for all these instructions are sound, and most
are also precise. The imprecise ones are marked with “*”.

AAA* AAD* AAM* AAS* ADC ADD AND ARPL BOUND BSF BSR
BSWAP BTC BTR BTS BT CALLF CALL CBW CDQ CLC CLD CLI CLTS
CMC CMOVB/CMOVC/CMOVNAE CMOVBE/CMOVNA CMOVL/CMOVNGE
CMOVLE/CMOVNG CMOVNB/CMOVAE/CMOVNC CMOVNBE/CMOVA
CMOVNL/CMOVGE CMOVNLE/CMOVG CMOVNO CMOVNP/CMOVPO CMOVNS
CMOVNZ/CMOVNE CMOVO CMOVP/CMOVPE CMOVS CMOVZ/CMOVE CMPS
CMPXCHG8B CMPXCHG CMP CPUID CWDE CWD DAA* DAS* DEC DIV
ENTER FWAIT/WAIT HINT_NOP HLT IDIV* IMUL* INC INS INT0
INT1/ICEBP INT INVD INVLPG IN IRET JB/JNAE/JC JBE/JNA
JCXZ/JECXZ JL/JNGE JLE/JNG JMPF JMP JNB/JAE/JNC JNBE/JA
JNL/JGE JNLE/JG JNO JNP/JPO JNS JNZ/JNE JO JP/JPE JS JZ/JE
LAHF LAR LDS LEA* LEAVE LES LFS LGDT LGS LIDT LLDT LMSW
LOCK LODS LOOPNZ/LOOPNE LOOPZ/LOOPE LOOP LSL LSS LTR MOVBE
MOVSX MOVS MOVZX MOV MUL* NEG NOP NOT OR OUTS OUT POPAD
POPA POPFD POPF POP PUSHAD PUSHA PUSHFD PUSHF PUSH RCL RCR
RDMSR RDPMC RDTSCP RDTSC REPNZ/REPNE REPZ/REPE REP RETF
RETN ROL ROR RSM SAHF SAL/SHL SAR SBB SCAS SETB/SETNAE/SETC
SETBE/SETNA SETL/SETNGE SETLE/SETNG SETNB/SETAE/SETNC
SETNBE/SETA SETNL/SETGE SETNLE/SETG SETNO SETNP/SETPO
SETNS SETNZ/SETNE SETO SETP/SETPE SETS SETZ/SETE SGDT
SHL/SAL SHLD SHRD SHR SIDT SLDT SMSW STC STD STI STOS STR SUB
SUB SYSENTER SYSEXIT TEST VERR VERW WBINVD WRMSR XADD XCHG
XLAT/XLATB XOR

9

In this implementation, SPITA does not create shadow
memory for the FPU stack and the MMX stack, and we do
not have special tainting rules for instructions that operate on
these stacks. This is a design decision common in security
applications. We leave it as a future work to investigate
sound and precise tainting rules for the floating point and
SSE instructions. SPITA has been open-sourced. Readers
can refer to the source code in the project homepage
(ANONYMIZED FOR SUBMISSION) for the details of the
exact tainting rules and the instruction coverage.

A. Evaluation

We evaluated SPITA on two fronts. The first test deter-
mines how much performance overhead can be expected
from our additional TCG IR instructions and the second test
determines what the impact on the translation block size is.
All of these tests were executed within a Windows 7 virtual
machine image running under SPITA. SPITA was executed
on a 64-bit Ubuntu 12.04 Linux system (3.2.0 kernel) with
a 32-core 2.0GHz Intel Xeon ES-2650 CPU and 128GB of
RAM. 4GB of RAM was allocated to the VM environment.

The CPU benchmark results were gathered using the
SPEC CINT2006 benchmark suite [36] and are summarized
in Figure 7. Test 462.libquantum was omitted from the
benchmark due to its incompatibility with Visual Studio
2010. The figure depicts the performance overhead of SPITA
(with the additional taint propagating IR instructions) as
compared to the baseline QEMU without any changes. It can
be seen that the overhead for CPU-bound activities ranged
from a high of 775% (464.h264ref) to 285% (429.mcf).
Both the bitfield and FP emulation tests rely heavily on
arithmetic operations, which as can be seen by the ad-
dition example above, require at least four additional IR
instructions to propagate the taint. Thus, these results are
not unexpected. As a juxtaposition of these results, we can
also see that benchmarks that rely primarily on memory
accesses, which require only one additional instruction to
load the shadow taint memory, experience very low over-
head (429.mcf, 471.omnetpp). This is also expected since
loading the tainted memory only requires a single additional
instruction. Furthermore, since paging is utilized and taints
are expected to be sparse, the page table lookup and TLB
lookups for the shadow memory is expected to be faster than
regular guest memory.

We used the internal QEMU profiler (“info jit”) to ob-
tain the translation block (TB) statistics and determine the
overhead due to the addition of the taint propagation IR
instructions. For this evaluation, we executed a series of
basic system tasks such as booting the Windows 7 guest,
performing Google searches using the Chrome web browser,
and manipulating text files. For the QEMU baseline, we
found that the average TB contains 45.3 IR instructions with
the largest TB having 464 instructions. An average of 29.3
temporary registers was used by the TBs, with a maximum
68 temporary registers used. On the other hand, SPITA TBs
have an average of 86.7 IR instructions with the largest TB
containing 520 instructions. On average, 74.0 registers were

0%

100%

200%

300%

400%

500%

600%

700%

800%

Figure 7: Overhead for SPEC CINT2006 benchmark suite

Program

Taint Analysis
System
(SPITA)

Tainted Trace

Oracle

==

bitvector
formula

IL Translator
(BAP)

Opin Opout Op_Tin Op_Tout

generate
queries

noninterference
model

SMT
Solver
(STP)

Pass/Fail

Inst

Figure 8: Per-Trace Verification Overview

used with a maximum of 358 temporary registers.
In short, these results show a reasonable, but non-

negligible increase in TB size. This increase can also ad-
versely impact performance since having larger TBs means
less TBs can be available in memory at a time, which
in turn leads to more translation cache flushes, reducing
performance. Additional tests, designs and improvements
(such as increasing the cache size) is left as future work.

V. PER-TRACE VERIFICATION

The previous section discussed SPITA, a new instruction-
level taint tracker that is based on QEMU. In this section,
we present per-trace verification as a technique to verify the
correctness of a taint analysis system’s implementation. A
high level overview of the process is depicted in Figure 8.

In per-trace verification, the taint analysis system under
test (e.g., SPITA) executes a program and generates a tainted
trace. The trace is a log of all the instructions executed along
with additional metadata. Each entry contains the instruction
executed, the input operand values, the output operand
values, and the corresponding taint label assignments. (A
sample log entry can be found in Figure 10)

For each entry in the instruction trace, an oracle is
used to determine whether the resulting taint matches the
noninterference model. The oracle consists of three main
components. An IL translator is used to translate the opera-
tion (add in the example) into a bitvector formula. A query
generator then takes the translated formula, the concrete

10

values from the trace entry, and the input taint assignments,
and generates a query to determine the correct output taint
labels. This query is subsequently sent to an SMT solver and
the results compared to the output taint as recorded in the
trace entry. If they agree then implementation is correct for
this particular operation and machine state. If they disagree
either the rule is imprecise or there is an implementation
bug.

Per-trace verification has a number of advantages. First,
the traces can be generated and verified independently and
thus processed in parallel. Second, the problem of verifying
traces one instruction instance at a time is more tractable:
using concrete values reduces the state space to explore.
Third, the oracle can also be used as a taint analysis system
itself. For example, a taint analysis system might use sound
but imprecise tainting rules to improve runtime performance
and then use the oracle to reprocess the trace offline and
remove any false positives.

The major limitation of per-trace verification is coverage.
Per-trace verification will not be complete unless the traces
used to verify the system cover all possible system states
(i.e., all possible combinations of operations, operand values
and taint values). To maximize coverage, we use a collection
of over 600,000 test programs from the PokeEMU [26]
project. These test programs were automatically generated
by exploring all of the different instruction decode and
execution paths of the Bochs x86 emulator. They provide
full path coverage of more than 800 protected-mode x86
instructions, and so our per-trace verification results inherit
this same extensive coverage.

Implementation: In order to verify SPITA, we first
implemented an instruction tracer to generate the tainted
trace. We implemented the oracle using BAP as the IL
translator and STP [37] as the SMT solver (Z3 works as
well). Specifically we express the bitvector formula and
queries in the BAP IR, allowing us to use BAP’s existing
interface to STP (or Z3).

The query generator is best explained with an example.
Figure 9 shows a simplified version of the query generated
for the xor ebx, ebx x86 instruction. Line 7 shows the
BAP IR that assigns ebx to 0. This is the bitvector formula
for the operation that was generated by BAP. Lines 2 and 3
show the input value of ebx as well as its taint labels. The
final goal condition to query—are there two assignments of
tainted bits such that bit 31 of the output is not equal?—is
defined in line 13. The two compared variables goal1 and
goal2 each represent the state of bit 31 of ebx after the
operation, but they differ in the position of a free variable
(R_EBX_01 or R_EBX_02 respectively) which represents
the varying tainted bit assignments.

The same basic logic of establishing two separate goals
with two different free tainted bit assignments using the
same emulation logic is used for all of the instructions
recorded in the trace. This setup works well except for two
cases. First, there are some behaviors that are undefined. For
example, bsf has undefined behavior when the operand to
scan is 0. There is no natural way to represent undefined be-

1. // Query for bit [31] of R_EBX:u32
2. R_EBX_C:u32 = 0x46018902:u32
3. R_EBX_T:u32 = 0x56718e20:u32
4. //Concretization of flags
5. goal:bool = false
6. R_EBX:u32 = (R_EBX_O1:u32 & R_EBX_T:u32)

| (R_EBX_C:u32 & ˜R_EBX_T:u32)
7. R_EBX:u32 = 0:u32 // sets R_EBX to 0
8. //BAP IR for calculating the flags for xor ebx, ebx
9. goal1:u32 = R_EBX:u32 & 0x80000000:u32
10. R_EBX:u32 = (R_EBX_O2:u32 & R_EBX_T:u32)

| (R_EBX_C:u32 & ˜R_EBX_T:u32)
11. //Same BAP IR for emulating xor
12. goal2:u32 = R_EBX:u32 & 0x80000000:u32
13. goal:bool = goal1:u32 <> goal2:u32

Figure 9: Query to determine whether bit 31 of EBX
should be tainted

havior in our model; our choice so far has been to represent
undefined behavior with no-op behavior. For bsf on 0, the
destination operand remains unchanged. The second case
is tainted pointer operands. When a memory operand has
an untainted address, the single location referred to can be
translated similarly to a register. But a tainted address could
refer to many locations or even all of memory, which cannot
be practically represented in a single BAP formula. This case
is related to the more general difficulties of taint analysis
and pointers described by Slowinska and Bos [38]. However
we consider this issue orthogonal to our main correctness
concerns since tainting rules are generally defined based on
instructions and their operands (e.g., destination and source)
and not on their operand types (e.g., register and memory).

Verification of SPITA: The correctness of SPITA’s rule
implementations was verified using the over 600,000 Po-
keEMU test cases. Each test case was executed using SPITA
and all instructions executed were logged into a tainted trace,
one per test case. Due to the sheer number of test cases, we
did not exhaustively try all possible taint assignments to the
program state. Instead, we assigned random taint values to
the program state at the beginning of execution and allowed
it to be propagated through the program.

Each trace was then passed through the VITA oracle to
determine whether there are any differences in the output
taints. If the verification fails, we manually reviewed the
offending instruction in an attempt to track down the source
of the failure. If a bug was found, we patched it and then
re-ran the offending test case to ensure that the bug was
patched. We also re-ran similar test cases to ensure that a
new bug was not introduced. In total, it took over 16 days to
complete the verification task by running 80 verification in-
stances in parallel. Each trace took approximately 3 minutes
to complete. This does not include the extra time needed to
address a couple of bugs that we found.

There were two incorrectly implemented rules in SPITA
(and and add). As it turns out, both errors are due to
the same implementation mistake. A text version of the
offending trace entry can be found in Figure 10. The figure
shows the concrete values of the operands as well as the
input and output taints. According to SPITA, the output taint
was 0xe44ae761, which failed verification since the expected
taint from VITA was 0xe64ae761. Notice that bit 25 is 0 but

11

Inst: and %eax, %ebx // ebx = eax & ebx
Inputs: eax = 0x84be2329, ebx = 0xaed66ce1
Outputs: ebx = 0x84962021
Input Taints: eax_t = 0x7369C667, ebx_t = 0xec4aff51
Output Taints: ebx_t = 0xe44ae761 //should be 0xe64ae761

Figure 10: Trace entry for and bug

should be 1.
As it turns out, this error was due to the way we inserted

the extra TCG IR to propagate taint in SPITA. In the code for
adding the propagation code for and, we incorrectly placed
the propagation code after the original and operation. As a
result, instead of using the concrete value of 0xaed66CE1
for ebx to calculate the taint, we used the result of ebx
(0x84962021). In fact, this bug was pervasive in our im-
plementation, and we didn’t understand it until found out
that ADD has the same problem. In general, this bug only
surfaces if the destination operand is also a source operand,
and the value written to the destination happens to affect
the final taint calculation, meaning it depends on both the
concrete values as well as the taint assignments. This is why
in Figure 6 we put the taint IRs before each original IR to
propagate taint properly.

VI. EXPERIMENTS WITH REALWORD WORKLOADS

In this section, we evaluate how SPITA performs under re-
alworld workloads. In particular, we like to compare SPITA
with a previously published taint analysis tool under the
same workloads. We choose to compare with TEMU [39] for
two reasons. First, TEMU is a popular open-source dynamic
binary analysis platform in the BitBlaze project [40], and
many security projects have been built on top of it. Second,
according to our verification in Section III-C, the tainting
rules in TEMU are mostly sound and some special rules
are applied to improve precision. By comparing SPITA
with TEMU under real workloads, we can empirically
demonstrate how much benefit SPITA can offer by being
significantly more precise.

We ran a set of workloads in Windows XP Service Pack 3
and Linux 2.6.20 respectively. These workloads are tainted
shell commands: we sent tainted keystrokes as commands
to a shell and observed how each of the tainted commands
was processed in the operating system. As the keystrokes
must go through a series of code conversion to become valid
characters, we enable the pointer tainting in system wide. It
means that when a memory index for a memory read is
tainted, we will mark the value to be tainted.

Table IV lists the results for this set of workloads. The top
half of the table shows the shell commands for Windows,
and the bottom half shows the ones for Linux. For each
command, after it finishes execution, we observe the number
of tainted byte in the main memory and the occurrence when
EIP becomes tainted. We can see that for all the commands
in Windows, the number of tainted bytes in SPITA is much
smaller than the number in TEMU, demonstrating the benefit
of SPITA being more precise. No tainted EIP was observed
in either system.

Table IV: Comparing SPITA with TEMU on tainted
shell commands. “n / m” indicates that “n” bytes are

tainted, and “m” tainted EIPs are observed.

Command SPITA TEMU
dir 207 / 0 639 / 0
cd 146 / 0 616 / 0
cipher c: 929 / 0 3617 / 0
echo hello 660 / 0 3808 / 0
find "jone" a.txt 967 / 0 5684 / 0
findstr /s /i jone ./* 945 / 0 1333 / 0
ls 350 / 3 34923 / 0
cd 306 / 3 301 / 0
cat ./readme 545 / 31 26619 / 0
echo hello 744 / 9 704 / 0
ln -s a.txt nbench 1122 / 35 24707 / 0
mkdir test 551 / 9 23766 / 0

The results for the commands in Linux are somewhat
different. Although the number of the tainted bytes marked
by SPITA was generally much smaller than the one by
TEMU, SPITA reported tainted EIPs for all these commands,
whereas TEMU reported none.

These results look contradictory to the claim that SPITA
should be more precise. So we manually examined and
compared the taint propagation logs for the execution of
the cd command generated by SPITA and TEMU. We did
not finish examining all these tainted EIPs (totally 90), but
we confirmed that at least a large portion of them were
indeed correct. A common case is that a tainted character
(the one we entered) was used as an index to call a
function in a function pointer table. We found the same
instruction sequences in the trace generated by TEMU. It
means that TEMU in fact has under-tainting problem in its
implementation, even though the tainting rules are generally
sound by design.

Furthermore, to test the effectiveness of SPITA, we col-
lected a set of malware samples that are known to have
key-logging functionality. These sample set has 117 malware
samples in total, spanning 29 malware families. The detail
is listed in Table V. By sending tainted keystrokes into the
guest system and observing if any untrusted code module
accesses the tainted data, we can detect keylogging behavior.
SPITA successfully detected the keylogging behaviors in
all these samples, demonstrating the correctness of taint
analysis in SPITA.

VII. DISCUSSION

Dependencies: Our approaches to generating and verify
policies are based on decision procedures, and our per-
formance is wholly dependent on them. As in the exper-
iments sometimes even simple-seeming queries can show
disappointing performance. However, since SMT solvers use
standard interfaces, they can improve independently and
we can substitute different tools with no changes to the
techniques in this paper. Our current results reflect fully
automatic decision procedures, but it is also possible to get
improved performance in exchange for more manual effort:
for instance by adding witness (Skolem) functions to replace
quantifier alternation.

12

Table V: Keylogger Samples Set

Keylogger Name No
Backdoor.Win32 8
Email-Flooder.Win32.Webhat 1
Email-Worm.Win32 5
Gen:Application.Keylog 2
HEUR:Trojan.Win32.Generic 13
MonitoringTool:Win64/KGBKeylogger 2
Monitor.Win32.HomeKeylogger 2
Monitor.Win32.Perflogger 4
Monitor.Win32.Ardamax 1
Rootkit.Win32.Agent 1
Trojan.Win32.Agent 4
Trojan-Spy.Win32.Keylogger 39
Trojan.Win32.Scar.cone 1
Trojan-PSW.Win32.VB 2
Trojan-PSW.Win32.LdPinch 1
Trojan-Downloader.Win32 6
TrojanDropper:Win32 2
Trojan.Win32.Genome 6
Trojan.Win32.VB 2
Trojan-GameThief.Win32.Nilage 2
Trojan-Spy.Win32.Delf 2
Trojan-Spy.Win32.Small 1
Trojan-FakeAV.Win32.Agent 1
Trojan-Spy.MSIL.Agent 3
Trojan.Win32.Orsam 1
Worm.Win32.AutoRun 2
Win32.Malware.Generic 1
Win32/Packed.Autoit.Gen 1
Worm.Win32.Ami 1
Total 117

Our implementations also rely heavily on BAP’s processor
model; errors in it will likely affect our results. Our expe-
rience has been that BAP is of high quality and actively
improved. Also, BAP contains two largely independent x86
models; we have currently only used the default one, but
repeating the experiments with the other model would be
another way to improve confidence.

Limitations: There are two limitations of the proposed
techniques. First, the policy is not fully automatically gen-
erated. Human expertise is still necessary to interpret the
information flow results and devise special taint propagation
and sanitization rules. In this respect, Godefroid and Taly
presented algorithms to automatically generate the behav-
ioral model of the arithmetic and logical x86 instructions
as long as they follow certain templates [31]. The same
techniques can also be used to help identify sanitization and
propagation rules.

Second, trace based verification only provides a partial
picture of whether the implementation is correct. On the
other hand, since trace based verification recalculates the
information flows and uses the ideal policy, it is possible
for trace based verifiers, such as VITA, to be used to further
refine the traces and reduce taints. The only requirement
is that the original policy must not contain false negatives,
since that might lead to an incomplete trace. As described
previously, it is rare for taint analysis platforms to contain
false negatives, and thus such a use is feasible.

VIII. RELATED WORKS

Our work is focused on context of generic dynamic taint
analysis or dynamic information flow tracking; we do not
make distinctions on how taint analysis is used. In this
regard, Schwartz et al. provides an invaluable review of the
different applications and the challenges [6].

Not all taint propagation policies are strictly based on
the concept of noninterference. In Leakpoint, Clause et al.
defined a taint propagation policy for pointer arithmetic [41]
that is only loosely based on information flow. In empirical
testing, Leakpoint was shown to be just as effective in
identifying memory errors as Memcheck [32] which is
based on information flow. Slowinska and Bos discussed
the sources of false-positives and false-negatives in pointer
tainting [38]. As mentioned before, memory arithmetic and
operations is a weakness of VITA. In the end, since these
applications do not adhere to noninterference, a different
formal model must be defined to become the basis of further
analysis. Once a formal model and the corresponding ideal
policies are defined, and if that model is amendable for
solving using SMT solvers, then the techniques presented
in this paper can be reused in the new context.

Formal Analysis and Modeling: Schwartz et al. defined
taint propagation semantics for the SIMPL language to
reason about uses of taint analysis [6]. Tiwari et al. studied
information flow in logic gates and implemented a taint
tracker GLIFT [20]. Hu et al. presented both a formal model
for information flow in logic gates as well as algorithms for
generating precise taint propagation policies [42].

Newsome et al. measured the amount of influence on
operands to increase precision [43]. They also relied on
SMT solvers, STP [37] in their case, to solve constraints
and obtain value range dependencies that is used to cal-
culate influence. Their techniques can be used to quantify
the amount of change while our technique, and VITA in
particular, is used to identify information flow relationships.

Control Flow Dependencies: Researchers have used a
combination of static and dynamic analysis to reduce false
positives due to control flow dependency tracking. Bao et
al. used static analysis to first identify “strict control depen-
dence” relationships, (i.e. differences in the output values of
variables in all branches are only due to static constants,) and
then used it to reduce false positives [44]. Chang et al. first
conducted general data-flow analysis on a program statically
and used the results to direct information flow tracking at
runtime [34]. In DTA++, Kang et al. used off-line analysis
to identify “culprit” branches and limit control flow propa-
gation to those branches [45]. This increased the precision
of control flow propagation as compared to Dytan [7] which
used simple control flow propagation rules. While this paper
does not deal with control flow dependencies explicitly, we
did highlight some of the challenges when dealing with
instructions with internal control flow behavior.

There is also work on formal models for taint analysis
that includes control flows. Volpano presented the formal
model for a machine and a monitor that enforces a weak
secrecy policy [46]. In terms of information flow, the weak

13

secrecy policy captures all flows except implicit control
flows. Volpano continued to argue that “there is no monitor-
enforced policy that is sound and complete for secrecy”.
Soundness and completeness are closely related to the false
negative and false positives terms used in this paper and
provides a theoretical limit to dynamic taint analysis. In
short, dynamic taint analysis must have either false positives
or false negatives.

IX. CONCLUSION

In this paper, we investigated a largely overlooked prob-
lem in dynamic taint analysis: correctness. More specifically,
we focused on the soundness and precision of taint analysis.
To study these two properties, we adopted the noninterfer-
ence model to formally model taint propagation in a data-
centric style and then used the model to define tainting rules
and verified that all the rules are sound and most are precise.
We also surveyed a list of publicly available taint analysis
systems and found cases of unsoundness and extensive
imprecision, which is surprising. Further, we implemented
our tainting rules in a new taint analysis system called
SPITA. With over 600,0000 test cases, we conducted per-
trace verification and are confident in the correctness of our
implementation. Compared with a widely used taint analysis
system TEMU, SPITA is shown to be more precise and
sound as well. Our evaluation on a large set of keyloggers
further demonstrated the effectiveness of SPITA. All of these
different test cases indicate that SPITA is indeed sound
and mostly precise. The test cases were not exhaustive and
the rules are not perfect though. Future work is needed to
further improve the soundness and precision of dynamic taint
analysis platforms like SPITA.

REFERENCES

[1] J. Newsome and D. Song, “Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software,” in Proceedings of the 12th
Annual Network and Distributed System Security Symposium
(NDSS’05), February 2005.

[2] H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda,
“Panorama: Capturing system-wide information flow for mal-
ware detection and analysis,” in Proceedings of the 14th
ACM Conferences on Computer and Communication Security
(CCS’07), October 2007.

[3] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Au-
tomatic extraction of protocol message format using dynamic
binary analysis,” in Proceedings of the 14th ACM Conferences
on Computer and Communication Security (CCS’07), October
2007.

[4] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham, “Vigilante: End-to-end containment
of internet worms,” in In Proceedings of the Symposium on
Systems and Operating Systems Principles (SOSP’05), 2005.

[5] V. Ganesh, T. Leek, and M. C. Rinard, “Taint-based directed
whitebox fuzzing,” in International Conference on Software
Engineering (ICSE), Vancouver, BC, Canada, May 2009, pp.
474–484.

[6] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),”
in Proceedings of the 2010 IEEE Symposium on Security
and Privacy, ser. SP ’10. Washington, DC, USA: IEEE

Computer Society, 2010, pp. 317–331. [Online]. Available:
http://dx.doi.org/10.1109/SP.2010.26

[7] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint
analysis framework,” in Proceedings of the 2007 international
symposium on Software testing and analysis, ser. ISSTA ’07.
New York, NY, USA: ACM, 2007, pp. 196–206. [Online].
Available: http://doi.acm.org/10.1145/1273463.1273490

[8] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu,
“Lift: A low-overhead practical information flow tracking
system for detecting security attacks,” in Proceedings of
the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 39. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 135–148. [Online].
Available: http://dx.doi.org/10.1109/MICRO.2006.29

[9] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis,
“libdft: practical dynamic data flow tracking for commodity
systems,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
conference on Virtual Execution Environments, ser. VEE ’12.
New York, NY, USA: ACM, 2012, pp. 121–132. [Online].
Available: http://doi.acm.org/10.1145/2151024.2151042

[10] E. Bosman, A. Slowinska, and H. Bos, “Minemu: The world’s
fastest taint tracker,” in Proceedings of RAID’11, Menlo Park,
CA, September 2011.

[11] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in USENIX Annual Technical Conference, FREENIX Track,
April 2005.

[12] “Bochs: The open source IA-32 emulation project,” http://
bochs.sourceforge.net/.

[13] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum, “Understanding data lifetime via whole system simula-
tion,” in USENIX Security Symposium, San Diego, CA, USA,
Aug. 2004, pp. 321–336.

[14] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an em-
ulator for fingerprinting zero-day attacks,” in EuroSys 2006,
April 2006.

[15] H. Yin and D. Song, “Temu: Binary code analysis via whole-
system layered annotative execution,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2010-3, Jan 2010. [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2010/EECS-2010-3.html

[16] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstruct-
ing os and dalvik semantic views for dynamic android mal-
ware analysis,” in Proceedings of the 21st USENIX Security
Symposium, ser. SEC’12. Berkeley, CA, USA: USENIX
Association, 2012.

[17] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani,
and D. I. August, “Rifle: An architectural framework for
user-centric information-flow security,” in Proceedings of
the 37th annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 37. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 243–254. [Online].
Available: http://dx.doi.org/10.1109/MICRO.2004.31

[18] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure
program execution via dynamic information flow tracking,” in
Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS’04), October 2004.

[19] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri,
“Sift: a low-overhead dynamic information flow tracking
architecture for smt processors,” in Proceedings of the
8th ACM International Conference on Computing Frontiers,
ser. CF ’11. New York, NY, USA: ACM, 2011, pp.
37:1–37:11. [Online]. Available: http://doi.acm.org/10.1145/
2016604.2016650

[20] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T.
Chong, and T. Sherwood, “Complete information flow track-
ing from the gates up,” in Proceedings of the 14th interna-

14

http://dx.doi.org/10.1109/SP.2010.26
http://doi.acm.org/10.1145/1273463.1273490
http://dx.doi.org/10.1109/MICRO.2006.29
http://doi.acm.org/10.1145/2151024.2151042
http://bochs.sourceforge.net/
http://bochs.sourceforge.net/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-3.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-3.html
http://dx.doi.org/10.1109/MICRO.2004.31
http://doi.acm.org/10.1145/2016604.2016650
http://doi.acm.org/10.1145/2016604.2016650

tional conference on Architectural support for programming
languages and operating systems, ser. ASPLOS ’09. New
York, NY, USA: ACM, 2009, pp. 109–120.

[21] J. Kong, C. C. Zou, and H. Zhou, “Improving software
security via runtime instruction-level taint checking,” in
Proceedings of the 1st workshop on Architectural and system
support for improving software dependability, ser. ASID ’06.
New York, NY, USA: ACM, 2006, pp. 18–24. [Online].
Available: http://doi.acm.org/10.1145/1181309.1181313

[22] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. Iyer,
“Defeating memory corruption attacks via pointer taintedness
detection,” in Dependable Systems and Networks, 2005. DSN
2005. Proceedings. International Conference on, june-1 july
2005, pp. 378 – 387.

[23] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a
flexible information flow architecture for software security,”
in Proceedings of the 34th annual international symposium
on Computer architecture, ser. ISCA ’07. New York,
NY, USA: ACM, 2007, pp. 482–493. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250722

[24] L. De Moura and N. Bjørner, “Z3: an efficient SMT
solver,” in Proceedings of the Theory and practice of
software, 14th international conference on Tools and
algorithms for the construction and analysis of systems,
ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 337–340. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1792734.1792766

[25] J. Elgaard, N. Klarlund, and A. Møller, “MONA 1.x: new
techniques for WS1S and WS2S,” in Proc. 10th International
Conference on Computer-Aided Verification, CAV ’98, ser.
LNCS, vol. 1427. Springer-Verlag, June/July 1998, pp. 516–
520.

[26] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and
P. Maniatis, “Path-exploration lifting: hi-fi tests for lo-fi
emulators,” in Proceedings of the seventeenth international
conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’12. New
York, NY, USA: ACM, 2012, pp. 337–348. [Online].
Available: http://doi.acm.org/10.1145/2150976.2151012

[27] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in Proceedings of the 1982 IEEE Computer Society
Symposium on Research in Security and Privacy. Oakland,
CA: IEEE Computer Society Press, May 1982.

[28] “Valgrind: Project suggestions,” http://valgrind.org/help/
projects.html, July 2012.

[29] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Stan-
dard: Version 2.0,” in Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories (Edinburgh, UK),
A. Gupta and D. Kroening, Eds., 2010.

[30] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP:
A binary analysis platform,” in Proceedings of the 23rd
International Conference on Computer Aided Verification, ser.
CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 463–
469.

[31] P. Godefroid and A. Taly, “Automated synthesis of symbolic
instruction encodings from i/o samples,” in Proceedings
of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, ser. PLDI ’12. New
York, NY, USA: ACM, 2012, pp. 441–452. [Online].
Available: http://doi.acm.org/10.1145/2254064.2254116

[32] J. Seward and N. Nethercote, “Using valgrind to detect
undefined value errors with bit-precision,” in Proceedings
of the annual conference on USENIX Annual Technical
Conference, ser. ATEC ’05. Berkeley, CA, USA: USENIX
Association, 2005, pp. 2–2. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1247360.1247362

[33] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans.

Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987.
[Online]. Available: http://doi.acm.org/10.1145/24039.24041

[34] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible
security enforcement using dynamic data flow analysis,” in
Proceedings of the 15th ACM conference on Computer and
communications security, ser. CCS ’08. New York, NY,
USA: ACM, 2008, pp. 39–50.

[35] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall,
“Tainteraser: protecting sensitive data leaks using application-
level taint tracking,” SIGOPS Oper. Syst. Rev., vol. 45,
no. 1, pp. 142–154, Feb. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1945023.1945039

[36] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
SIGARCH Computer Architecture News, vol. 34, no. 4, pp.
1–17, 2006.

[37] V. Ganesh and D. L. Dill, “A decision procedure for bit-
vectors and arrays,” in Proceedings of the 19th international
conference on Computer aided verification, ser. CAV’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 519–531.

[38] A. Slowinska and H. Bos, “Pointless tainting?: evaluating the
practicality of pointer tainting,” in EuroSys ’09, April 2009.

[39] “TEMU: The BitBlaze dynamic analysis component,” http:
//bitblaze.cs.berkeley.edu/temu.html.

[40] “BitBlaze: Binary analysis for COTS protection and malicious
code defense,” http://bitblaze.cs.berkeley.edu/.

[41] J. Clause and A. Orso, “Leakpoint: pinpointing the causes
of memory leaks,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010,
pp. 515–524. [Online]. Available: http://doi.acm.org/10.1145/
1806799.1806874

[42] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu,
and R. Kastner, “Theoretical fundamentals of gate level infor-
mation flow tracking,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 30, no. 8,
pp. 1128 –1140, aug. 2011.

[43] J. Newsome, S. McCamant, and D. Song, “Measuring channel
capacity to distinguish undue influence,” in Proceedings of
the Fourth ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security (PLAS), Dublin, Ireland,
Jun. 2009.

[44] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu, “Strict
control dependence and its effect on dynamic information
flow analyses,” in Proceedings of the 19th international
symposium on Software testing and analysis, ser. ISSTA ’10.
New York, NY, USA: ACM, 2010, pp. 13–24. [Online].
Available: http://doi.acm.org/10.1145/1831708.1831711

[45] M. G. Kang, S. McCamant, P. Poosankam, and D. Song,
“DTA++: Dynamic taint analysis with targeted control-flow
propagation,” in Proceedings of the 18th Annual Network and
Distributed System Security Symposium, San Diego, CA, Feb.
2011.

[46] D. M. Volpano, “Safety versus secrecy,” in Proceedings of
the 6th International Symposium on Static Analysis, ser.
SAS ’99. London, UK, UK: Springer-Verlag, 1999, pp.
303–311. [Online]. Available: http://dl.acm.org/citation.cfm?
id=647168.718135

15

http://doi.acm.org/10.1145/1181309.1181313
http://doi.acm.org/10.1145/1250662.1250722
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://doi.acm.org/10.1145/2150976.2151012
http://valgrind.org/help/projects.html
http://valgrind.org/help/projects.html
http://doi.acm.org/10.1145/2254064.2254116
http://dl.acm.org/citation.cfm?id=1247360.1247362
http://dl.acm.org/citation.cfm?id=1247360.1247362
http://doi.acm.org/10.1145/24039.24041
http://doi.acm.org/10.1145/1945023.1945039
http://bitblaze.cs.berkeley.edu/temu.html
http://bitblaze.cs.berkeley.edu/temu.html
http://bitblaze.cs.berkeley.edu/
http://doi.acm.org/10.1145/1806799.1806874
http://doi.acm.org/10.1145/1806799.1806874
http://doi.acm.org/10.1145/1831708.1831711
http://dl.acm.org/citation.cfm?id=647168.718135
http://dl.acm.org/citation.cfm?id=647168.718135

	Introduction
	Formal Model and Definitions
	Taint Propagation Rules in Practice
	Verifying Taint Propagation Rules

	Constructing Tainting Rules
	Constructing Sound Rules
	Information Flow Types
	bsf, bsr and cmpxchg

	Constructing Precise Rules
	Comparing With Previous Policies

	Implementing SPITA
	Evaluation

	Per-Trace Verification
	Experiments with Realword Workloads
	Discussion
	Related Works
	Conclusion

