Control Flow Integrity

Outline

* CFl — Control Flow Integrity at Source Code Level
* BinCFI — CFI for Binary Executables
* BinCC — Binary Code Continent

* vfGuard — CFI Policy for Virtual Function Calls

2/22/2017

M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti

Control-Flow Integrity:
Principles, Implementations, and Applications

(CCS 2005)

CFI: Control-Flow Integrity

[Abadi et al.]

* Main idea: pre-determine control flow graph (CFG)
of an application
* Static analysis of source code
* Static binary analysis <« CFl
* Execution profiling
* Explicit specification of security policy

* Execution must follow the pre-determined control
flow graph

2/22/2017

CFl: Binary Instrumentation

* Use binary rewriting to instrument code with runtime
checks (similar to SFl)

* Inserted checks ensure that the execution always stays
within the statically determined CFG

* Whenever an instruction transfers control, destination must
be valid according to the CFG

* Goal: prevent injection of arbitrary code and invalid
control transfers (e.g., return-to-libc)

* Secure even if the attacker has complete control over the
thread’s address space

slide 5

CFG Example

sort2 ()« sort(): 1t():
br
bool 1t(int x, int y) { g A g y label 17
return x < y; / ;
call sort”] all 17,RY]
— e YT 23
TN
bool gtlint x, int y) { label 55 W, label 23,\
return x > y; > gt():
} M~ N, label 17
<all sort! ’,ret =13 \\
PP
sort2(int all, int b[], int len) o+ N
label 55 \
{ ret 23
sort(a, len, 1t); g

sort(b, len, gt); et

slide 6

2/22/2017

CFl: Control Flow Enforcement

* For each control transfer, determine statically its
possible destination(s)

* Insert a unique bit pattern at every destination

* Two destinations are equivalent if CFG contains edges to
each from the same source

* This is imprecise (why?)
* Use same bit pattern for equivalent destinations

* Insert binary code that at runtime will check whether
the bit pattern of the target instruction matches the
pattern of possible destinations

slide 7

CFl: Example of Instrumentation

Original code

Source

Destimation
Opeode bytes Instructions

Opcode bytes Instructions
jmp ecx ; computed jump 2B 44 24 04 mov eax, [esp+d]

FF E1

Instrumented code

; load ID-1 3E OF 18 05
; add 1 for ID T8 56 34 12
; compare w/dst 2B 44 24 04
; if I= fail z 35

; jump te label

Prefetchnta
[12345678h]
mov /@ax, L

Abuse an x86 assembly instruction to
insert “12345678” tag into the binary

Jump to the destination only if
the tag is equal to “12345678”

slide 8

2/22/2017

CFl: Preventing Circumvention

* Unique IDs

* Bit patterns chosen as destination IDs must not appear
anywhere else in the code memory except ID checks

* Non-writable code

* Program should not modify code memory at runtime
* What about run-time code generation and self-modification?

* Non-executable data
* Program should not execute data as if it were code

* Enforcement: hardware support + prohibit system calls
that change protection state + verification at load-time

slide 9

Improving CFl Precision

* Suppose a call from A goes to C, and a call from B goes
to either C, or D (when can this happen?)

* CFl will use the same tag for C and D, but this allows an
“invalid” call from Ato D

* Possible solution: duplicate code or inline
* Possible solution: multiple tags

* Function F is called first from A, then from B; what’s a
valid destination for its return?

* CFl will use the same tag for both call sites, but this allows F
to return to B after being called from A

 Solution: shadow call stack

slide 10

2/22/2017

CFl: Security Guarantees

* Effective against attacks based on illegitimate
control-flow transfer
* Stack-based buffer overflow, return-to-libc exploits,
pointer subterfuge
* Does not protect against attacks that do not violate
the program’s original CFG
* Incorrect arguments to system calls
* Substitution of file names
* Other data-only attacks

slide 11

CFI enforcement overhead

Performance Overhead

40% 4
30%

20%

“ Bl m . molall

bzip2 crafty eon gap gcc gzip mcf parser twolf wvortex wvpr AVG

Figure 4: Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.

2/22/2017

2/22/2017

Performance Overhead (2)

CFl + shadow stack overhead

122:|_||H|l_|ll—|lﬂll_|l HW . H

bzip2 crafty eon gap gcc gzip mcf parser twolf vortex wpr AVG

Figure 8: Enforcement overhead for CFI with a protected shadow call stack on SPEC2000 benchmarks.

Control-Flow Integrity For
COTS Binaries

" "Mingwei Zhang and R. Sekar
Stony Brook University
USENIX Security 2013

Work supported in part by grants from AFOSR, NSF
and ONR

Motivation for this work

,_

® Many previous works closely related to CFI
® CFI[Abadi et al 05, Abadi et al 2009, Zhang et al 2013]
® Instruction bundling [MaCamant et al 2008, Yee et al 2009]
® Indexed Hooks [2011], Control-flow locking [Bletsch et al 2011]
® MoCFI [Davi et al 2012], Reins [Wartell et al 2012]...

® Require compiler support, or binaries that
contain relocation, symbol, or debug info

® Do not provide complete protection

® Binary code, libraries, loader.

Key Challenges

,_

® Disassembly and Static analysis of COTS-binaries
® Robust static binary instrumentation

®Without breaking low-level code
®Transparency for position-independent code, C++

exceptions, etc.

® Modular instrumentation
® Applied to executables and libraries

® Enables sharing libraries across multiple processes

® Assess compatibility/strength tradeoff

2/22/2017

Disassembly Errors

e Disassembly of non-code

e Tolerate these errors by leaving original code in place
e Incorrect disassembly of legitimate code

e Instruction decoding errors (not a real challenge)

e Instruction boundary errors

e Failure to disassemble (we avoid this)

Disassembly Algorithm

| Linear disassembly

2 Error detection
invalid opcode
direct jump/call outside module address
direct control into insn
3 Error correction
Identify “gap:” data/padding disassembled as code
Scan backward to preceding unconditional jump
Scan forward to next direct or indirect target
Indirect targets obtained from static analysis

4 Mark “gap,” repeat until no more errors

2/22/2017

Static Analysis

Code pointers are needed:
e to correct disassembly errors

e to constrain indirect control flow (ICF) targets

We classify code pointers into categories:
e Code Pointer Constants (CK)

Computed Code Pointers (CC)

Exception handlers (EH)

Exported symbols (ES)

Return addresses (RA)

Static Analysis .

* Code pointer constaints

* Scan for constants:
* At any byte offset within code and data segments
* Fall within the current module
* Point to a valid instruction boundary

* Computed code pointers

* Does not support arbitrary arithmetic, but targets jump
tables

* Use static analysis of code within a fixed-size window
proceeding indirect jump

2/22/2017

10

Instrumented Module -

ELF header Original code Original data New code
phdr metadata, ..bss New data
.rodata

* Translating function pointers
* Appear as constants in code, but can’t statically translate
* Solution: Runtime address translation

* Full transparency: all code pointers, incl.
dynamically generated ones, target original code
* Important for supporting unusual uses of code pointers

* To compute data addresses (PIC-code, data embedded in code)
¢ C++ exception handling

Static Instrumentation for CFl .

* Goal: constrain branch targets to those determined
by static analysis '
* Direct branches: nothing to be done
* Indirect branches: check against a table of (statically
computed) valid targets
* Key observation

* CFl enforcement can be combined with address
translation

2/22/2017

11

2/22/2017

Modularity

,_

Intra-module control transfer: MTT

executable

.new_text:
func_entry:

#ret

jmp retjmp_lkup

_ -} push L_next
jmp call_lkup

~ | call_lkup:
| dataMTT1 |

retjmp_lkup:
data MTT2

What if the target is out side of the module ?

Modularity

,__-A

Inter-module control transfer: GTT

executable libc.s0.6
.new_text: call_lkup,_glbl .new_text:
L
" H .
- -“‘ libfunc: -
L L] L)
#call to libfunc H H #return H
| push L_next ! ! jmp retjmp_lkup !
jmp call_lkup : v H
s Global Table % H
s GTT hC *
Py (initialized by Id.s0) L e
call_lkup: call_lkup:
.data MTT1 exe mtt1 | mtt2 .data MTT1
retjimp_lkup: K [retjmp_lkup:
data MTT2 libc | mtt | mt2 .data MTT2

update of GTT is done in Id.so

12

Modularity

,_

Code injection: null GTT entry

executable libc.s0.6
.new_text: call_lkup_glbl .new_text:
L
S libfunc:
e ~ e
Ld Y

#return
jmp retjmp_lkup

"

#

#call to libfunc '
1

push L_next H
1

1

’

" jmp call_lkup

Global Table
GTT
(initialized by Id.so)

oL

call_lkup:
.data MTT1

call_lkup:
.data MTT1

mit1

exe mtt2

" retjmp_lkup:
.data MTT2

retimp_lkup: K
.data_MTT2 libc

GTT only maps code !

mtt1 mtt2

Basic version of CFl

e return: target next of call
e call/jmp: target any function whose address is taken

e Obtainable from relocation info (“reloc-CF1”)
matches implementation described in [Abadi et al 2005]

e How to cope with missing relocation info?
. Use static analysis to over-approximate function
addresses taken

e “Strict-CFI”

2/22/2017

13

CFl Real-World Exceptions

e special returns

as indirect jumps (lazy binding in ld.so)
going to function entries (setcontext(2))
not going just after call (C++ exception)
e calls used to get PC address
e jump as areplacement of return

Measuring “Protection

Strength” ‘

e Average Indirect target Reduction (AIR)
T : number of possible targets of jth ICF branch

S: all possible target addresses (size of binary)

z,i(l@)

e AIR is a general metric that can be applied to
other control-flow containment approaches

2/22/2017

14

Coarser versions of CFl

bundle-CFI:

e all ICF targets aligned on 2-byte boundary,
n = 4 (PittSFIeld) or 5 (Native Client)

,_—

instr-CFI: the most basic CFI

e all ICFTs target instruction boundaries

AIR metric (single module)

Name Relo Stri Bi Bundl Ins
c ct n e CFI tr
CFI CFI c CF
Fl I
perlbench [98.49% 98.44% 97.89% 95.41% 67.33%
bzip2 99.55% 99.49% 99.37% 95.65% 78.59%
gce 98.73% 98.71% 98.34% 95.86% 80.63%
gobmk 99.40% 99.40% 99.20% 97.75% 89.08%
average |99.13% |99.08% [98.86% |96.04% |79.27%
* Loss due to use of static analysis is negligible

* Loss due to binCFl relaxation is very small

2/22/2017

15

Evaluation

Disassembly testing |

Real world program testing
Gadget elimination

Disassembly Testing

Module Package Size Instruction# | errors
libxul.so firefox-5.0 |26M 4.3M 0
gimp-console-2.6 |gimp-2.6.5 |7.7M 385K 0
libc.so glibc-2.13 | 8.1M 301K 0
libnss3.so firefox-5.0 |4.1M 235K 0
Total 58M 5.84M 0

“diff” compiler generated assembly and our disassembly

2/22/2017

16

Real world program testing

,_

Application Name

Experiment

firefox 5 (no JIT)

open web pages

acroread9 open 20 pdf files; scroll;print;zoom in/out
gimp-2.6 load jpg picture, crop, blur, sharpen, etc.
Wireshark v1.6.2 capture packets on LAN for 20 minutes

lyx v2.0.0 open a large report; edit; convert to pdf/dvi/ps
mplayer 4.6.1 play an mp3 file

Total 12 real world programs

Gadget Elimination

100.00%

m Reloc-CFl m Strict-CFl bin-CFI

90.00%
B80.00% -
70.00% -
60.00% -
50.00%

Q"gp

& & 6\5‘“\@@ 1;@‘2;_ &\oo& & @‘\ @;&q
¢ &
o

2/22/2017

17

