Whole-System Dynamic
Binary Analysis

Panorama: Capturing System-wide
Information Flow for Malware Detection and
Analysis

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel,
Engin Kirda,

Appeared in CCS’07

1/31/2017

1/31/2017

Outline

* Motivation

* Overview

* Design & Implementation: Panorama

* Taint-Graph Based Detection and Analysis
* Evaluation

* Summary

Motivation | -- Problem

* Malicious code creeps into users’ computers, performs malicious behaviors
* spyware/adware
¢ keyloggers
* password thieves
* network sniffers
* backdoors
* rootkits

* Even software from reputable vendors
* Google Desktop
* SONY Media Player

Motivation Il — Previous Solutions

* Malware Detection

* Signature based

* Cannot detect new malware and variants
* Semantic-aware signatures can detect some variants

* Behavior based
* Heuristics: high false positives and false negatives
* Strider Gatekeeper checks auto-start extensibility points
* VICE and System Virginity Verifier check various hooks

* Malware Analysis
* Manual process mostly
* Coarse-grained

Outline

* Overview

1/31/2017

1/31/2017

Overview | — Our Observation

* Information access and processing (IAP) behavior
¢ Many different kinds of malware present malicious/suspicious IAP behavior
« Steal, tamper, or leak sensitive information
* Spyware leaks URLs
* Keyloggers steals keystroke information
* Password thieves steals passwords
* Rootkits tamper with directory information
* Network sniffers eavesdrop the network traffic

Overview Il - A Example

Overview Il —Our Approach

* Whole-system dynamic taint analysis with OS awareness
* Run the system to be analyzed in an emulator
* Selectively mark data as tainted
* Monitor taint propagation
e Extract OS-level knowledge
* Generate taint graphs
* Taint-graph based detection and analysis

Overview |l — Big Picture

_________ Malware Analysis 1

Test Scripts Test Engine OSrAware View
4

v

Taint Engine - Malware Detection 1

Taint Graphs

1/31/2017

1/31/2017

Outline

* Design & Implementation: Panorama
* Hardware-level Dynamic taint analysis
* OS-aware Analysis
* Automated testing

Design & Implementation — Hardware Level Taint Analysis

* Build on QEMU

* Shadow Memory
* RAM, registers, hard disk, and NIC buffer
* Page-table-like structure

* Extend CPU

* Propagate taint status for each instruction
* Extend Kbd, Disk and NIC

* Taint inputs

* For disk, propagate taint status

Design & Implementation — Hardware-Level Taint Analysis (2)

* Instrument CPU Instructions (at byte granularity)
* Movement: MOV AL, BH
-- AL is tainted iff BH is tainted
* Arithmetic: ADD EAX, EBX
-- EAX is tainted iff EAX or EBX is tainted
+ Table lookup: MOV EAX, [EBX]
-- EAX is tainted if EBX or MEM[EBX] is tainted)
¢ Constant function: XOR EAX, EAX
-- EAX will be untainted

.

Design & Implementation — OS-Aware Analysis

Resolving process and module information
* Q: when an instruction accesses taint, which process and module is it from?
A: A kernel module is inserted into the guest system

Resolving filesystem information
* Ql: when tainting a file/directory, which disk blocks should be tainted?
Q2: when the tainted data propagate to a disk block, while file is tainted?
A: The Sleuth Kit (TSK), a disk forensic tool

Resolving network information
Q1: When tainting an incoming packet, which connection is it from?
¢ Q2: when a tainted byte is sent out, which connection is it from?
A: Simply check the packet header

1/31/2017

Design & Implementation — OS-Aware Analysis (2)

* How to identify the actions performed by the code sample?
¢ Challenge 1: packed code and encrypted code
* A:taint the binary file with a special label
¢ Challenge 2: call a function in the system libraries
¢ A
* check stack pointers
¢ Check asynchronous kernel functions

Design & Implementation — Automated Testing

* Goal
¢ Perform test cases without human intervention
* Introduce tainted information sources

* We use “AutoHotkey”
* Record the test cases into scripts
* Replay the scripts in Panorama
* Will describe the test cases later

1/31/2017

1/31/2017

Outline

* Taint-Graph Based Detection and Analysis
* Taint Graph
* Taint-Graph Based Policies

Detection & Analysis — Taint Graph

* Taint Graph

* Input 1: Raw events present
dependencies among
instructions, hardware inputs
and outputs

* Input 2: OS-level Knowledge

¢ Qutput: taint graph

1/31/2017

Detection & Analysis — Taint Graph(2)

Winlogon.exe

* An example of taint graph

Winlogon.exe!mscad.dll — c:\ginalog.log

* This graph reflects the procedure for Windows user authentication.
* A password thief catches the password and saves them into a log file

Detection & Analysis — Taint-Graph Based Detection

* Anomalous information access
» text: when sending keystrokes to a text editor, a command console, keyloggers ...

e password: when sending passwords to a web form, a password field, password
thieves and keyloggers...

¢ ICMP: when pinging a remote host, packet sniffers and stealth backdoors ...

e FTP: when logging into an FTP server, packet sniffers and stealth backdoors ...
* UDP: when sending in a UDP packet, packet sniffers and stealth backdoors ...
* Others: ...

10

Detection & Analysis — Taint-Graph Based Detection

(2)

* Anomalous information leakage

URL: the keystrokes sent to the address bar,
HTTP: the incoming HTTP traffic,

HTTPS: the incoming HTTPS traffic,
document: .txt, .pdf, .ppt, .doc

Others: ...

Detection & Analysis — Taint-Graph Based Detection

(3)

* Excessive information Access

directory: when recursively listing several directories, the disk blocks belonging to the
directories

Rootkits will access all of the disk blocks and tamper with some entries

Compared with Cross-view based techniques, such as Rootkit Revealer, Blacklight,
and Strider Ghostbuster, ...

1/31/2017

11

Detection & Analysis — Taint-Graph Based Detection(4)

Test case description Introduced inputs

1. Edit a text file and save it text, document

2. Enter password in a GUI program | password

3. Log in a secure website URL, password, HTTPS
4. Visit several websites URL, HTTP

5. Log into an FTP server text, password, FTP

6. Recursively list a directory directory

7. Send UDP packets into the system | UDP

8. Ping a remote host ICMP

Detection & Analysis -- Taint-Graph Based Detection

Vg e G, (3v € ¢.V,v.type = module) A
g.root.type € {text, password, FTP, UDP, ICMP}

— Violate(v, “No Access”) (1)

dg € G,(3v € ¢.V,v.type = module) A
(g.root.type € {URL, HTTP, HTTPS, document }) A
(Fu € descendants(v),w.type € {file, network})
— Viiolate(v, “No Leakage!”); (2)

(Vg € G, g.root.type = directory — Fv € ¢g.V, v.type = module)
— Violate(v, “No Excessive Access’) (3)

1/31/2017

12

Outline

* Evaluation
* Malware detection
* Malware analysis
* Performance

Evaluation — Malware Detection

Category Total | FNs | FPs

Keyloggers 5 0 -

Password thieves 2 0 -

Network sniffers 2 0 -

Stealth backdoors 3 0 -

Spyware/adware 22 0 -

Rootkits 8 0 -

Browser plugins 16 - 1 Browser accelerator
Multi-imedia 9 - 0

Security 10 - 2 Personal firewall
System utilities 9 - 0

Office productivity 4 - 0

Games 1 - 0

Others 4 - 0

Sum 98 0 3

1/31/2017

13

Evaluatoin -- Malware Analysis

~| iSLogFle | | STEMPW Content [ES OTBRMNIT qennd 1] bem

L

X 2.
— Ty

-

- LA

-~ e

/ - —

¥ o] —
Sk b dll e[tk il DeskiepS S d I".:.\'u DR 57 TeefdSai apmlm.ed] |”".1\-.| DHRS 7 Toef2d8809 S el ||

Google Desktop obtains the incoming HTTP traffic, saves it into two index files, and then sends it
out though an HTTPS connection, to a remote Google Server

Fvaluation — Performance

* curl, scp, gzip, bzip2: 20 times slowdown on average
¢ Test cases: 10~15 mins

* Performance improvement:
* On-demand emulation
 Static analysis

1/31/2017

14

Summary

Propose to rely on IAP behavior to detect and analyze malware
* No signature is required: can detect new malware
* Stems from intent: difficult to evade
* Fine grained analysis
* Capture the behaviors of kernel-level attacks

Propose to use the technique of whole-system dynamic taint analysis with OS-awareness
to capture IAP behavior

Design and develop a system Panorama
* Yields no false negative and very few false positives
* Correctly capture the behavior of Google Desktop

Make It Work, Make It Right, Make It Fast:
Building a Platform-Neutral Whole-System
Dynamic Binary Analysis Platform

Andrew Henderson*, Aravind Pravash*, Lok Kwong YanT,

Xunchao Hu*, Xujiewen Wang*, Rundong Zhou*, Heng Yin*

* Department of EECS, Syracuse University

t Air Force Research Laboratory, Rome

30

1/31/2017

15

Motivation: We need a practical solution for
platform-neutral whole-system binary analysis

* Binary analysis of malware

* No source code available to us

* Need to analyze malicious binary activity
* Whole system

* Multiple components in both userspace and kernel
* Platform-neutral (as much as possible)

e Architecture neutral
* Guest OS neutral

31

DECAF: System Architecture

DECAF and Guest Environment Plugins

API Tracer

Keylogger Detector

Instruction Tracer

Event-Driven API

Just-In-Time Precise Instru. Code —
VMI Tainting Management

32

1/31/2017

16

Does DECAF work?

* Sycure Lab (Syracuse University) actively uses
DECAF for our cybersecurity research efforts

* Sycure Lab team is using DECAF for the Cyber
Grand Challenge competition

* McAfee currently uses DECAF to detect and analyze
keylogger malware behaviors

* Numerous other academic labs are currently
utilizing DECAF in their own research efforts

Just-In-Time VMI

* Virtual machine introspection (VMI)
* Inspect the guest environment from the outside
* Bridge the “semantic gap”

* Other VMI implementations focus on how, not when

* We must be aware of changes within the guest when those
changes occur

* VMI must be as platform-neutral as possible
* VMI must introduce minimal overhead

1/31/2017

17

Just-In-Time VMI

* Observation 1: A process must have its own memory space

Each CPU architecture provides a register to store the “base” of these
memory spaces (CR3 in x86, CP15 in ARM, etc.)

* Observation 2: The translation look-aside buffer (TLB) reveals
information about guest behavior

An “execute” cache miss will occur when new code pages are loaded
and executed (new process, loading shared libraries, context switch)

* Observation 3: Location and structure of key kernel data
structures are known

Kernel contains linked lists of modules, processes, threads

Result: Rely on hardware events to discover “when” and

“what”, rely on kernel data for “who”

Just-In-Time VMI: Solution

l_VES

TLB Execute Cache Miss

& PCin Kernél
Space?

* TLB Miss triggers VMI
[l, | * PCtells us where event

Proc = Kernel_Proc
[recremare] occurred
ND

* Guest kernel data

. .
structures give more detail

—

* Other systems perform

Mod = Find_Module(Proc->Module_list, Cur_PC) ‘

VMI using guest software:
* Hook system calls

No

‘ Mod = Find_New_Module(Proc, Cur_PC) ‘ e Use kerne| modu]e
T s * Use custom device driver
* Increases dependence on
Retrieve_Symbols(Proc->Madule_List) ‘ guest platform

1/31/2017

18

1/31/2017

Tainting

* Tainting must be whole-system
* Tainted data should be trackable throughout the entire
guest environment (kernel, processes, devices)
* Tainting policy must be sound and precise
* Minimize under- and over-tainting of data
* We performed formal verification of our taint policy
correctness at the instruction level [1]

* Tainting must be fast

[1] L. K. Yan, A. Henderson, X. Hu, H. Yin, S. McCamant. On soundness and precision of dynamic taint analysis.
Technical Report SYR-EECS-2014-04, Syracuse University, 2014.

37

Tainting: Using QEMU for propagation

* QEMU'’s Tiny Code Generator (TCG) is a binary
translator

* Guest CPU instructions are translated into intermediary
representation (IR) instructions

* TCG’s IR instruction set implements standard CPU operations
that all instruction sets have (MOV, ADD, XOR, etc.)

* These IRs and then translated into host CPU instructions

* Execution details of the IRs and their arguments are
invisible to the guest

19

Tainting: Lightweight inline propagation

mov $0x8f, %eax
and $0x01, %eax

into IR

R

Begin with guest instructions
Translate guest instructions

Analyze each IR to determine

taint rule to apply

Insert taint propagation IRs

mov_i32
mov_i32
not_i32
and_i32
and_i32
not_i32
and_i32
and_i32
and_i32
or_i32
or_i32
and_i32

movi_i32 taint_eax, SOx0
movi_i32 eax, SOx8f
movi_i32 tmp21, SOx0
movi_i32 tmp1l1, $0x01

tmp23, taint_eax
tmp13, eax

tmp30, tmp21
tmp31, tmpll, tmp21
tmp32, tmp30, tmp31
tmp30, tmp22
tmp31, tmp21, tmpl3
tmp33, tmp30, tmp31
tmp30, tmp21, tmp22
tmp31, tmp32, tmp33
tmp23, tmp30, tmp31
tmp12, tmp11, tmp13

39

Tainting: Heavyweight plugin propagation

State of
Guest CPU
TB of TCG
Instructions

Memory, Taint,
Insn End Events

Staging Loggin:
Buffer ngi% 2

[
’ Circular Disk
|| 1O Buffer

Taint Log
on Disk

 Taint state is propagated inline via IRs

* When tainted data is present, the IRs can be
logged to disk via a plugin

 Taint tags are written to this log when created

* The generated log is sliced backward to
reconcile taint with its source tag

40

1/31/2017

20

Event-Driven Instrumentation

* Instrumentation occurs at two points:
* Translation-time
* Runtime

* At translation time, callbacks are embedded in the TCG IR
stream

* At runtime, DECAF uses a dispatch mechanism to route
these callbacks to plugins

* Example: Shared library
* Are we in the right process?
* Should the plugin’s callback be triggered?

41

Event-Driven Instrumentation: Translation
time

v movi_i32 tmp21, S<CURRENT_ADDRESS>
pd movi_i32 tmp22, SDECAF_invoke_block_begin_callback
call tmp22, SO0x0, $0O, env, tmp21

movi_i32 tmp23, SDECAF_invoke_insn_begin_callback
call tmp23, SO0x0 SO, env

mov_i32 tmpll, ebx

mov_i32 tmpl2, eax

Begin with guest ops or_i32 tmp13, tmp12, tmp11
. movi_i32 tmp26, SDECAF_invoke_insn_end_callback
Translate guest ops into IRs call tmp26, $0x0 $0, env

Insert helper functions to mark . "
A movi_i32 tmp27, SDECAF_invoke_block_end_callback
begln/end of block call tmp27, $0x0, $0, env

Insert helper functions to mark
begin/end of guest op

Either the whole-system or just modules of interest can be instrumented

42

1/31/2017

21

Event-Driven Instrumentation:
A sample tainted keystroke plugin

1. plugin_interface_t my_interface; 18. mon_cmd_t my_term_cmds[] = {
2. DECAF_Handle keystroke_cb_handle = DECAF_NULL_HANDLE;
3. DECAF_Handle handle_read_taint_mem = DECAF_NULL_HANDLE; 19. .name = "taint_sendkey",
4. int taint_key_enabled = 0; 20. .args_type = "key:s",
21. .mhandler.cmd = do_taint_sendkey,
5. void my_read_taint_mem(DECAF_Callback_Params *param) { 22. .params "taint_sendkey key",
6. char name[128]; 23. .help = "send a tainted key to system"
7. tmodinfo_t tm; B
8. if(VMI_locate_module_c (DECAF_getPC(cpu_single_env), {NULL, NULL, },
DECAF_getPGD(cpu_single_env),name,&tm) == ¥
9. DECAF_printf("INSN 0x%@8x From Module %s Read Keystroke\n", 24. void my_cleanup(){...... }
DECAF_getPC(cpu_single_env),tm.name);
} /* Register the plugin and the callbacks */
25. plugin_interface_t * init_plugin() {
10. void my_send_keystroke_cb(DECAF_Callback_Params *params) { 26. my_interface.mon_cmds = my_term_cmds;
11. *params->ks.taint_mark = taint_key_enabled; 27. my_interface.plugin_cleanup = my_cleanup;
12. taint_key_enabled = @; 28. handle_read_taint_mem = DECAF_register_callback(
13. DECAF_printf("taint keystroke %d \n", params->ks.keycode); DECAF_READ_TAINTMEM_CB, my_read_taint_mem, NULL);
29. keystroke_cb_handle = DECAF_register_callback(
14. void do_taint_sendkey(Monitor *mon,const QDict *qdict) { DECAF_KEYSTROKE_CB, my_send_keystroke, NULL);
15. if (qdict_haskey(qdict, "key")) { 30. return &keystrokeInterface;
16. taint_key_enabled = 1; //enable keystroke taint }
17. do_send_key(qdict_get_str(qdict, "key")); //Send the key
}
}
43
H -
Evaluation: VMI performance
60%
50% .
o SPEC CPU2006
40%
Windows: 12%
30% .
Linux: 14%
1mux: 0
. I . ‘ l
e | add ud
& &
R P G
r & o fy ‘b% < o @:9 & & %é‘
105 W i o ‘3?;

i tion | Xubuntu WinXP SP3 | Debian Squeeze (ARM C C .
Configura Sauecre (ARM) ommon Case:
DECAF w/ VMI|3m 25.9s |1m 4.36s 2m 50.16s
QEMU 1.0.1 |[2m 45.855 |0m 52.79s 2m 36.52s OS BOOt Time
Overhead % |24.14 21.91 8.72

44

1/31/2017

22

800%

Evaluation: Tainting performance

700%
— Tainting |Whole | GuestOS | ArchSupport | Bitwise [Expected
Software |System [Win |Linux 86 |ARM [MIPS|Granularity [Overhead
S00% Dytan X | x 30x
200 LIFT X | X 3.6x
libdft ¥ % 3.65x
300% Minemu X X 2.3x
200% Memcheck | X X X 26%
TaintBochs X X X X 10x
100% TEMU X x| x | x 20x
s N B DECAF X X %] 2] % X 6x
9 & & S & oy &
ﬁé\@\é\ @_@& © * ‘;f‘:&ﬁ? @‘1@@6& D(,%"\éi&b s 0@&&:{9&0 @m&&

b. e o

&

* Tainting experiences 605% overhead on SPEC CPU2006

* Heaviest performance impact on CPU-bound benchmarks

45

Evaluation: HookAPI plugin performance

2 Internet Explorer O+ TDSS (normalized) 1} Google Chrome

300

225 |

150 |

75

Execution Time (Seconds)

A

No Plugin Core Plugin Core Plugin: Core Plugin: Core Plugin:
248 kernel + 100 APIs 50 APIs 25 APIs
289 User APIs

46

1/31/2017

23

Evaluation: Development effort

Software | O5/Arch-Independent (LOC) | OS/Arch-Specific (LOC)| Total (LOC)
DECAF 18470 1350 19820
Insn Tracer 3770 90 3860
API Tracer 840 880 1720
Key Logger 120 0 120

* Most architecture-specific code is related to accessing CPU
registers

* Most OS-specific code is related to VMI

47

Conclusion
* DECAF provides whole-system emulation and

instrumentation that works correctly and is fast
* DECAF is open source and available for download:

https://github/sycurelab/decaf

48

1/31/2017

24

