
Lab 2: Implementing a pintool for shadow stack

Preparation
Download pin from https://software.intel.com/en-us/articles/pintool-downloads. If your OS platform is
Ubuntu 14.04 or more recent, use this link
http://software.intel.com/sites/landingpage/pintool/downloads/pin-3.0-76991-gcc-linux.tar.gz. Unzip
this tarball, you will find the executable “pin” already appears in the folder. You should also go into the
sub folder “source/tools” and run “make” to build all the existing pintools.

You are highly recommended to read the user guide at
https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/ carefully, to understand
how to run an existing pintool, how an existing pintool is implemented, and how to write your own
pintool.

Objective
Our objective for this lab assignment is to implement a shadow stack through dynamic binary
instrumentation using Pin. Shadow stack is a well-known and effective defense mechanism to defeat
control-flow hijacking attacks that aim to overwrite a return address on the stack. The general algorithm
works like below: for each “call” instruction, identify the return address (or the next instruction after the
call instruction), and push it onto the shadow stack; for each “ret” instruction, identify the return target
and see if it matches with the value on the top of the shadow stack. If so, pop up the value from the
shadow stack; otherwise, report an attack.

Work Flow
First of all, you need initialize Pin, and then register an instrumentation function with Pin, and start the
program. Normally, you will do it in the main function, like below:

int main(int argc, char *argv[])
{
 PIN_InitSymbols();
 if(PIN_Init(argc,argv)) {
 return Usage();
 }
 TRACE_AddInstrumentFunction(Trace, 0);
 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram();
 return 0;
}

In this example, we use Trace_AddInstrumentFunction to instrument a trace at a time. You can also
use INS_AddInstrumentFunction to instrument an instruction at a time.

https://software.intel.com/en-us/articles/pintool-downloads
http://software.intel.com/sites/landingpage/pintool/downloads/pin-3.0-76991-gcc-linux.tar.gz
https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/

Then in your instrumentation function, you will enumerate each instruction to identify call and ret
instructions. In particular, INS_IsCall and INS_IsRet can be used to determine if the specified
instruction is a call or ret.

Once a call or ret instruction is identified, use INS_InsertCall to instrument that instruction. Please read
the documentation for INS_InsertCall carefully
(https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/group__INS__INST__API.ht
ml#g82d2ecc73dcd5e2af26fef5bd6ff7190).

VOID LEVEL_PINCLIENT::INS_InsertCall (INS ins,
 IPOINT action,
 AFUNPTR funptr,
 ...
)

Especially after the first three arguments, you can specify a list of arguments to be passed to “funptr”.
For example, IARG_INST_PTR will pass the address of the instrumented instruction, and
IARG_BRANCH_TARGET_ADDR will pass the target address of this branch instruction.

A possible way to instrument a call instruction is like below:
INS_InsertCall(ins, IPOINT_TAKEN_BRANCH, AFUNPTR(do_call),
 IARG_BRANCH_TARGET_ADDR, IARG_RETURN_IP,
 IARG_THREAD_ID, IARG_END);

In this example, Pin will pass the call target, the return address, and the thread ID to a function called
“do_call” specified by the developer. So in the “do_call” function, you would push the return address on
the shadow stack.

Similarly, you can instrument a ret instruction like below:
INS_InsertCall(insn, IPOINT_BEFORE, AFUNPTR(do_ret), IARG_INST_PTR,
 IARG_BRANCH_TARGET_ADDR, IARG_THREAD_ID, IARG_END);

In this example, you register a “do_ret” function for each ret instruction, and pass the address of the
instrumented ret instruction, the branch target (which is the return address), and the thread ID. Since in
the “do_ret” function, you would check the top of the shadow stack and see if it matches with the
branch target. If so, you pop up from the shadow stack.

Then you are pretty much done with a basic version. Of course, a more complete implementation would
need to handle multiple threads. It means that one shadow stack must be associated with each thread.
More specifically, you need to create shadow stack in the thread local storage. In this lab assignment,
you are not required to deal with multiple threads.

Submission
Please submit your report through iLearn, preferably in PDF format. In the report, please list your
complete source code with sufficient explanation and output messages.

https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/group__INS__INST__API.html%23g82d2ecc73dcd5e2af26fef5bd6ff7190
https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/group__INS__INST__API.html%23g82d2ecc73dcd5e2af26fef5bd6ff7190
https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/group__INST__ARGS.html%23ga46cc1807fc61addd9afe69ee6736a21

Run some normal programs like ls and ps, to show that your pintool won’t raise any false alarm.

Compile example01.c as a 64-bit binary, as below (note that “–m32” option is removed) :

gcc –g –fno-stack-protector –z execstack –o example01 example01.c

Run this binary with your pintool with a very long input and show that your pintool can detect the stack
overflow before the program crashes.

	Preparation
	Objective
	Work Flow
	Submission

