
Introduction to Symbolic
Execution

Classic Symbolic Execution

Problem 1: Infinite execution path

Problem 2: Unsolvable formulas

Problem 3: symbolic modeling

• External function calls and system calls are hard to
model

• For efficiency, symbolic execution systems often
model libc function calls.
• File system related

• String operations

Concolic Testing

• Performs symbolic execution dynamically, while the
program is executed on some concrete input values.

• Generate some random input: x=22, y=7 and execute
the program both concretely and symbolically

• The concrete execution take the “else” branch on Line 7
and the symbolic execution generates the path
constraint x != 2y

• Negates a conjunct in the path constraint and solves
x==2y and get a new test input x=2, y=1

• Test the program with the new input

Concolic Testing: What is the
benefit?
• Solve complex formulas

• x == (y*y) mod 50, unsolvable if both x and y are symbolic

• if we concretize y to its concrete value, now solvable

• Angr does this!

• External library call and system call
• E.g., fd = open(filename)

• Set filename to its concrete value “/tmp/abc.txt”

• Execute the system call concretely

• Set fd to be concrete after the system call return

• High level idea of S2E!

Online or Offline?

• Online
• When encounter a new symbolic branch, solve predicates for

both directions
• If both directions are feasible, fork the execution state

(concrete and symbolic)
• KLEE and S2E take this approach

• Offline (or trace-based)
• Choose an input and execute the program, collect execution

trace
• Compute path constraints from the trace
• Negate each conjunct, solve the new path constraint, and get

a new input
• Given the new input to the program and execution again
• BitBlaze, SAGE and BAP take this approach

Online and Offline: Pros and Cons

Online Offline

Efficiency High Low

Implementation difficulty High Low

Symbolic State Quickly exploded No state management

How to execute symbolically?
• Trace based

• BAP: Use Pintrace to collect execution trace, and then
convert the trace into BAP IL (derived from VEX)

• BitBlaze: Use tracecap plugin to collect execution trace,
Convert the trace into Vine IR

• Low efficiency and possibly very long trace!!

• Dynamic Instrumentation
• S2E:

• Run in QEMU with two machines (concrete and symbolic)
simultaneously

• Convert TCG IR to LLVM Bitcode
• KLEE:

• Compile C/C++ into LLVM Bitcode
• Add instrumentation on LLVM Bitcode

How to execute symbolically?

• Complete Interpretation or Simulation
• Interpret binary execution and add symbolic execution

• Angr: convert each instruction into VEX, and interpret
each VEX statement in Python

• Pros: full control, easy to implement

• Cons: low efficiency by nature. All instructions must be
interpreted, no matter if symbolic variables are involved
or not. For long execution trace, it will take very long
time!!

Research Question: how to speed up
symbolic execution?

• Most of instructions just need to be executed
concretely. We like to execute them natively if possible

• Only a few instructions need to be executed
symbolically.

• How to detect if an instruction needs to be executed
symbolically

• How to switch between concrete and symbolic
execution quickly?

How to deal with state explosion?

• State merging and pruning

• Targeted search
• Find some interesting target

• At each branch point, favor the direction closer to the target

• A fitness function is chosen

• Combine online and concrete re-execution
• E.g. Mayhem

• Combine symbolic execution with evolutionary fuzzing
• E.g., Driller

Mayhem: Combine online symbolic
execution and concrete re-execution

• Perform online symbolic execution in BFS fashion

• When it reaches a limit, store the symbolic states
on disk

• Pick one state to continue. To do so, solve the path
constraint, and use it as input to re-execute the
program up to the current state

• Start to perform online execution from this state

Driller: Combine symbolic execution
with evolutionary fuzzing

• Evolutionary fuzzing drives the path selection
• AFL
• Share the seeds with symbolic execution

• Symbolic execution takes each seed and perform a very
localized path exploration
• Angr
• Generate new inputs and feed them back to the fuzzer

• Problems
• Most of these new inputs will be unfortunately dropped
• Some seeds lead to very long trace, take very long time to

execute in Angr, and impossible to solve

Path predicate may be over-
constrained
• In Dynamic Symbolic Execution,

• A constraint is computed per execution path

• A different path may still reach the same point

• It means some conditions are not necessary

• We can use Max-SMT
• Specify which clause is hard and which is soft

• Max-SMT may throw away soft constraint to find a
solution

Symbolic execution: A search
problem
• BFS, DFS, random, heuristic, etc.

• By nature, similar to Go and Chess

• Can we make an AlphaGo for symbolic execution?

