
Binary Code Search

Problem Definition

• Given a piece of binary code (e.g., a binary function)

• Quickly return a set of candidates
• Semantically equivalent or similar

• May come from different architectures

• May be generated by different compilers and options

2

Applications

• Plagiarism Detection

• Malware Classification

• Vulnerability Search
• Emerging topic: vulnerability search in IoT

3

Internet of Things

4

6

Firmwares
Operating systems to

IoT devices

Vulnerability

7

Open source libraries
e.g., OpenSSL

When new vulnerabilities are discovered in
OpenSSL, all firmware using it may be affected

e.g., Heartbleed

Vulnerability Detection

Vulnerability

Firmware Image Database

Similar?

Similar?

Similar?

Similar?
i.e., Heartbleed

Important!

Challenges for Binary Code Search

x86

ARM MIPS

Cross-Platform

Similar or not similar?
It’s a problem!

Scalability

An Example
push ebx

mov eax, [esp+4+arg_0]

mov edx, [eax+58h]

mov ebx, [edx+344h]

mov edx, [eax]

mov eax, [ebx+24h]

mov ecx, edx

sar ecx, 8

cmp ecx, 3

jz short loc_80A9550

cmp edx, 302h

jle short loc_80A954D

pop ebx

retn

cmp eax, 0C030h

mov edx, 20080h

cmovz eax, edx

pop ebx

retn

lw $v0, 0x58($a0)

lw $v1, 0($a0)

lw $v0, 0x344($v0)

sra $a1, $v1, 8

li $a0, 3

bne $a1, $a0, locret_19830

lw $v0, 0x24($v0)

slti $v1, 0x303

bnez $v1, locret_19830

li $v1, 0xC030

bne $v0, $v1, locret_19830

nop

la $v0, loc_20080

jr $ra

nop

a) x86 assembly b) MIPS assembly

Existing Binary Code Search Techniques

• Syntax-based Approach

• Mnemonic code sequence [S. M. Tabish et al. SIGKDD’09; W. M. Khoo et al. MSR’13]

• Control flow graph [H. Flake. et al. DIMVA’04; J. Pewny et al. Oakland’15; Eschweiler et al. NDSS’16]

• Call graph [X. Hu et al. CCS’09]

• Semantics-based Approach

• Tracelet [Y. David et al. PLDI’14]

• Tree expression on basic blocks [J. Pewny et al. ACSAC’14]

• Symbolic execution [D. Gao et al. ICS’08; J. Ming, et al ISC’12]

Search for known vulnerabilities

• String pattern or constant matching [Costin et al. USENIX’14]

• Backdoors in devices

• Lack of generality

• “Multi-MH & Multi-k-MH”[Pewny et al. Oakland’15]

• Control-flow graph + I/O pairs

• Lack of scalability

• “DiscovRe” [Eschweiler et al. NDSS’16]

• Control-flow graph + Statistics features

• Lack of scalability

• Lightweight filtering is unreliable

12

Key challenge: cross-platform code search

Pair-wise graph matching is expensive!

-> More complex feature representation

-> More accurate
-> Less search efficiency

13

Vulnerability
Search Engine

CFG Ranking List

Graph matching is NP-hard problem!

The most efficient algorithm is O(n^3)
for two graph matching

It is impossible to conduct pair-
wise graph matching in large

code repo!

“Multi-MH & Multi-k-MH”[Pewny et al. Oakland’15]

“DiscovRe” [Eschweiler et al. NDSS’16]

A similar problem

• Image search: tag a similar
object in millions of images

14

We don’t compare images one by one

15

How can we learn high-level feature representations from
CFGs?

(a) (b)

c. Codebook d. Feature vector

Each dimension represents a
high-level property of the

original CFG!

How can we learn high-level feature
representations from CFGs?

16

Codebook-based approach (Genius, CCS’16)

17

...

Attributed Control flow graph

(i) Binary functions

(iv) High-level features

Func_1

Func_2

Func_3

Func_1 Func_2 Func_3

Raw CFGs

Encoded high-level feature vectors

a) Raw Feature Extraction b) Feature Learning

c) High-level feature encoding

d) LSH and search

Raw feature extraction

18

• Attributed Control Flow Graph

An example of ACFG

19

Feature learning
Learn a codebook from raw features. Each code word

represents one property shared by raw features.

20

Codebook

code word

Codebook

code word

Feature learning

• Codebook
• Each code word is the centroid of a cluster of ACFGs

• Clustering on raw features (ACFGs)
• K-means, hierarchical-k-means, .etc.

• Codebook size
• Predetermined by # of clusters

• Bigger Size -> Higher accuracy & Lower Encoding Performance

21

High-level feature encoding

• VLAD encoding:

– Measure the distance between a
given ACFG to each centroid

– To normalize the feature vector, we
use graph similarity instead

– VLAD quantizer is shown below:

The similarity score is calculated
via graph edit distance

Index and Search

b. Codebook

[0.1, 0, 0, 0, 0.9, 0.7, 0.1]

c. Encoded feature vector
(VLAD encoding)

a. ACFG

ID Similarity
3 1.0
10 0.99
5 0.98

……..

d. Ranking list of
search results

Locality Sensitive
Hashing

Vulnerability Search
Engine

Encoded Feature Vector

ID Feature vector
0 [0.3, 0, 0, 0, 0.9, 0.7, 0.1]
1 [0.2, 0, 0, 0.4, 0.9, 0, 0.1]
2 [0.7, 0.01, 0.8, 0, 0.5, 0.2]
3 [0.1, 0, 0, 0, 0.9, 0.7, 0.1]

……..

Evaluating Genius

• Dataset Preparation
• 0.6 billion functions and hundreds of vulnerabilities

• Baseline Preparation
• Compare with Multi-MH and Multi-k-MH, DiscoveRe, Centroid.

• Performance Evaluation
• TPR and FPR

• Search Efficiency

• Preparation Time

• Case Studies

24

Genius: Graph Encoding for Bug
Search

Evaluation: Datasets

• Baseline Dataset
• BusyBox (v1.21 and v1.20), OpenSSL (v1.0.1f and v1.0.1a) and coreutils (v6.5

and v6.7)

• x86, ARM, MIPS; all 32 bit

• 568,134+ functions.

• Firmware Image Dataset
• 33,045 firmware images

• 26 different vendors

• Vulnerability Dataset
• 154 vulnerable functions

25

Evaluation: Baseline Comparison

• DiscovRe [Eschweiler et al. NDSS’16]

• Re-implemented its core part about graph matching and feature learning

• Multi-MH and Multi-k-MH [Pewny et al. Oakland’15]

• Compared on the same dataset

• Centroid [Chen et al. USENIX Security’15]

• Re-implemented its algorithm

• A simple encoding that converts a CFG into a number

26

Evaluation: True Positive Rate

27

Genius
DiscovRe without filtering

DiscovRe with filtering

Centroid

Evaluation: Search Efficiency

28

Figure2. The CDFs of search time on Dataset I.

Evaluation: Case Study I

• Search 2 vulnerabilities on 8126 firmware images
• CVE-2015-1791: top 50 candidates, 14 firmware images potentially affected,

10 confirmed. Two vendors: D-Link and Belkin.

• CVE-2014-3508: 24 firmware images potentially vulnerable, 13 confirmed.
Vendors are CenturyLink, D-Link and Actiontec.

29

Evaluation: Case Study II

• Search two latest firmware images for all vulnerabilities
• D-Link DIR-810 models

• 154 Vulnerabilities

• Search time: < 0.1s

• Check top 100 candidates

30

Limitations of Genius

• Encoding is still expensive
• 1 graph comparison for each word in codebook

• Feature dimension has to be small
• Confine the search accuracy

• Codebook generation is expensive
• May take a week to retrain the codebook

31

Neural Network-based Graph
Embedding for Cross-Platform

Binary Code Similarity Detection

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, Dawn Song

32

Two unbeatable advantages of neural
network-based similarity detection

Previous
approaches on
expensive graph-
matching based
algorithms to
detect similarity

Very SLOW!

33

𝑥1

𝑥2

𝑥3

Attributed CFG

𝑥2

𝑥3

𝑥1

Attributed CFG

We will show that
a neural network-
based approach
can be much more
efficient!

Takeaways

Message 1. Our work is one of the first demonstrations to show that
deep learning techniques can be applied to binary analysis

Message 2. We hope our work can foster more investigations on using
deep learning approaches for binary analysis

34

R
aw

 Featu
re

Extractio
n

(d

issem
b

ler)

Firmware files

Vulnerability

Attributed
CFG

Attributed
CFG

Em
b

ed
d

in
g

N
etw

o
rk

Embeddings

Embeddings

Cosine
similarity

Previous approaches

• Manually designed graph-matching-based

algorithms

• Slow

• Effectiveness is limited by graph-matching

• Feng, et al. Scalable Graph-based Bug Search for

Firmware Images. CCS 2016.

Our approaches:

• Deep graph embedding network

• Design a neural network to

extract the features automatically

• Combine Struct2vec and Siamese

network

Overall workflow

Our approach: structure2vec

𝑥1

𝑥2

𝑥3

Attributed Control
Flow Graph

Dai, et al. Discriminative Embeddings of Latent Variable Models for Structured Data. ICML 2016.

Take a closer look at the embedding
network

37

𝑥1

𝑥2

𝑥3

Code Graph

𝜇1
0 𝜇2

0 𝜇3
0

𝜇1
1 𝜇2

1 𝜇3
1

…

𝜇1
𝑇 𝜇2

𝑇 𝜇3
𝑇

+

𝑇
iteratio

n
s

𝜇𝑊2 ×

1. Initially, each vertex has an
embedding vector computed from
each code block

2. In each iteration, the embedding
on each vertex is propagated to its
neighbors

3. After the last iteration, the
embeddings on all vertexes are
aggregated together

4. An affine transformation is
applied in the end to compute
the embedding for the graph

Take a closer look at propagation

38

𝑥𝑢 𝜇𝑣𝜇𝑣𝜇𝑣𝜇𝑣
𝑖

+

𝜎

Current Vertex

Adjacent
Vertexes

𝑊1 ×

+

𝜇𝑢
𝑖+1

ReLU

𝑃1 ×

ReLU

𝑃𝑛 ×

tanh

… 𝑛 layers

Training: Siamese

1. Application-independent pretraining
• Compile given source code into different

platforms using different compilers and
different optimization-levels

• A pair of binary functions compiled from the
same source code is labeled with +1

• Otherwise, -1

2. Application-dependent retraining
• Human can label similar and dissimilar

pairs of binary functions
• This additional training data can be used in

a retraining process

Training Data Details

• OpenSSL (version 1.0.1f and 1.0.1u)
• Compiled using GCC v5.4

• Emit code to x86, MIPS, ARM

• Using optimization level O0-O3

40

Visualizing the embeddings

41

Accuracy: ROC curve on test data

42

Serving time (per function processing time)

Previous work: a few secs to a few mins

Now: a few milliseconds

𝟐𝟓𝟎𝟎 × to 𝟏𝟔𝟎𝟎𝟎 × faster!

Training time

Previous work: > 1 week

Now: < 30 mins

Identified Vulnerabilities in Large Scale Dataset

Among top 50: 42 out

of 50 are confirmed

vulnerabilities

Previous work: 10/50

Takeaways

Message 3. Deep learning approaches can be not only more effective,
but also more efficient in learning embedding representations for binary
programs.

Message 4. Program analysis can be a novel application domain of
deep learning techniques toward a more secure world.

46

