
Binary Code Search



Problem Definition

• Given a piece of binary code (e.g., a binary function)

• Quickly return a set of candidates
• Semantically equivalent or similar

• May come from different architectures

• May be generated by different compilers and options
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Applications

• Plagiarism Detection

• Malware Classification 

• Vulnerability Search
• Emerging topic: vulnerability search in IoT
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Internet of Things
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Firmwares
Operating systems to 

IoT devices

Vulnerability
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Open source libraries 
e.g., OpenSSL

When new vulnerabilities are discovered in 
OpenSSL, all firmware using it may be affected

e.g., Heartbleed



Vulnerability Detection

Vulnerability

Firmware Image Database

Similar?

Similar?

Similar?

Similar?
i.e., Heartbleed

Important!



Challenges for Binary Code Search

x86

ARM MIPS

Cross-Platform

Similar or not similar? 
It’s a problem!

Scalability



An Example
push    ebx

mov     eax, [esp+4+arg_0]

mov     edx, [eax+58h]

mov     ebx, [edx+344h]

mov     edx, [eax]

mov     eax, [ebx+24h]

mov     ecx, edx

sar       ecx, 8

cmp     ecx, 3

jz      short loc_80A9550

cmp     edx, 302h

jle     short loc_80A954D

pop     ebx

retn

cmp     eax, 0C030h

mov     edx, 20080h

cmovz  eax, edx

pop      ebx

retn

lw      $v0, 0x58($a0)

lw      $v1, 0($a0)

lw      $v0, 0x344($v0)

sra     $a1, $v1, 8

li      $a0, 3

bne     $a1, $a0, locret_19830

lw      $v0, 0x24($v0)

slti    $v1, 0x303

bnez    $v1, locret_19830

li      $v1, 0xC030

bne     $v0, $v1, locret_19830

nop

la      $v0, loc_20080

jr      $ra

nop

a)  x86 assembly b) MIPS assembly



Existing Binary Code Search Techniques

• Syntax-based Approach

• Mnemonic code sequence [S. M. Tabish et al. SIGKDD’09; W. M. Khoo et al. MSR’13]

• Control flow graph [H. Flake. et al. DIMVA’04;   J. Pewny et al. Oakland’15; Eschweiler et al. NDSS’16]

• Call graph [X. Hu et al. CCS’09]

• Semantics-based Approach

• Tracelet [Y. David et al. PLDI’14]

• Tree expression on basic blocks [J. Pewny et al. ACSAC’14]

• Symbolic execution [D. Gao et al. ICS’08;   J. Ming, et al ISC’12]



Search for known vulnerabilities

• String pattern or constant matching [Costin et al. USENIX’14]

• Backdoors in devices

• Lack of generality

• “Multi-MH & Multi-k-MH”[Pewny et al. Oakland’15]

• Control-flow graph + I/O pairs

• Lack of scalability

• “DiscovRe” [Eschweiler et al. NDSS’16]

• Control-flow graph + Statistics features

• Lack of scalability

• Lightweight filtering is unreliable
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Key challenge: cross-platform code search



Pair-wise graph matching is expensive!

-> More complex feature representation 

-> More accurate 
-> Less search efficiency
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Vulnerability 
Search Engine

CFG Ranking List

Graph matching is NP-hard problem!

The most efficient algorithm is O(n^3) 
for two graph matching

It is impossible to conduct pair-
wise graph matching in large 

code repo!

“Multi-MH & Multi-k-MH”[Pewny et al. Oakland’15]

“DiscovRe” [Eschweiler et al. NDSS’16]



A similar problem

• Image search: tag a similar 
object in millions of images
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We don’t compare images one by one
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How can we learn high-level feature representations from 
CFGs?

(a) (b)

c. Codebook d. Feature vector

Each dimension represents a 
high-level property of the 

original CFG!

How can we learn high-level feature 
representations from CFGs?
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Codebook-based approach (Genius, CCS’16)
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...

Attributed Control flow graph

(i) Binary functions

(iv) High-level features

Func_1

Func_2

Func_3

Func_1 Func_2 Func_3

Raw CFGs

Encoded high-level feature vectors 

a) Raw Feature Extraction b) Feature Learning

c) High-level feature encoding

d) LSH and search



Raw feature extraction
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• Attributed Control Flow Graph



An example of ACFG

19



Feature learning
Learn a codebook from raw features. Each code word 

represents one property shared by raw features.
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Codebook

code word 

Codebook

code word 



Feature learning

• Codebook 
• Each code word is the centroid of a cluster of ACFGs

• Clustering on raw features (ACFGs)
• K-means, hierarchical-k-means, .etc.

• Codebook size
• Predetermined by # of clusters

• Bigger Size -> Higher accuracy & Lower Encoding Performance
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High-level feature encoding

• VLAD encoding: 

– Measure the distance between a 
given ACFG to each centroid

– To normalize the feature vector, we 
use graph similarity instead

– VLAD quantizer is shown below:

The similarity score is calculated 
via graph edit distance 



Index and Search

b. Codebook

[0.1, 0, 0, 0, 0.9, 0.7, 0.1]

c. Encoded feature vector
(VLAD encoding)

a. ACFG

ID   Similarity
3              1.0
10           0.99
5             0.98

……..

d. Ranking list of 
search results

Locality Sensitive 
Hashing

Vulnerability Search 
Engine

Encoded Feature Vector

ID         Feature vector
0  [0.3, 0, 0, 0, 0.9, 0.7, 0.1]
1  [0.2, 0, 0, 0.4, 0.9, 0, 0.1]
2  [0.7, 0.01, 0.8, 0, 0.5, 0.2]
3  [0.1, 0, 0, 0, 0.9, 0.7, 0.1]

……..



Evaluating Genius

• Dataset Preparation
• 0.6 billion functions and hundreds of vulnerabilities

• Baseline Preparation
• Compare with Multi-MH and Multi-k-MH, DiscoveRe, Centroid.

• Performance Evaluation
• TPR and FPR

• Search Efficiency

• Preparation Time

• Case Studies
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Genius: Graph Encoding for Bug 
Search



Evaluation: Datasets

• Baseline Dataset
• BusyBox (v1.21 and v1.20), OpenSSL (v1.0.1f and v1.0.1a) and coreutils (v6.5 

and v6.7)

• x86, ARM, MIPS; all 32 bit

• 568,134+ functions.

• Firmware Image Dataset
• 33,045 firmware images

• 26 different vendors

• Vulnerability Dataset
• 154 vulnerable functions
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Evaluation: Baseline Comparison

• DiscovRe [Eschweiler et al. NDSS’16]

• Re-implemented its core part about graph matching and feature learning

• Multi-MH and Multi-k-MH [Pewny et al. Oakland’15]

• Compared on the same dataset

• Centroid [Chen et al. USENIX Security’15]

• Re-implemented its algorithm

• A simple encoding that converts a CFG into a number
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Evaluation: True Positive Rate
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Genius
DiscovRe without filtering

DiscovRe with filtering

Centroid



Evaluation: Search Efficiency
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Figure2. The CDFs of search time on Dataset I. 



Evaluation: Case Study I

• Search 2 vulnerabilities on 8126 firmware images
• CVE-2015-1791: top 50 candidates, 14 firmware images potentially affected, 

10 confirmed. Two vendors: D-Link and Belkin.

• CVE-2014-3508: 24 firmware images potentially vulnerable, 13 confirmed. 
Vendors are CenturyLink, D-Link and Actiontec.
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Evaluation: Case Study II

• Search two latest firmware images for all vulnerabilities  
• D-Link DIR-810 models

• 154 Vulnerabilities 

• Search time: < 0.1s

• Check top 100 candidates
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Limitations of Genius

• Encoding is still expensive
• 1 graph comparison for each word in codebook

• Feature dimension has to be small
• Confine the search accuracy

• Codebook generation is expensive
• May take a week to retrain the codebook
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Neural Network-based Graph 
Embedding for Cross-Platform 

Binary Code Similarity Detection

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, Dawn Song
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Two unbeatable advantages of neural 
network-based similarity detection

Previous 
approaches on 
expensive graph-
matching based 
algorithms to 
detect similarity

Very SLOW!
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𝑥1

𝑥2

𝑥3

Attributed CFG

𝑥2

𝑥3

𝑥1

Attributed CFG

We will show that 
a neural network-
based approach 
can be much more 
efficient!



Takeaways

Message 1. Our work is one of the first demonstrations to show that 
deep learning techniques can be applied to binary analysis

Message 2. We hope our work can foster more investigations on using 
deep learning approaches for binary analysis
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Previous approaches

• Manually designed graph-matching-based 

algorithms

• Slow

• Effectiveness is limited by graph-matching

• Feng, et al. Scalable Graph-based Bug Search for 

Firmware Images. CCS 2016.

Our approaches:

• Deep graph embedding network

• Design a neural network to 

extract the features automatically

• Combine Struct2vec and Siamese 

network

Overall workflow



Our approach: structure2vec

𝑥1

𝑥2

𝑥3

Attributed Control 
Flow Graph

Dai, et al. Discriminative Embeddings of Latent Variable Models for Structured Data. ICML 2016.



Take a closer look at the embedding 
network
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Code Graph
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1. Initially, each vertex has an 
embedding vector computed from 
each code block

2. In each iteration, the embedding 
on each vertex is propagated to its 
neighbors

3. After the last iteration, the 
embeddings on all vertexes are 
aggregated together

4. An affine transformation is 
applied in the end to compute 
the embedding for the graph



Take a closer look at propagation
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Current Vertex

Adjacent 
Vertexes
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ReLU

𝑃1 ×

ReLU

𝑃𝑛 ×

tanh

… 𝑛 layers



Training: Siamese

1. Application-independent pretraining
• Compile given source code into different 

platforms using different compilers and 
different optimization-levels

• A pair of binary functions compiled from the 
same source code is labeled with +1

• Otherwise, -1

2. Application-dependent retraining
• Human can label similar and dissimilar 

pairs of binary functions
• This additional training data can be used in 

a retraining process



Training Data Details

• OpenSSL (version 1.0.1f and 1.0.1u)
• Compiled using GCC v5.4

• Emit code to x86, MIPS, ARM

• Using optimization level O0-O3
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Visualizing the embeddings
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Accuracy: ROC curve on test data
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Serving time (per function processing time)

Previous work: a few secs to a few mins

Now: a few milliseconds

𝟐𝟓𝟎𝟎 × to 𝟏𝟔𝟎𝟎𝟎 × faster!



Training time

Previous work: > 1 week

Now: < 30 mins



Identified Vulnerabilities in Large Scale Dataset

Among top 50: 42 out 

of 50 are confirmed 

vulnerabilities

Previous work: 10/50



Takeaways

Message 3. Deep learning approaches can be not only more effective, 
but also more efficient in learning embedding representations for binary 
programs.

Message 4. Program analysis can be a novel application domain of 
deep learning techniques toward a more secure world.
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