
Whole-System Dynamic
Binary Analysis

Panorama: Capturing System-wide
Information Flow for Malware Detection and

Analysis
Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel,

Engin Kirda,

Appeared in CCS’07

Outline

• Motivation

• Overview

• Design & Implementation: Panorama

• Taint-Graph Based Detection and Analysis

• Evaluation

• Summary

Motivation I -- Problem

• Malicious code creeps into users’ computers, performs malicious behaviors

• spyware/adware

• keyloggers

• password thieves

• network sniffers

• backdoors

• rootkits

• Even software from reputable vendors

• Google Desktop

• SONY Media Player

Motivation II – Previous Solutions

• Malware Detection

• Signature based
• Cannot detect new malware and variants

• Semantic-aware signatures can detect some variants

• Behavior based
• Heuristics: high false positives and false negatives

• Strider Gatekeeper checks auto-start extensibility points

• VICE and System Virginity Verifier check various hooks

• Malware Analysis

• Manual process mostly
• Coarse-grained

Outline

• Challenges & Motivation

• Overview

• Design & Implementation: Panorama

• Taint-Graph Based Detection and Analysis

• Evaluation

• Summary

Overview I – Our Observation

• Information access and processing (IAP) behavior

• Many different kinds of malware present malicious/suspicious IAP behavior

• Steal, tamper, or leak sensitive information

• Spyware leaks URLs

• Keyloggers steals keystroke information

• Password thieves steals passwords

• Rootkits tamper with directory information

• Network sniffers eavesdrop the network traffic

WordIE Winlogon

Overview II - A Example

OS Kernel
keylogger

keylogger

Overview III – Our Approach

• Whole-system dynamic taint analysis with OS awareness
• Run the system to be analyzed in an emulator

• Selectively mark data as tainted

• Monitor taint propagation

• Extract OS-level knowledge

• Generate taint graphs

• Taint-graph based detection and analysis

Overview II – Big Picture

Taint Engine

Taint Graphs

Malware Detection

Malware
Malware

Test Engine OS-Aware ViewTest Scripts

Malware Analysis

Outline

• Motivation

• Overview

• Design & Implementation: Panorama
• Hardware-level Dynamic taint analysis

• OS-aware Analysis

• Automated testing

• Taint-Graph Based Detection and Analysis

• Evaluation

• Summary

Design & Implementation – Hardware Level Taint Analysis

• Build on QEMU

• Shadow Memory

• RAM, registers, hard disk, and NIC buffer
• Page-table-like structure

• Extend CPU
• Propagate taint status for each instruction

• Extend Kbd, Disk and NIC
• Taint inputs
• For disk, propagate taint status

Design & Implementation – Hardware-Level Taint Analysis (2)

• Instrument CPU Instructions (at byte granularity)

• Movement: MOV AL, BH

-- AL is tainted iff BH is tainted

• Arithmetic: ADD EAX, EBX

-- EAX is tainted iff EAX or EBX is tainted

• Table lookup: MOV EAX, [EBX]

-- EAX is tainted if EBX or MEM[EBX] is tainted)

• Constant function: XOR EAX, EAX

-- EAX will be untainted

Design & Implementation – OS-Aware Analysis

• Resolving process and module information
• Q: when an instruction accesses taint, which process and module is it from?

• A: A kernel module is inserted into the guest system

• Resolving filesystem information
• Q1: when tainting a file/directory, which disk blocks should be tainted?

• Q2: when the tainted data propagate to a disk block, while file is tainted?

• A: The Sleuth Kit (TSK), a disk forensic tool

• Resolving network information
• Q1: When tainting an incoming packet, which connection is it from?

• Q2: when a tainted byte is sent out, which connection is it from?

• A: Simply check the packet header

Design & Implementation – OS-Aware Analysis (2)

• How to identify the actions performed by the code sample?

• Challenge 1: packed code and encrypted code

• A: taint the binary file with a special label

• Challenge 2: call a function in the system libraries

• A:

• check stack pointers

• Check asynchronous kernel functions

Design & Implementation – Automated Testing

• Goal
• Perform test cases without human intervention

• Introduce tainted information sources

• We use “AutoHotkey”
• Record the test cases into scripts

• Replay the scripts in Panorama

• Will describe the test cases later

Outline

• Motivation

• Overview

• Design & Implementation: Panorama

• Taint-Graph Based Detection and Analysis
• Taint Graph

• Taint-Graph Based Policies

• Evaluation

• Summary

Detection & Analysis – Taint Graph

• Taint Graph
• Input 1: Raw events present

dependencies among
instructions, hardware inputs
and outputs

• Input 2: OS-level Knowledge

• Output: taint graph
Raw events

OS-level
knowledge

Taint graphs

Detection & Analysis – Taint Graph(2)

• An example of taint graph

• This graph reflects the procedure for Windows user authentication.

• A password thief catches the password and saves them into a log file

Detection & Analysis – Taint-Graph Based Detection

• Anomalous information access

• text: when sending keystrokes to a text editor, a command console, keyloggers …

• password: when sending passwords to a web form, a password field, password
thieves and keyloggers…

• ICMP: when pinging a remote host, packet sniffers and stealth backdoors …

• FTP: when logging into an FTP server, packet sniffers and stealth backdoors …

• UDP: when sending in a UDP packet, packet sniffers and stealth backdoors …

• Others: …

Detection & Analysis – Taint-Graph Based Detection
(2)

• Anomalous information leakage

• URL: the keystrokes sent to the address bar,

• HTTP: the incoming HTTP traffic,

• HTTPS: the incoming HTTPS traffic,

• document: .txt, .pdf, .ppt, .doc

• Others: …

Detection & Analysis – Taint-Graph Based Detection
(3)

• Excessive information Access

• directory: when recursively listing several directories, the disk blocks belonging to the
directories

• Rootkits will access all of the disk blocks and tamper with some entries

• Compared with Cross-view based techniques, such as Rootkit Revealer, Blacklight,
and Strider Ghostbuster, …

Detection & Analysis – Taint-Graph Based Detection(4)

Detection & Analysis -- Taint-Graph Based Detection

Outline

• Motivation

• Overview

• Design & Implementation: Panorama

• Taint-Graph Based Detection and Analysis

• Evaluation
• Malware detection

• Malware analysis

• Performance

• Summary

Evaluation – Malware Detection

Browser accelerator

Personal firewall

Evaluatoin -- Malware Analysis

Google Desktop obtains the incoming HTTP traffic, saves it into two index files, and then sends it
out though an HTTPS connection, to a remote Google Server

Evaluation – Performance

• curl, scp, gzip, bzip2: 20 times slowdown on average

• Test cases: 10~15 mins

• Performance improvement:
• On-demand emulation

• Static analysis

Summary

• Propose to rely on IAP behavior to detect and analyze malware
• No signature is required: can detect new malware

• Stems from intent: difficult to evade

• Fine grained analysis

• Capture the behaviors of kernel-level attacks

• Propose to use the technique of whole-system dynamic taint analysis with OS-awareness
to capture IAP behavior

• Design and develop a system Panorama
• Yields no false negative and very few false positives

• Correctly capture the behavior of Google Desktop

Make It Work, Make It Right, Make It Fast:
Building a Platform-Neutral Whole-System

Dynamic Binary Analysis Platform

Andrew Henderson*, Aravind Pravash*, Lok Kwong Yan†,

Xunchao Hu*, Xujiewen Wang*, Rundong Zhou*, Heng Yin*

* Department of EECS, Syracuse University

† Air Force Research Laboratory, Rome

30

Motivation: We need a practical solution for
platform-neutral whole-system binary analysis

• Binary analysis of malware
• No source code available to us

• Need to analyze malicious binary activity

• Whole system
• Multiple components in both userspace and kernel

• Platform-neutral (as much as possible)
• Architecture neutral

• Guest OS neutral

31

DECAF: System Architecture

32

Just-In-Time
VMI

Precise
Tainting

Instru. Code
Management

Ev
en

t-
D

ri
ve

n
 A

P
I

API Tracer

Keylogger Detector

Instruction Tracer

…

DECAF and Guest Environment Plugins

Does DECAF work?

• Sycure Lab (Syracuse University) actively uses
DECAF for our cybersecurity research efforts

• Sycure Lab team is using DECAF for the Cyber
Grand Challenge competition

• McAfee currently uses DECAF to detect and analyze
keylogger malware behaviors

• Numerous other academic labs are currently
utilizing DECAF in their own research efforts

33

Just-In-Time VMI

34

• Virtual machine introspection (VMI)
• Inspect the guest environment from the outside

• Bridge the “semantic gap”

• Other VMI implementations focus on how, not when
• We must be aware of changes within the guest when those

changes occur

• VMI must be as platform-neutral as possible

• VMI must introduce minimal overhead

Just-In-Time VMI

• Observation 1: A process must have its own memory space
• Each CPU architecture provides a register to store the “base” of these

memory spaces (CR3 in x86, CP15 in ARM, etc.)

• Observation 2: The translation look-aside buffer (TLB) reveals
information about guest behavior
• An “execute” cache miss will occur when new code pages are loaded

and executed (new process, loading shared libraries, context switch)

• Observation 3: Location and structure of key kernel data
structures are known
• Kernel contains linked lists of modules, processes, threads

• Result: Rely on hardware events to discover “when” and
“what”, rely on kernel data for “who”

35

Just-In-Time VMI: Solution

36

• TLB Miss triggers VMI

• PC tells us where event
occurred

• Guest kernel data
structures give more detail

• Other systems perform
VMI using guest software:
• Hook system calls

• Use kernel module

• Use custom device driver

• Increases dependence on
guest platform

Tainting

37

• Tainting must be whole-system
• Tainted data should be trackable throughout the entire

guest environment (kernel, processes, devices)

• Tainting policy must be sound and precise
• Minimize under- and over-tainting of data

• We performed formal verification of our taint policy
correctness at the instruction level [1]

• Tainting must be fast

[1] L. K. Yan, A. Henderson, X. Hu, H. Yin, S. McCamant. On soundness and precision of dynamic taint analysis.
Technical Report SYR-EECS-2014-04, Syracuse University, 2014.

Tainting: Using QEMU for propagation

38

• QEMU’s Tiny Code Generator (TCG) is a binary
translator
• Guest CPU instructions are translated into intermediary

representation (IR) instructions

• TCG’s IR instruction set implements standard CPU operations
that all instruction sets have (MOV, ADD, XOR, etc.)

• These IRs and then translated into host CPU instructions

• Execution details of the IRs and their arguments are
invisible to the guest

movi_i32 eax, $0x8f

movi_i32 tmp11, $0x01

mov_i32 tmp13, eax

and_i32 tmp12, tmp11, tmp13

movi_i32 eax, $0x8f
movi_i32 tmp11, $0x01
mov_i32 tmp13, eax
and_i32 tmp12, tmp11, tmp13

movi_i32 taint_eax, $0x0
movi_i32 eax, $0x8f
movi_i32 tmp21, $0x0
movi_i32 tmp11, $0x01
mov_i32 tmp23, taint_eax
mov_i32 tmp13, eax
not_i32 tmp30, tmp21
and_i32 tmp31, tmp11, tmp21
and_i32 tmp32, tmp30, tmp31
not_i32 tmp30, tmp22
and_i32 tmp31, tmp21, tmp13
and_i32 tmp33, tmp30, tmp31
and_i32 tmp30, tmp21, tmp22
or_i32 tmp31, tmp32, tmp33
or_i32 tmp23, tmp30, tmp31
and_i32 tmp12, tmp11, tmp13

Tainting: Lightweight inline propagation

mov $0x8f, %eax
and $0x01, %eax

• Begin with guest instructions
• Translate guest instructions

into IR
• Analyze each IR to determine

taint rule to apply
• Insert taint propagation IRs

39

Tainting: Heavyweight plugin propagation

• Taint state is propagated inline via IRs
• When tainted data is present, the IRs can be

logged to disk via a plugin
• Taint tags are written to this log when created
• The generated log is sliced backward to

reconcile taint with its source tag
40

Event-Driven Instrumentation

41

• Instrumentation occurs at two points:

• Translation-time

• Runtime

• At translation time, callbacks are embedded in the TCG IR
stream

• At runtime, DECAF uses a dispatch mechanism to route
these callbacks to plugins

• Example: Shared library

• Are we in the right process?

• Should the plugin’s callback be triggered?

movi_i32 tmp21, $<CURRENT_ADDRESS>
movi_i32 tmp22, $DECAF_invoke_block_begin_callback
call tmp22, $0x0, $0, env, tmp21
movi_i32 tmp23, $DECAF_invoke_insn_begin_callback
call tmp23, $0x0 $0, env
mov_i32 tmp11, ebx
mov_i32 tmp12, eax
or_i32 tmp13, tmp12, tmp11
movi_i32 tmp26, $DECAF_invoke_insn_end_callback
call tmp26, $0x0 $0, env

…
movi_i32 tmp27, $DECAF_invoke_block_end_callback
call tmp27, $0x0, $0, env

Event-Driven Instrumentation: Translation

time

42

• Begin with guest ops

• Translate guest ops into IRs

• Insert helper functions to mark

begin/end of block

• Insert helper functions to mark

begin/end of guest op

• Either the whole-system or just modules of interest can be instrumented

orl %ebx, %eax
…

mov_i32 tmp11, ebx
mov_i32 tmp12, eax
or_i32 tmp13, tmp12, tmp11

…

movi_i32 tmp21, $<CURRENT_ADDRESS>
movi_i32 tmp22, $DECAF_invoke_block_begin_callback
call tmp22, $0x0, $0, env, tmp21

mov_i32 tmp11, ebx
mov_i32 tmp12, eax
or_i32 tmp13, tmp12, tmp11

…
movi_i32 tmp27, $DECAF_invoke_block_end_callback
call tmp27, $0x0, $0, env

mov_i32 tmp11, ebx
mov_i32 tmp12, eax
or_i32 tmp13, tmp12, tmp11

…

movi_i32 tmp21, $<CURRENT_ADDRESS>
movi_i32 tmp22, $DECAF_invoke_block_begin_callback
call tmp22, $0x0, $0, env, tmp21
movi_i32 tmp23, $DECAF_invoke_insn_begin_callback
call tmp23, $0x0 $0, env
mov_i32 tmp11, ebx
mov_i32 tmp12, eax
or_i32 tmp13, tmp12, tmp11
movi_i32 tmp26, $DECAF_invoke_insn_end_callback
call tmp26, $0x0 $0, env

…
movi_i32 tmp27, $DECAF_invoke_block_end_callback
call tmp27, $0x0, $0, env

Event-Driven Instrumentation:
A sample tainted keystroke plugin

1. plugin_interface_t my_interface;
2. DECAF_Handle keystroke_cb_handle = DECAF_NULL_HANDLE;
3. DECAF_Handle handle_read_taint_mem = DECAF_NULL_HANDLE;
4. int taint_key_enabled = 0;

5. void my_read_taint_mem(DECAF_Callback_Params *param) {
6. char name[128];
7. tmodinfo_t tm;
8. if(VMI_locate_module_c(DECAF_getPC(cpu_single_env),

DECAF_getPGD(cpu_single_env),name,&tm) == 0)
9. DECAF_printf("INSN 0x%08x From Module %s Read Keystroke\n",

DECAF_getPC(cpu_single_env),tm.name);
}

10. void my_send_keystroke_cb(DECAF_Callback_Params *params) {
11. *params->ks.taint_mark = taint_key_enabled;
12. taint_key_enabled = 0;
13. DECAF_printf("taint keystroke %d \n", params->ks.keycode);

}
14. void do_taint_sendkey(Monitor *mon,const QDict *qdict) {
15. if (qdict_haskey(qdict, "key")) {
16. taint_key_enabled = 1; //enable keystroke taint
17. do_send_key(qdict_get_str(qdict, "key")); //Send the key

}
}

18. mon_cmd_t my_term_cmds[] = {
{

19. .name = "taint_sendkey",
20. .args_type = "key:s",
21. .mhandler.cmd = do_taint_sendkey,
22. .params = "taint_sendkey key",
23. .help = "send a tainted key to system"

},
{NULL, NULL, },

};
24. void my_cleanup(){......}

/* Register the plugin and the callbacks */
25. plugin_interface_t * init_plugin() {
26. my_interface.mon_cmds = my_term_cmds;
27. my_interface.plugin_cleanup = my_cleanup;
28. handle_read_taint_mem = DECAF_register_callback(

DECAF_READ_TAINTMEM_CB, my_read_taint_mem, NULL);
29. keystroke_cb_handle = DECAF_register_callback(

DECAF_KEYSTROKE_CB, my_send_keystroke, NULL);
30. return &keystrokeInterface;

}

43

Evaluation: VMI performance

44

-10%

0%

10%

20%

30%

40%

50%

60%

Windows 7 Linux

SPEC CPU2006

Windows: 12%

Linux: 14%

Common Case:

OS Boot Time

Evaluation: Tainting performance

45

0%

100%

200%

300%

400%

500%

600%

700%

800%

• Tainting experiences 605% overhead on SPEC CPU2006

• Heaviest performance impact on CPU-bound benchmarks

Evaluation: HookAPI plugin performance

46

Evaluation: Development effort

• Most architecture-specific code is related to accessing CPU
registers

• Most OS-specific code is related to VMI

47

Conclusion

• DECAF provides whole-system emulation and
instrumentation that works correctly and is fast

• DECAF is open source and available for download:

https://github/sycurelab/decaf

48

https://github/sycurelab/decaf

