
CS 250

Software Security

Symbolic Execution

Classic Symbolic Execution

First paper: 1976 Symbolic Execution and Program Testing

Problem 1: Infinite execution path

Problem 2: Unsolvable formulas

Problem 3: Symbolic modeling

External function calls and system calls are

hard to model

For efficiency, symbolic execution systems

often model libc function calls.

File system related

String operations

Concolic Testing

Performs symbolic execution dynamically, while the program
is executed on some concrete input values.

Generate some random input: x=22, y=7 and execute the
program both concretely and symbolically

The concrete execution take the “else” branch on Line 7 and
the symbolic execution generates the path constraint x != 2y

Negates a conjunct in the path constraint and solves x==2y
and get a new test input x=2, y=1

Test the program with the new input

Concolic Testing: What is the benefit?

Solve complex formulas

x == (y*y) mod 50, unsolvable if both x and y are
symbolic

if we concretize y to its concrete value, now
solvable

External library call and system call

E.g., fd = open(filename)

Set filename to its concrete value “/tmp/abc.txt”

Execute the system call concretely

Set fd to be concrete after the system call return

How to implement it?

Let’s start with KLEE
Symbolically Interpret and

Concretely Execute LLVM IR

Full Symbolic Environment

Modeling

State Forking

Simple State Scheduling:

Random/Coverage-Optimized

https://klee.github.io/

https://klee.github.io/

Angr: Symbolic Execution for Binary

https://angr.io/

Follows the similar design as Klee

Klee: C code -> LLVM bitcode, interpret

LLVM bitcode

Angr: Binary -> VEX IR, interpret VEX IR in

Python!

So it is slow!

https://angr.io/

S2E: Selective Symbolic Execution for Binary

https://s2e.systems/

Symbolically execute a software

component in the VM

Concretely execute the rest

Based on QEMU

QEMU TCG IR -> LLVM IR -> KLEE

backend

https://s2e.systems/

Still not good enough!

In DARPA CGC, most of the vulnerabilities are

found by fuzzing!

Too slow: Constraint collection + Constraint

solving

State explosion problem

Complete environment modeling is hard

QSYM: A fast and scalable concolic

execution engine for binary

https://github.com/sslab-gatech/qsym

Big idea:

Sacrifice soundness for efficiency

It will be paired up with a fuzzer, so efficiency

is way more important than soundness

https://github.com/sslab-gatech/qsym

QSYM: Get rid of IRs

Why Intermediate Representations (Irs)?

Pros

Faithfully capture the instruction semantics

Provide architecture-independent interpretation

Cons

IR statements are 4-5 timers larger than instructions

Emulating/Interpreting IR is slow

QSYM’s design decision

Directly extract symbolic expressions/constraints from instructions

May not deal with complex instructions

Hard to support multiple architectures

Sacrifice soundness for efficiency

QSYM: Symbolic Emulation

Workflow:

Pintool-based dynamic

binary instrumentation

For each instruction, checks

if any operand is symbolic

If so, pass this instruction to

symbolic backend

Problems:

Pin is closed source

Support only one arch

Shadow value analysis in

Pin is expensive

A better alternative: QEMU

QSYM: Re-execution vs. State Forking

State forking
No need to re-execute (just recover from the snapshot)

State in concolic execution = program state + kernel state

Forking program state is trivial, but forking kernel state is
not

Expensive to manage the states

Requires perfect environment modeling

Re-execution
No state management

May not be that slow

Time vs. Space trade-off

Concrete environment

QSYM: Models Some System Calls

Only model system calls that are relevant to user
interactions

Standard input, file read, …

Other system calls: just use concrete values
Execute them concretely

It will result in incomplete constraints
Yes, QSYM only models simple instructions anyway

Concretization needs to over-constrained
analysis

QSYM: Strict Branch Flipping Policy

Look at current branch and last branch

Flip the current branch if this pair is new

It can solve state/path explosion problem, but

may also miss important branches

QSYM: Constraint Solving

Full path constraints
Too expensive to collect

Sometimes over-
constrained

Nested Branch Solving
Only include constraints
that have data
dependencies with the
last branch

Optimistic Solving
Only solve the last
branch condition

QSYM: Basic Block Pruning

Some loop bodies can be executed

repeatedly to generate symbolic constraints

Long execution and complex constraints

If a basic block is executed too frequently,

stop generating constraints for them

Exponential back-off

QSYM is great! Is that it?

Even faster symbolic emulation

For Source code:

Symbolic execution with SymCC: Don't interpret, compile!, in the 29th USENIX

Security Symposium, August 2020

SymSan: Time and Space Efficient Concolic Execution via Dynamic Data-Flow

Analysis, in the 31st USENIX Security Symposium, August 2022.

For Binary code:

Compilation-based symbolic execution for binaries, in the ISOC Network and

Distributed System Security Symposium (NDSS), February 2021.

SymFit: Making the Common (Concrete) Case Fast for Binary-Code Concolic

Execution, in USENIX Security Symposium, August 2024

Faster constraint solving

JIGSAW: Efficient and Scalable Path Constraints Fuzzing, in the 43rd IEEE

Symposium on Security and Privacy, May 2022.

More intelligent branch flipping

Marco: A Stochastic and Asynchronous Concolic Explorer, in the 46th

International Conference on Software Engineering (ICSE), April 2024.

https://www.usenix.org/system/files/sec20-poeplau.pdf
https://www.cs.ucr.edu/~heng/pubs/symsan.pdf
https://www.cs.ucr.edu/~heng/pubs/symsan.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_2B-2_24118_paper.pdf
https://www.cs.ucr.edu/~heng/pubs/symfit.pdf
https://www.cs.ucr.edu/~heng/pubs/symfit.pdf
https://www.cs.ucr.edu/~heng/pubs/jigsaw_sp22.pdf
https://www.cs.ucr.edu/~heng/pubs/Marco-icse24.pdf

What else can be done?

Let’s brainstorm!

	Slide 1: CS 250 Software Security
	Slide 2: Classic Symbolic Execution
	Slide 3: Problem 1: Infinite execution path
	Slide 4: Problem 2: Unsolvable formulas
	Slide 5: Problem 3: Symbolic modeling
	Slide 6: Concolic Testing
	Slide 7: Concolic Testing: What is the benefit?
	Slide 8: How to implement it?
	Slide 9: Angr: Symbolic Execution for Binary
	Slide 10: S2E: Selective Symbolic Execution for Binary
	Slide 11: Still not good enough!
	Slide 12: QSYM: A fast and scalable concolic execution engine for binary
	Slide 13: QSYM: Get rid of IRs
	Slide 14: QSYM: Symbolic Emulation
	Slide 15: QSYM: Re-execution vs. State Forking
	Slide 16: QSYM: Models Some System Calls
	Slide 17: QSYM: Strict Branch Flipping Policy
	Slide 18: QSYM: Constraint Solving
	Slide 19: QSYM: Basic Block Pruning
	Slide 20: QSYM is great! Is that it?
	Slide 21: What else can be done?

