
CS 250 Software Security

Static Binary Analysis

1

Static Binary Analysis

Analyzing binaries without running them.

No source code, no types, no variable names.

Challenges:

Unknown memory layout

Indirect control flow

Instruction decoding

Applications:

Vulnerability discovery

Malware analysis

Binary hardening

Value Set Analysis

Gogul Balakrishnan and Thomas Reps, “Analyzing memory

accesses in x86 executables”, Compiler Construction 2004.

Foundation for many modern binary analysis tools.

Why Value Set Analysis (VSA)?

In binaries, we must reason about addresses, pointers, and

memory values.

Key idea:

Track the set of possible values for each register or memory

location.

VSA helps with:

Resolving indirect jumps/calls

Reconstructing control flow

Understanding memory accesses

Abstract Domain

Static analysis needs to track where values live and what

values they may have

Three layers:

Memory Regions: Coarse partitioning of memory

A-Locs (Abstract Locations): Logic memory objects within regions

Abstract Store: Maps a-loc to value sets

5

Memory Regions

Also called Abstract Regions (AR)

Coarse Regions

Stack regions (local variables, return address): one for each function

Global data regions (static and global variables)

Heap regions (allocated by malloc, new): one for each allocation site

Memory-mapped regions

6

Abstract Locations (a-locs)

A-locs represent logical memory objects within a memory

region

A pair: (AR, offset)

Examples

A local variable inside a main function: (AR_main, -12)

A static global variable: (AR_Global, 0x10020)

An integer in a dynamic allocated heap: (AR_Heap_0x11030, 12)

7

Abstract Stores

Abstract Store:

Maps each a-loc to a value set representing possible values

Value Set:

Encoded as strided intervals: [low : high : stride]

Example:

[0x1000 : 0x2000 : 4] → 0x1000, 0x1004, ..., 0x2000

8

Basic VSA Algorithm

1. Initialize registers and memory.

2. Apply instruction semantics

• E.g., mov eax, 0x1000 -> EAX = [0x1000: 0x1000: 1]

• E.g., add eax, 0x10 -> EAX = [0x1010: 0x1010: 1]

3. Merge value sets at control flow joins.

4. Iterate to fixed-point.

5. Use widening for termination.

Transfer Functions

Transfer Functions model how each instruction updates the

abstract store

Key types of operations:

Move (MOV):

Transfer value set from source to destination

Arithmetic (ADD, SUB):

Shift value sets appropriately

Memory Load (MOV reg, [addr])

Dereference the value set at the memory a-loc

Memory Store (MOV [addr], reg)

Update the value set at the memory a-loc with the register’s value set

Conditional Branch

Split paths and conditionally update value sets

10

Handling Relational Conditions

Relational branches R1<=c, R1>=R2 refine value sets

True branch:

Constrain value sets so that the condition holds

False branch:

Constrain value sets so that the negation of the condition holds

Example:

R1 <=c:

True branch: R1 = [MIN, c]

False branch R1 = [c+1, MAX]

R1 >= R2:

True branch: R1 = [min(R2), MAX]; R2=[MIN, max(R1)]

False branch: R1 = [MIN, max(R2)-1]; R2=[min(R1)+1, MAX]

Refinement improves analysis precision

11

Example Walkthrough

Path 1: EAX = [0x1010: 0x1000: 1]

Path 2: EAX = [0x1100: 0x1100: 1]

After merging: EAX = [0x1000, 0x1100: 0x100]

ECX: Memory[EAX]

Indirect Jump: Depends on ECX's value set.

start:

 mov eax, 0x1000

 cmp [eax], 0

 je skip

 add eax, 0x100
skip:

 mov ecx, [eax]

 jmp ecx

Key Challenges in VSA

Precision vs. Efficiency

VSA uses approximations (i.e., strided intervals) to summarize large sets

of possible values

Over-approximation avoids path-sensitive or context-sensitive tracking

Still not very efficient for large binaries

Memory Aliasing

Memory aliasing occurs when different computed addresses may refer to

overlapping memory regions.

VSA handles aliasing by conservatively merging memory effects when

address ranges overlap.

This merging reduces precision, as unrelated memory accesses can
become conflated, leading to imprecise results.

Complex Pointer Arithmetic

Tracking dynamic computations (e.g., base + scaled index + offset) is

difficult.

Pointer arithmetic can cause value sets to grow and become harder to

model accurately.

Applications of VSA

Control Flow Recovery

Resolve indirect jumps)

Decompilation:

Recover high-level structure

Security Analysis:

Detect memory safety vulnerabilities

Binary Rewriting

Enable patching and instrumentation)

Anecdotal Experiences with VSA

Strengths

Highly effective at resolving indirect jumps (jump tables, virtual calls)

Drives powerful static taint analysis and vulnerability detection

Helps prune infeasible path in symbolic execution

Challenges

Loops cause fast widening and loss of precision

Memory aliasing inflates value sets and introduces false positives

Dynamically loaded libraries and unknown functions complete

memory modeling

Aggressive compiler optimizations hinder precise VSA

15

Limitations and Extensions

Flow-sensitive but often context-insensitive

Extensions:

Combine with Symbolic Execution:

VSA identifies broad possible value ranges quickly

Symbolic execution selectively refines paths and memory access where

VSA’s over-approximation is too coarse.

Help avoid unnecessary full symbolic execution, improving overall

scalability and precision

Add Predicate Reasoning:

Track simple logical relationships between variables (e.g.,

inequalities)

Context-sensitive VSA

Track different calling contexts separately to improve analysis

precision.

Refine Indirect Call Target

at the Binary Level
NDSS 2021

17

Overview

Goal: Build precise CFGs by refining indirect call targets

Method

Use Andersen’s pointer analysis algorithm with block memory model

Partition memory into blocks for easier pointer tracking

Recursively update CFG based on refined points-to sets

Results:

Achieved higher precision and better scalability than VSA

18

Block Memory Model

Recall Abstract Regions in VSA

Global, Heap, and Stack

One stack frame is one block

One heap object allocated at one callsite is one block

The global region is partitioned into multiple blocks

Assume pointer arithmetic won’t cross block boundary

All pointers within one block is treated as one

In other words, A-loc has no offset

19

Anderson-Style Pointer Analysis

Inclusion based:

If variable x can point to anything y points to, then Pts(x) ⊇Pts(y)

Points-to graph

Nodes =variables, memory locations

Edges=“may point to” relations

Rules:

Result: find a fixed-point where all inclusion constraints are

satisfied. 20

How BPA adapts Andersen’s algorithm

Aspect BPA Strategy

Variables Registers + Memory Blocks (A-locs)

Memory abstraction
Use block memory model to avoid per-byte
tracking

Constraints extracted From disassembly (loads, stores, moves)

Pointer dereference Abstract *x = y and x = *y over blocks + offsets

Handling function calls
Interprocedural modeling (with function summaries
or recursion)

Solving Use a Datalog solver for scalability

21

Context-insensitive, flow-insensitive, field-insensitive pointer analysis algorithm

Evaluation Results

22

Discussion

Block Model

Fundamentally imprecise

Soundness guarantee

Global data partitioning maybe unsound

The algorithm is sound

23

	Slide 1: CS 250 Software Security
	Slide 2: Static Binary Analysis
	Slide 3: Value Set Analysis
	Slide 4: Why Value Set Analysis (VSA)?
	Slide 5: Abstract Domain
	Slide 6: Memory Regions
	Slide 7: Abstract Locations (a-locs)
	Slide 8: Abstract Stores
	Slide 9: Basic VSA Algorithm
	Slide 10: Transfer Functions
	Slide 11: Handling Relational Conditions
	Slide 12: Example Walkthrough
	Slide 13: Key Challenges in VSA
	Slide 14: Applications of VSA
	Slide 15: Anecdotal Experiences with VSA
	Slide 16: Limitations and Extensions
	Slide 17: Refine Indirect Call Target at the Binary Level
	Slide 18: Overview
	Slide 19: Block Memory Model
	Slide 20: Anderson-Style Pointer Analysis
	Slide 21: How BPA adapts Andersen’s algorithm
	Slide 22: Evaluation Results
	Slide 23: Discussion

