
CS 250 Software

Security

Fuzzing

1

What is Fuzzing?

A form of vulnerability analysis

Process:

Many slightly anomalous test cases are input into the

application

Application is monitored for any sign of error

2

Example

Standard HTTP GET request

§ GET /index.html HTTP/1.1

Anomalous requests

§ AAAAAA...AAAA /index.html HTTP/1.1

§ GET ///////index.html HTTP/1.1

§ GET %n%n%n%n%n%n.html HTTP/1.1

§ GET /AAAAAAAAAAAAA.html HTTP/1.1

§ GET /index.html HTTTTTTTTTTTTTP/1.1

§ GET /index.html HTTP/1.1.1.1.1.1.1.1

§ etc...

3

Types of Fuzzers

In terms of input generation

Generational:

Define new tests based on a model or grammar

CSmith, LangFuzz, IFuzzer, Skyfire, Nautilus

Mutational:

Mutate existing data samples to create test data

Bit flips, additions, substitution, havoc, crossover

Custom mutators:
https://github.com/AFLplusplus/AFLplusplus/tree/stabl

e/custom_mutators

4

https://github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators
https://github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators

Types of Fuzzers

In terms of program awareness

Blackbox: No awareness

Whitebox: Symbolic Execution

Greybox: API calls, Logs, Code Coverage, etc.

With program awareness, fuzzing becomes

evolutionary or genetic

Interesting inputs are kept as new seeds

More mutations are developed based on the new

seeds to discover more new seeds…

5

Whitebox Fuzzing (2012)

For a given input:

Perform symbolic execution,

When encountering a

symbolic branch “deep”

enough, generate a new

testcase

For each new testcase:

Execute it concretely

If it covers any new basic

blocks, keep it in the first-

level queue

If it covers a new path, keep it

in the second level queue

Fetch an input from first-

level and then second-level
6

Greybox Fuzzing

7

Seed Selection

Seed Scheduling

Seed Mutation

Instrumented
Program

Coverage
Bitmap

Queue of Seeds

Seed

Testcase

New
Seed

(2)

(3)

(1)

new coverage!

Coverage Metric

Coverage metric is utilized to measure the

quality of testcases during seed selection
HonggFuzz and Vuzzer: basic block coverage

AFL: improved branch coverage

LibFuzzer: block coverage or branch coverage

Angora: branch coverage extended with a calling context

8

Open Research Questions

RQ1:
How to define the differences among different coverage metrics

regarding their impact on greybox fuzzing?

RQ2:
Is there an optimal coverage metric that outperforms all the

others in greybox fuzzing?

RQ3:
Is it a good idea to combine different metrics during fuzzing?

9

Coverage Metric Sensitivity

10

Coverage Metrics

Coverage Metric Sensitivity Measurement

branch coverage branch

n-gram branch coverage n consecutive branches

context-sensitive

branch coverage
branch + calling context

memory-access aware

branch coverage
branch + memory access (r&w) pattern

memory-write access

branch coverage
branch + memory write pattern

11

Implementation

Based on AFL
Instrumentation via user-model QEMU

Instrument conditional jump to get branch information

Instrument call and ret to get calling context information

Instrument memory load and store to get memory access information

Adopt the seed scheduling of AFLFast

Available at https://github.com/bitsecurerlab/afl-

sensitive

12

https://github.com/bitsecurerlab/afl-sensitive
https://github.com/bitsecurerlab/afl-sensitive

Comparison of Unique Crashes

13

Number of CGC binaries crashed by different coverage

metrics

Comparison of Time to First Crash

14Number of CGC binaries crashed overtime during fuzzing

Comparison of Seed Count

15

Partial CDFs of seeds generated by different coverage metrics on the

CGC dataset. A curve closer to the top left indicates fewer generated

seeds.

Answer to RQ2:

There is no grand slam coverage metric that can beat

others

Many of these more sensitive coverage metrics

indeed lead to finding more bugs as well as finding

them significantly fast

Different coverage metrics often result in finding

different sets of bugs.

At different times of the whole fuzzing process, the

best performer may vary.

16

Combination of Coverage Metrics

17

Number of CGC binaries crashed by combining different coverage metrics

Answer to RQ3

A combination of these different metrics can help

find more bugs and find them faster.

18

It is helpful to combine different

coverage metrics.

But how?

19

Our Solution:

Reinforcement Learning-based Hierarchical

Seed Scheduling

20

The more sensitive, the better?

21

Seed Explosion

Many more seeds that

exceed the fuzzer’s ability to

schedule

Given a fixed fuzzing

campaign time
Many fresh but useful seeds may

never be fuzzed

Important seeds may be not fuzzed

enough time

22

A Multi-level Coverage Metric

Seed pool is organized into a hierarchical tree
Internal nodes are coverage measurements and leaf nodes are seeds

An internal node represents a cluster of seeds with the same coverage

23

MF: function coverage

ME: edge coverage

MD: distance coverage

Seed scheduling is to seek a path from

the root to a leaf node

Seed Exploitation & Exploration

Exploration: try out other fresh nodes
Fresh nodes that have rarely been fuzzed may lead to surprisingly new

coverage

Exploitation: keep fuzzing interesting nodes to trigger a

breakthrough
A few valuable nodes that have led to significantly more new coverage

than others in recent rounds encourage to focus on fuzzing them

24

Fuzzing & MAB Model

We model the fuzzing process as a multi-armed bandit

(MAB) problem

We adopt the UCB1 algorithm to schedule seeds within

levels to manage the balance between seed exploration

and exploitation.

25

A reinforcement learning-

based hierarchical seed

scheduler

RL-based Hierarchical Seed Scheduling

Scheduling
Internal level:

For each node, a score is calculated following the MAB model

Starting from the root node, select the child node with the highest score

Leaf level:

Select a seed with round-robin

Rewarding
At the end of each fuzzing round, nodes along the scheduled path will be

rewarded based on how much progress the current seed has made in
this round.

Whether there is new coverage exercised by the generated test cases

26

UCB1

Seed Scoring

27

Score = (Reward + Uncertainty) * Rareness

We prioritize nodes

that exercise rare

coverage features

We focus on nodes that have

generated test cases covering

rare features recently

We periodically try nodes that

have been rarely fuzzed or

contain many seeds

Seed Rewarding

28

Score = (Reward + Uncertainty) * Rareness

We favor newer rewards than

old ones

We propagate rewards from lower to

upper levels

Evaluation

Evaluation setup
Benchmarks

CGC (Darpa Cyber Grand Challenge), 180 binaries

Google FuzzBench, 20 real-world programs

Baseline fuzzers

CGC (vs AFL-Hier: MF + ME + MD)

AFL

AFLFast

AFL-Flat (the same coverage metrics, but with the fast scheduler from

AFLFast)

FuzzBench (vs AFL++-Hier)

AFL++

AFL++-Flat

29

Evaluation

Bug detection

30

AFL-Hier crashes more CGC binaries and faster.

Especially, it crashes the same number of binaries in
30 minutes, which AFLFast crashes in 2 hours

Evaluation

Edge coverage

31

On FuzzBench, AFL++-Hier achieves

higher coverage on 10 out of 20 programs

But still: it is hard to determine which

metric to use

Feedback/metric is important for fuzzing

Humans have good insight

Let’s add annotations to guide fuzzing process

IJON: Exploring Deep State Spaces via Fuzzing,

IEEE Security and Privacy 2020

32

An Example: Maze

https://raw.githubusercontent.com/grese/klee-

maze/master/maze.c

Klee can solve this version

AFL cannot

A harder version

Neither can solve

AFL with Memory-Access and Memory-Write

Metrics can

Why?

33

https://raw.githubusercontent.com/grese/klee-maze/master/maze.c
https://raw.githubusercontent.com/grese/klee-maze/master/maze.c

Add an IJON annotation

34

Another Example: Protocol Fuzzing

35

Annotations for Protocol Fuzzing

36

Another Example: Super Mario Bros

37

An Interesting Question

Can LLM help annotate the program for

fuzzing?

38

Much More about Fuzzing

Mutation Strategies

Schedule the most effective mutations

Grammar/structure aware mutations

LLMs

Hybrid Fuzzing: Combining Fuzzing and SE

AFL is dominant; What can SE do?

Directed Fuzzing

Drive executions to a target code location

39

Hybrid Fuzzing

Fuzzing

Fast: can explore large program space quickly

Dumb: cannot penetrate narrow conditions easily

Symbolic Execution

Slow: take long time to process one input

Smart: can penetrate narrow conditions easily

Question: how to combine them?

40

Driller (NDSS 2017)

When AFL gets stuck,
invoke Anger

For each seed,
conduct concolic
execution

For each encountered
symbolic branch, flip
this branch if the
unvisited direction is
not in the AFL bitmap

41

Limitations of Driller

Fuzzer getting stuck is not a good indicator

49 out of 118 binaries ever got stuck

85% of stuck time periods are under 100s

There are significantly more seeds than SE

can handle

Angr takes 1654 seconds to process one input

Only 7.1% of seeds are processed by Angr

42

DigFuzz (NDSS 2019)

Limitations of Driller

43

DigFuzz Evaluation

44

Looking Ahead

Fuzzers become smarter

Branch distance based search (Angora)

CmpLog

LAF-Intel (“Split Compare”)

CompCov (CompareCoverage in QEMU/Unicorn)

Symbolic execution becomes faster and smarter

SymSan and SymFit

Marco: better path exploration

So the question still remains…

45

Lab 2 Assignment

Experimenting with Symbolic Execution and

Fuzzing

You are provided some toy programs

Try different tools and options
Klee, AFL++, cmplog, CompCov, Custom Mutator

(symqemu)

Report your findings

Can they solve these challenges?

What seeds are generated?

How much is the code coverage?

46

	Slide 1: CS 250 Software Security
	Slide 2: What is Fuzzing?
	Slide 3: Example
	Slide 4: Types of Fuzzers
	Slide 5: Types of Fuzzers
	Slide 6: Whitebox Fuzzing (2012)
	Slide 7: Greybox Fuzzing
	Slide 8: Coverage Metric
	Slide 9: Open Research Questions
	Slide 10: Coverage Metric Sensitivity
	Slide 11: Coverage Metrics
	Slide 12: Implementation
	Slide 13: Comparison of Unique Crashes
	Slide 14: Comparison of Time to First Crash
	Slide 15: Comparison of Seed Count
	Slide 16: Answer to RQ2:
	Slide 17: Combination of Coverage Metrics
	Slide 18: Answer to RQ3
	Slide 19: It is helpful to combine different coverage metrics. But how?
	Slide 20: Our Solution: Reinforcement Learning-based Hierarchical Seed Scheduling
	Slide 21
	Slide 22: Seed Explosion
	Slide 23: A Multi-level Coverage Metric
	Slide 24: Seed Exploitation & Exploration
	Slide 25: Fuzzing & MAB Model
	Slide 26: RL-based Hierarchical Seed Scheduling
	Slide 27: Seed Scoring
	Slide 28: Seed Rewarding
	Slide 29: Evaluation
	Slide 30: Evaluation
	Slide 31: Evaluation
	Slide 32: But still: it is hard to determine which metric to use
	Slide 33: An Example: Maze
	Slide 34: Add an IJON annotation
	Slide 35: Another Example: Protocol Fuzzing
	Slide 36: Annotations for Protocol Fuzzing
	Slide 37: Another Example: Super Mario Bros
	Slide 38: An Interesting Question
	Slide 39: Much More about Fuzzing
	Slide 40: Hybrid Fuzzing
	Slide 41: Driller (NDSS 2017)
	Slide 42: Limitations of Driller
	Slide 43: DigFuzz (NDSS 2019)
	Slide 44: DigFuzz Evaluation
	Slide 45: Looking Ahead
	Slide 46: Lab 2 Assignment

