
CS 250:

Software Security

Full-System Dynamic Binary Analysis

Why whole-system?

Malware analysis

Resides in the kernel space; Scatters in multiple

processes

Vulnerability analysis

For the OS kernel and device drivers

Embedded systems

Contains an OS kernel and user-level programs

WordIE Winlogon

Full-System Tainting for Malware Analysis

OS Kernel
keylogger

keylogger

[CCS’07] Panorama: Capturing System-wide Information Flow for Malware Detection and Analysis

What is needed?

Dynamic Taint Analysis

Tracking important information flows for entire system

Implement DTA in QEMU

Hooking APIs/System Calls

Understand API-level behaviors

Current Process & Modules

What processes/modules are currently executed

Question:

How do I know this OS-level knowledge from

hardware-level execution (QEMU)

The Answer: Virtual Machine Introspection

Definition:

Virtual Machine Introspection (VMI) is a technique

that observes and analyzes the state of a virtual

machine (VM) from the hypervisor, without modifying

the guest OS itself.

How it works in general:

Intercept important events (e.g., syscall, context

switch, page fault, breakpoint)

Parse important data structures in memory

Identifying the Current Process

Each process has its own page directory base

register

CR3 for x86; TTBR for ARM

Parse kernel data structures

EPROCESS for Windows; task_struct for Linux

VMI tools have “profiles” describing where these

structures are in memory

Current process pointer is at a known offset in kernel stack

(Windows) or “gs” segment in Linux

Parse the structures to identify process name, PID,

loaded modules, etc.

An Example: Google Desktop

Google Desktop obtains the incoming HTTP traffic, saves it into two index files, and then

sends it out though an HTTPS connection, to a remote Google Server

Dynamic Binary Analysis

for Android System

[USENIX Security 2012] DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic

Views for Dynamic Android Malware Analysis

DroidScope Overview

9

Goals

Dynamic binary instrumentation for Android

Leverage Android Emulator in SDK

No changes to Android Virtual Devices

External instrumentation

Linux context

Dalvik context

Extensible: plugin-support / event-based interface

Performance

Partial JIT support

Instrumentation optimization

10

Linux Context: Identify App(s)

Shadow task list

pid, tid, uid, gid, euid, egid, parent pid, pgd, comm

argv[0]

Shadow memory map

Address Space Layout Randomization (Ice Cream

Sandwich)

Update on

fork, execve, clone, prctl and mmap2

11

Java/Dalvik View

Dalvik virtual machine
register machine (all on stack)

256 opcodes

saved state, glue, pointed to by ARM R6, on stack in x86

mterp
offset-addressing: fetch opcode then jump to
(dvmAsmInstructionStart + opcode * 64)

dvmAsmSisterStart for emulation overflow

Which Dalvik opcode?
1. Locate dvmAsmInstructionStart in shadow memory map

2. Calculate opcode = (R15 - dvmAsmInstructionStart) / 64.

12

Just In Time (JIT) Compiler

Designed to boost performance

Triggered by counter - mterp is always the
default

Trace based

Multiple basic blocks

Multiple exits or chaining cells

Complicates external introspection

Complicates instrumentation

13

Droid Kung Fu

Three encrypted payloads
ratc (Rage Against The Cage)

killall (ratc wrapper)

gjsvro (udev exploit)

Three execution methods
piped commands to a shell (default execution path)

Runtime.exec() Java API (instrumented path)

JNI to native library terminal emulator (instrumented
path)

Instrumented return values for isVersion221 and
getPermission methods

14

Droid Kung Fu: TaintTracker

15

DroidDream

Same payloads as DroidKungFu

Two processes

Normal droiddream process clears logcat

droiddream:remote is malicious

xor-encrypts private information before

leaking

Instrumented sys_connect and sys_write

16

Droid Dream: TaintTracker

17

DroidDream: crypt trace

18

ratc

Vulnerability

setuid() fails when RLIMIT_NPROC reached

adbd fails to verify setuid() success

Three generation (stage) exploit

Locate adbd in /proc and spawns child

Child fork() processes until -11 (-EAGAIN) is
returned then spawns child – continues fork()

Grandchild kill() adbd and waits for process to re-
spawn

19

ratc: exploit diagnosis

20

Symbol Information

Native library symbols - Static

From objdump of libraries

Java symbols - Dynamic

Dalvik data structures -> address of string

Given address, load from

Memory

File mapped into memory

dexdump as backup

21

Discussion

Emulation Fidelity and Transparency

Relevance to Memory Forensics

Full-system or Kernel Fuzzing

	Slide 1: CS 250: Software Security
	Slide 2: Why whole-system?
	Slide 3: Full-System Tainting for Malware Analysis
	Slide 4: What is needed?
	Slide 5: The Answer: Virtual Machine Introspection
	Slide 6: Identifying the Current Process
	Slide 7: An Example: Google Desktop
	Slide 8: Dynamic Binary Analysis for Android System
	Slide 9: DroidScope Overview
	Slide 10: Goals
	Slide 11: Linux Context: Identify App(s)
	Slide 12: Java/Dalvik View
	Slide 13: Just In Time (JIT) Compiler
	Slide 14: Droid Kung Fu
	Slide 15: Droid Kung Fu: TaintTracker
	Slide 16: DroidDream
	Slide 17: Droid Dream: TaintTracker
	Slide 18: DroidDream: crypt trace
	Slide 19: ratc
	Slide 20: ratc: exploit diagnosis
	Slide 21: Symbol Information
	Slide 22: Discussion

