IIIIIIIIIIIIIIIIIIIIII

CS 250 Software
Security

Automatic Exploit Generation

An Example of Stack Overflow K

int main(int argc, char xxargv) {
int skfd; /x generic raw socket desc. *x/
if (argc == 2)
print_info (skfd, argv[1], NULL, 0);

static int print_info (int skfd, char xifname, char xargs[], int count)

struct wireless_info info;
int rc;

rc = get_info (skfd, ifname, &info);

static int get_info(int skfd, char xifname, struct wireless_info * info

) |

struct iwreq wrq;

if (iw_get_ext(skfd, ifname, SIOCGIWNAME, &wrq) < 0) {
struct ifreq ifr;
strcpy (ifr .ifr_name , ifname); /x buffer overflow =x/

Figure 1: Code snippet from Wireless Tools’ iwconfig.

Return Address

Other local
variables

ifr.ifr_name

Figure 2: Memory Diagram

Constructing a Simple Exploit for
Stack-based Overflow

?

Try to find an execution trace that would allow you to
control the program counter

Perform symbolic execution, and check if PC is symbolic
In the exploitable state (right before jump to the symbolic
PC), find a location to inject your shellcode

Search the virtual memory for a sequence of continuous symbolic
bytes that is large enough to fit the shellcode

Set the symbolic PC to the location of shellcode

Query the solver for the following constraints:
For i from O to shellcode_size: shellcode location]i] = shellcode]i]

Symbolic_PC = shellcode location
Path Predicate

R

Challenges

> Symbolic execution is slow
We have talked about fast concolic execution
» Transformation over input

Especially table lookup (e.g., isspace, isalpha,
toupper, tolower, mbtowc)

x = user_input(); x can be anything
y = mem|x];

assert (y == 42);

Which memory cell
contains 42?

s)32]| 10 CheCk =——
0 Memory 232-1

Symbolic Memory Index is Hard to HandleR

» Method 1: Concretization

[1
A mem[x] =42 A IT ’

v/ Solvable
X Exploits

I[IAx=17

A mem[x] =42 A IT

Symbolic Memory Index is Hard to Handlek

> Method 2: Fully Symbolic

[T A mem[«]=42 AIT

[T A mem[x] =42
A mem[0] =v, A~ A mem[232-1] = v,32 4
A TT

X Solvable
v Exploits

Mayhem’s Solution R

Path predicate (1) x can be anything
constrains range

of symbolic memory
accesses

Use symbolic execution state to:
Step 1: Bound memory addresses referenced
Step 2: Make search tree for memory address values

Step 1 — Find Bounds

mem|[x & Oxif]

Lowerbound = 0, Upperbound = Oxff

1.Value Set Analysis? provides initial bounds
* QOver-approximation
2.Query solver to refine bounds

[1] Balakrishnan et al., Analyzing memory accesses in x86 executables, ICCC 2004

R

Step 2 — Index Search Tree Construction: R
if x=1theny =10

ite(x < 3, : _ _

eft. right if x=2theny =12
if x =3 theny = 22
fx=4theny =20

Yy = mem][x]

ite(x < 2,
left, right)

— . T
Memory
Value

Index o

Fully Symbolic vs.
Index-based Memory Modeling

Time
10000

5000

0 \
Fully Symbolic Index-based

10

Index Search Tree Optimization:
Piecewise Linear Approximation K

— T _ .
Memory U y=-2"x+28
Value \\\ \\
y=2*x+ 10

Index

11

UCR

Piecewise Linear Approximation
Time J
10000 -

5000 -

0 | — | —
Fully Symbolic Index-based Piecewise Opt.

12

More Challenges R

» Path predicate might be overly constrained

This path is not feasible, but a slightly different
path is

Memory index concretization

Unsound concolic execution (concretize on
complex cases)

> What about fuzzing?

13

Such exploits are too simple/unrealistic! K

» Easily defeated by existing defense
DEP: Data Execution Prevention
ASLR: Address Space Layout Randomization

» Bypass DEP: ROP (Return-Oriented Programming)

» Bypass ASLR: Leverage information leakage

Some register or memory at a relative position might already
contain a useful address

mov [reg], esp, add [reg], esp
> How to fully automate it?
Angrop:

14

https://github.com/mantvydasb/RedTeaming-Tactics-and-Techniques/blob/master/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming.md
https://github.com/mantvydasb/RedTeaming-Tactics-and-Techniques/blob/master/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming.md
https://github.com/mantvydasb/RedTeaming-Tactics-and-Techniques/blob/master/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming.md
https://github.com/mantvydasb/RedTeaming-Tactics-and-Techniques/blob/master/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming.md
https://github.com/angr/angrop

How to defend against control-flow
hijacking exploits? K

» Program Hardening (will be discussed later)

Control-Flow Integrity
Shadow Stack
Control Pointer Integrity

> How to bypass these protections?
Data-oriented exploits.

15

Automatic
Generation of Data-
Oriented Exploits

USENIX Security 2015

R

OO0 NN b W=

18
19 }

int server () { —

char xuserInput, =xreqFile;
char xprivKey, =xresult, output [BUFSIZE];
char fullPath[BUFSIZE] = "/path/to/root/";

privKey = loadPrivKey ("/path/to/privKey") ;
/* HTTPS connection using privKey =*/
GetConnection(privKey, ...);
userInput = read_socket();
if (checkInput (userInput)) {
/* user input OK, parse request =/
reqFile = getFileName (userInput);
/* stack buffer overflow =*/
strcat (fullPath, regFile);
result = retrieve(fullPath);
sprintf (output, "$s:%s", reqgFile, result) ;
sendOut (output) ;

Code 1: Vulnerable code snippet. String concatenation on line 14
introduces a stack buffer overflow vulnerability.

17

O 1O\ DN A W =

struct user_details { uid_t wuid; ... } ud;

ud.uid = getuid(); //in get_user_info ()

viprintf(...);

setuid (ud.uid) ;

//run with root uid

//in sudo_debug ()

//in sudo_askpass ()

Code 3: Code snippet of sudo, setting uid to normal user id.

' address address
&ud.uid
stack j %X$n
area | e
vsprintf
&arg Q00> Attack
&ud.uid A0 IO
0 3 7 time 0 3 5 7 ﬁﬁk

(a) (b)

Figure 7: Stitch by complete memory address reuse of sudo. The
dashed line is the new edge (single-edge stitch). An address of ud.uid 18
exists on ancestor’s stack frame, which is reused to overwrite ud.uid.

A successful data-oriented exploit requireg

> The exploit input satisfies the program path
constraints to reach the memory error, create
new edges and continue the execution to
reach the target

> The instructions executed in the exploit must
conform to the program’s static control flow
graph

> A data flow stitching problem

19

Challenges

» Large search space for stitching
Many possible target variables

> Limited knowledge of memory layout.
How to bypass ASLR?

» Complex program path constraints
The exploit must satisfy all path constraints
Avoid invalid memory accesses

20

R

How It works

error-exhibiting
input

vuln.
program

benign
input

logger

Trace

error-
exhibiting
trace

Influence
Analysis

benign
trace

Flow
Analysis

FlowsStitch

constraints,
influence

data flows,
sec. data

Candidate
Generation
Single- | Address
edge -reuse
Multi- | Determi
edge nistic-

address

candidate
exploits

Filtering

21

DOA
exploits

More Details R

> Memory Error Influence Analysis
Use Symbolic Execution
» Security-Sensitive Data Identification
Specific syscalls/libc calls: printf, send, setuid, etc.
Program secret, permission flags
» Stitching Candidates
Path conditions reach memory error instructions

Path conditions continue to the target flow
Integrity of the control data

22

More Thinking

> Exploit Generation vs. Vulnerability Discovery

Both are search problems

Exploit generation relies more on symbolic
execution, but fuzzing is useful too

Vulnerability discovery uses both fuzzing and
symbolic execution

Exploit generation is more directed
Vulnerability discovery can be directed or not.

23

R

