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Problem: Internet Worms

Propagate by exploiting vulnerable software

No human interaction needed to spread

Able to rapidly infect vulnerable hosts

Slammer scanned 90% of Internet in 10 minutes

Need automatic defense against new worms
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Automatic Worm Defense
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Architecture
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Common Traits of Software Exploits

Most known exploits are overwrite attacks

Attacker’s data overwrites sensitive data

Common overwrite vulnerabilities:
Buffer overflows

Format string

Double-free

Common overwrite targets:
Return address

Function pointer
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Approach: Dynamic Taint Analysis

Hard to tell if data is sensitive when it is written

Binary has no type information

Easy to tell it is sensitive when it is used

Approach: Dynamic Taint Analysis: 

Keep track of tainted data from untrusted sources

Detect when tainted data is used in a sensitive way

e.g., as return address or function pointer
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Design & Implementation: 

TaintCheck

Use Valgrind to monitor execution

Instrument program binary at run-time

No source code required

Track a taint value for each location:

Each byte of tainted memory

Each register
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TaintCheck Components
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TaintSeed

Monitors input via system calls

Marks data from untrusted inputs as tainted

Network sockets (default)

Standard input

File input

(except files owned by root, such as system libraries)
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TaintTracker

Propagates taint

Data movement instructions:

e.g., move, load, store, etc.

Destination tainted iff source is tainted

Taint data loaded via tainted index

e.g., unicode = translation_table[tainted_ascii]

Arithmetic instructions:

e.g., add, xor, mult, etc.

Destination tainted iff any operand is tainted

Untaint result of constant functions
xor eax, eax
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TaintAssert

Detects when tainted data is misused

Destination address for control flow (default)

Format string (default)

Argument to particular system calls (e.g., 

execve)

Invoke Exploit Analyzer when exploit 

detected
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Coverage: Attack Classes Detected
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✓ ✓ N/A ✓ 

✓ ✓ ✓ ✓ 

✓ ✓ ✓ ✓ 

✓ ✓ ✓ ✓ 

Return Address 

Function Pointer

Fn Ptr Offset (GOT)

Jump Address



Other Applications

Information leakage detection/analysis

Malware analysis

Fuzzing

A base for symbolic execution/concolic 

testing

…

14



Pointer Tainting

mov eax, [ebx + 4]

    When ebx is tainted, shall eax be tainted?

Often used for table lookup, e.g.,

Convert from ascii to Unicode

Convert a date from one format to another

It may cause taint explosion 
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Over tainting & Under tainting

xor eax, eax 

sub eax, eax

Taint granularity is important (bit, byte, word, 

etc.)

Coarser granularity may cause over tainting
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Examples of bit-level tainting rules
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Rules for x86 Instructions
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New Formally-verified Precise Rules
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Bit-Precision Tainting in DECAF
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Comparing DECAF with TEMU on Tainted Shell 
Commands
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