
CS 250: Software

Security

Dynamic Taint Analysis

1

Dynamic Taint Analysis for

Automatic Detection, Analysis and

Signature Generation of Exploits

on Commodity Software
James Newsome and Dawn Song

Appeared in NDSS’06

2

Problem: Internet Worms

Propagate by exploiting vulnerable software

No human interaction needed to spread

Able to rapidly infect vulnerable hosts

Slammer scanned 90% of Internet in 10 minutes

Need automatic defense against new worms

3

Automatic Worm Defense

4

!

Exploit

Detected!

Architecture

5

Incoming traffic Exploit

Detector

Malicious flows Signature

Generator

Generated

Signatures

Signature

Dissemination

System

Disseminating

Signatures

Innocuous

Flows

Common Traits of Software Exploits

Most known exploits are overwrite attacks

Attacker’s data overwrites sensitive data

Common overwrite vulnerabilities:
Buffer overflows

Format string

Double-free

Common overwrite targets:
Return address

Function pointer

6

Approach: Dynamic Taint Analysis

Hard to tell if data is sensitive when it is written

Binary has no type information

Easy to tell it is sensitive when it is used

Approach: Dynamic Taint Analysis:

Keep track of tainted data from untrusted sources

Detect when tainted data is used in a sensitive way

e.g., as return address or function pointer

7

Design & Implementation:

TaintCheck

Use Valgrind to monitor execution

Instrument program binary at run-time

No source code required

Track a taint value for each location:

Each byte of tainted memory

Each register

8

TaintCheck Components

9

TaintTrackerTaintSeed

Copy

TaintAssert

!!! Misuse

Untrusted

Input

TaintSeed

Monitors input via system calls

Marks data from untrusted inputs as tainted

Network sockets (default)

Standard input

File input

(except files owned by root, such as system libraries)

10

!!!

TaintTracker

Propagates taint

Data movement instructions:

e.g., move, load, store, etc.

Destination tainted iff source is tainted

Taint data loaded via tainted index

e.g., unicode = translation_table[tainted_ascii]

Arithmetic instructions:

e.g., add, xor, mult, etc.

Destination tainted iff any operand is tainted

Untaint result of constant functions
xor eax, eax

11

!!!

TaintAssert

Detects when tainted data is misused

Destination address for control flow (default)

Format string (default)

Argument to particular system calls (e.g.,

execve)

Invoke Exploit Analyzer when exploit

detected

12

!!!

Coverage: Attack Classes Detected

13

✓ ✓ N/A ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

Return Address

Function Pointer

Fn Ptr Offset (GOT)

Jump Address

Other Applications

Information leakage detection/analysis

Malware analysis

Fuzzing

A base for symbolic execution/concolic

testing

…

14

Pointer Tainting

mov eax, [ebx + 4]

 When ebx is tainted, shall eax be tainted?

Often used for table lookup, e.g.,

Convert from ascii to Unicode

Convert a date from one format to another

It may cause taint explosion

15

Over tainting & Under tainting

xor eax, eax

sub eax, eax

Taint granularity is important (bit, byte, word,

etc.)

Coarser granularity may cause over tainting

16

Examples of bit-level tainting rules

17

Rules for x86 Instructions

18

New Formally-verified Precise Rules

19

Bit-Precision Tainting in DECAF

20

Comparing DECAF with TEMU on Tainted Shell
Commands

21

	Slide 1: CS 250: Software Security
	Slide 2: Dynamic Taint Analysis for Automatic Detection, Analysis and Signature Generation of Exploits on Commodity Software
	Slide 3: Problem: Internet Worms
	Slide 4: Automatic Worm Defense
	Slide 5: Architecture
	Slide 6: Common Traits of Software Exploits
	Slide 7: Approach: Dynamic Taint Analysis
	Slide 8: Design & Implementation: TaintCheck
	Slide 9: TaintCheck Components
	Slide 10: TaintSeed
	Slide 11: TaintTracker
	Slide 12: TaintAssert
	Slide 13: Coverage: Attack Classes Detected
	Slide 14: Other Applications
	Slide 15: Pointer Tainting
	Slide 16: Over tainting & Under tainting
	Slide 17: Examples of bit-level tainting rules
	Slide 18: Rules for x86 Instructions
	Slide 19: New Formally-verified Precise Rules
	Slide 20: Bit-Precision Tainting in DECAF
	Slide 21: Comparing DECAF with TEMU on Tainted Shell Commands

