
Lab 1: Constructing Buffer Overflow Exploits

Preparation
Recommended Operating System: Ubuntu 32 bits or 64 bits, >=14.04

A vulnerable program can be downloaded at https://www.cs.ucr.edu/~heng/teaching/cs250-
sp25/example01.c. The “Password” defined in the function “IsPasswordOkay” is vulnerable to buffer
overflow attacks. You need to construct two exploits to take advantage of this vulnerability.

To compile the vulnerable program, use the following command line:

gcc –g –fno-stack-protector -m32 –z execstack –o example01 example01.c

We need to disable the address layout randomization. You have two options:

Option 1: disable ASLR globally. You need root privileges.

sudo su
echo 0 > /proc/sys/kernel/randomize_va_space
exit

Option 2: disable ASLR locally and temporarily. You don’t need root privileges.

setarch `uname -m` -R /bin/bash

This will open a new Bash shell for you with ASLR disabled, including all child processes created from this
shell. Just exist the shell once you are done.

Task1: Code Injection
Objective: Construct an exploit input that can inject a shellcode to be executed in the vulnerable
program. A template exploit is provided at https://www.cs.ucr.edu/~heng/teaching/cs250-
sp25/codeinjection.bin.

Hint: The shell code is appended in the end of this template. This shell code will run “ps” program to
print the running processes. To complete this exploit, we need to figure out what value should be used
to overflow the return address. In this case, the value should be the start address of the shell code. Since
the shell code will be injected on the stack, figuring out the address of “Password” on the stack is the
key to solve this problem. We can attach a debugger gdb to the running program and locate the address
of “Password”.

Task2: Return to libc Attack
Objective: Construct an exploit input that takes advantage of the existing “system” library call in libc to
achieve the same goal as in the first task. That is, we want to run “ps” command, without injecting any
code into the stack of the vulnerable program.

Hint: Instead of jumping to the shell code from the exploit input, we want to redirect the program to
jump into the “system” function call. We need to locate the entrypoint of the “system” function call. gdb
can help us with this. We also need to prepare the stack properly to supply the parameter “ps” to the
system function call. A template exploit is provided at https://www.cs.ucr.edu/~heng/teaching/cs250-
sp25/returntolibc.bin.

Requirement for submission
Students need to submit your lab report through eLearn. In the report, a screenshot with clear
explanation is needed for each key step.

