
CS 250 Software Security

Program Hardening

1

Efficient Software-Based Fault

Isolation

ACM SIGOPS 1993

2

Why do we need SFI?

Use protection domains to isolate untrusted components

A web browser should isolate browser plugins

An OS should isolate device drivers

Designate a memory region for an untrusted component and instrument

dangerous instructions in it to constrain its memory access and control

transfer

Highly desirable to isolate untrusted components in separate protection

domains, grant them minimum privileges

Gang Tan (2017), “Principles and Implementation Techniques of Software-Based Fault Isolation”, Foundations and Trends R in Privacy and Secruity: Vol. 1, No. 3, pp 137–198. DOI: 10.1561/3300000013.

3

SFI Policy

A data region holds all data

needed by the code

A code region where code is

loaded into

A set of safe external code

addresses

Three regions are mutually

disjoint

Data-access policy: All memory

reads and writes by the code

should be within the data region

Control-flow policy: A control

transfer by the code must stay

within the code or target a safe

external address

4

SFI Enforcement

5

Implementing IRM Rewriters

Binary-rewriting

Does not require source code

Disassembling binaries without metadata can be challenging

Optimizing checks in binaries is challenging

Compiler-based instrumentation

Requires access to source code

Perform more precise static analysis for optimizing checks

Portable across architectures

6

Enforcing the Data-Access Policy

A naïve implementation can insert checks before all memory

instructions

Mem(r1 + 12) := r2 →

r10 := r1 + 12

if (r10 < DB) goto error

if (r10 > DL) goto error

mem(r10) := r2

Too much runtime overhead

Need optimizations

7

Data Region Specialization

Make all addresses have the same upper bits.

These upper bits are called the data region ID.

mem(r1 + 12) := r2 →

r10 := r1 + 12

r11 := r10 >> 16

if (r11 6= 0x1234) goto error

mem(r10) := r2

A right-shift instruction in more efficient than a conditional

jump

8

Integrity-only Isolation

A typical perform performs more memory reads than writes

To ensure the integrity of memory outside the data region, we

only need to check memory writes

So, this weakened policy leads to much lower runtime

overhead

9

Address Masking

Force an address to be inside the data region

“mem(r1 + 12) := r2” →

r10 := r1 + 12

r10 := r10 & 0x0000FFFF

r10 := r10 | 0x12340000

mem(r10) := r2

PittSFIeld further fixes the data region ID to have only one

single bit on

r10 := r1 + 12

r10 := r10 & 0x2000FFFF

mem(r10) := r2

10

Enforcing the Control-Flow Policy

Control transfers by the sandboxed code must stay in the code region or

target a safe external address

One solution: A dedicated register is used to hold the jump target

Strengthened control-flow policy

All control-flow transfers must target the beginning of a pseudo instruction in the

code or target a safe external address.

Fine-grained CFI (will be discussed later)

Aligned-chunk enforcement (PittSFIeld)

11

Interaction with the Outside World

A list of predefined APIs that sandboxed code can call

A deep copy of arguments (also called marshalling)

12

Control-Flow Integrity

ACM CCS 2005

13

CFI: Control-Flow Integrity

Main idea: pre-determine control flow graph (CFG) of an

application

Static analysis of source code

Static binary analysis CFI

Execution profiling

Explicit specification of security policy

Execution must follow the pre-determined control flow graph

14

CFI: Binary Instrumentation

Use binary rewriting to instrument code with runtime checks

(similar to SFI)

Inserted checks ensure that the execution always stays within

the statically determined CFG

Whenever an instruction transfers control, destination must be valid

according to the CFG

Goal: prevent injection of arbitrary code and invalid control

transfers (e.g., return-to-libc)

Secure even if the attacker has complete control over the thread’s

address space

15

CFG Example

16

CFI: Control Flow Enforcement

For each control transfer, determine statically its possible

destination(s)

Insert a unique bit pattern at every destination

Two destinations are equivalent if CFG contains edges to each from

the same source

This is imprecise (why?)

Use same bit pattern for equivalent destinations

Insert binary code that at runtime will check whether the bit

pattern of the target instruction matches the pattern of

possible destinations

17

CFI: Example of Instrumentation

Original code

Instrumented code

Abuse an x86 assembly instruction to
insert “12345678” tag into the binaryJump to the destination only if

the tag is equal to “12345678”

18

CFI: Preventing Circumvention

Unique IDs

Bit patterns chosen as destination IDs must not appear anywhere else

in the code memory except ID checks

Non-writable code

Program should not modify code memory at runtime

What about run-time code generation and self-modification?

Non-executable data

Program should not execute data as if it were code

Enforcement: hardware support + prohibit system calls that

change protection state + verification at load-time

19

Improving CFI Precision

Suppose a call from A goes to C, and a call from B goes to

either C, or D (when can this happen?)

CFI will use the same tag for C and D, but this allows an “invalid” call

from A to D

Possible solution: duplicate code or inline

Possible solution: multiple tags

Function F is called first from A, then from B; what’s a valid

destination for its return?

CFI will use the same tag for both call sites, but this allows F to return

to B after being called from A

Solution: shadow call stack

20

CFI: Security Guarantees

Effective against attacks based on illegitimate control-flow

transfer

Stack-based buffer overflow, return-to-libc exploits, pointer

subterfuge

Does not protect against attacks that do not violate the

program’s original CFG

Incorrect arguments to system calls

Substitution of file names

Other data-only attacks

21

Performance Overhead

22

Performance Overhead (2)

23

What’s more?

Memory Safety

CCured (POPL 2002): combines type inference and runtime checking

SoftBound (PLDI 2009): enforce spatial memory safety

CETS (ISMM 2010): enforce temporal memory safety

Data-Flow Integrity (DFI): OSDI 2006

DFI inserts checks before memory reads and writes to enforce the runtime

data flow is compliant with the Data Flow Graph (DFG)

Write-Integrity Testing (WIT): S&P 2008

For each memory write, pointer analysis is employed to compute the

approximate set of objects that can be written by the memory write. At

runtime, write sets are remembered by a color table and dynamic checks

are used to prevent a memory write to change objects outside its write set.

Code Pointer Integrity (CPI): OSDI 2014

CPI guarantees the integrity of all code pointers in a program

24

	Slide 1: CS 250 Software Security
	Slide 2: Efficient Software-Based Fault Isolation
	Slide 3: Why do we need SFI?
	Slide 4: SFI Policy
	Slide 5: SFI Enforcement
	Slide 6: Implementing IRM Rewriters
	Slide 7: Enforcing the Data-Access Policy
	Slide 8: Data Region Specialization
	Slide 9: Integrity-only Isolation
	Slide 10: Address Masking
	Slide 11: Enforcing the Control-Flow Policy
	Slide 12: Interaction with the Outside World
	Slide 13: Control-Flow Integrity
	Slide 14: CFI: Control-Flow Integrity
	Slide 15: CFI: Binary Instrumentation
	Slide 16: CFG Example
	Slide 17: CFI: Control Flow Enforcement
	Slide 18: CFI: Example of Instrumentation
	Slide 19: CFI: Preventing Circumvention
	Slide 20: Improving CFI Precision
	Slide 21: CFI: Security Guarantees
	Slide 22: Performance Overhead
	Slide 23: Performance Overhead (2)
	Slide 24: What’s more?

